
Chin. J. Astron. Astrophys. Vol. 8 (2008), No. 4, 477–488
(http://www.chjaa.org)

Chinese Journal of
Astronomy and
Astrophysics

A Running Average Method for Predicting the Size and Length of a
Solar Cycle ∗

Zhan-Le Du, Hua-Ning Wang and Li-Yun Zhang

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
zldu@bao.ac.cn

Received 2007 September 17; accepted 2007 December 27

Abstract The running correlation coefficient between the solar cycle amplitudes and the
max-max cycle lengths at a given cycle lag is found to vary roughly in a cyclical wave with
the cycle number, based on the smoothed monthly mean Group sunspot numbers available
since 1610. A running average method is proposed to predict the size and length of a solar
cycle by the use of the varying trend of the coefficients. It is found that, when a condition
(that the correlation becomes stronger) is satisfied, the mean prediction error (16.1) is much
smaller than when the condition is not satisfied (38.7). This result can be explained by the fact
that the prediction must fall on the regression line and increase the strength of the correlation.
The method itself can also indicate whether the prediction is reasonable or not. To obtain
a reasonable prediction, it is more important to search for a running correlation coefficient
whose varying trend satisfies the proposed condition, and the result does not depend so much
on the size of the correlation coefficient. As an application, the peak sunspot number of cycle
24 is estimated as 140.4 ± 15.7, and the peak as May 2012± 11 months.
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1 INTRODUCTION

Predicting the solar activity, especially in relation to the 11 - year solar cycles, is an important task in space
weather. Various methods have been proposed to predict the amplitudes of solar cycles, which can be di-
vided into two categories, statistical and precursor-based. The former depends mainly on some statistical
properties of the cycles, and has tended poor results of prediction of the past few cycles (Conway 1998;
Li et al. 2001), which may be caused by the intermittency and non-stationarity of the solar activity time
evolution (Kremliovsky 1995; Usoskin & Mursula 2003). The latter method depends on some correlation
between some preceding factor and the parameter to be predicted. Since Ohl (1966) noted a high correlation
between the minimum of geomagnetic activity cycle and the amplitude of the following sunspot cycle, the
precursor-based method has become important in the prediction of the cycle amplitudes. The correlation co-
efficients between cycle amplitudes and geomagnetically-based parameters are usually as high as 0.8− 0.9
(Wilson 1990; Kane 2007).

Precursor models are based on a physical relation between the poloidal solar magnetic field, estimated
from geomagnetic activity in the declining phase of the preceding cycle (e.g., Hathaway et al. 1999), with
the toroidal field responsible for sunspot formation. They have yielded small errors in the prediction of
the size of cycles 20 − 22 (Ohl 1976; Ohl & Ohl 1979; Kane 1978; Wilson 1990; Li et al. 2001), and so
were believed to be superior to others (Kane 1978; Li et al. 2001). However, there is a large discrepancy
on the precursor results for the 23rd cycle (Li et al. 2001) and for the 19th cycle (Kane 2007), although
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the correlation coefficients they were based on were very high (∼ 0.9, Kane 2007). Recently, Dikpati et
al. (2006) have predicted, based on model simulations of the solar dynamo, that the next sunspot cycle will
be 30% − 50% higher than the current one. However, Choudhuri et al. (2007) announced, using a similar
dynamo modelling, that the next cycle will be 30% lower than the current one. This indicates uncertainty in
the predictive power of the new dynamo models, probably because of an important stochastic component
in the solar dynamo (Charbonneau 2001; Usoskin et al. 2001).

A high correlation coefficient does not mean a successful prediction. One reason may be that solar
activities are modulated by long-term periodicities (Meyer 1998; Kane 2001; Komitov & Bonev 2001;
Wilson 1992; Hathaway et al. 1999; Du 2006a,b; Du et al. 2006). The size of cycle 24 has been predicted
by many authors and the predictions cover a wide range (Wang et al. 2002; Li et al. 2005a; Du 2006a; Du
& Du 2006; Kane 2007; Xu et al. 2008), which may again be caused by the long-term modulations and the
complex correlations therein. Most of the predictions used one high correlation coefficient between the two
parameters involved, which may not show the varying trend, and can hardily indicate by itself whether the
prediction is reasonable or not.

In Section 2, we use the smoothed monthly mean Group sunspot numbers (Hoyt & Schatten 1998a,b)
to determine the amplitudes (Rm) and max-max cycle lengths (Pm). The varying behavior of the running
correlation coefficients between Rm and Pm at different cycle lags is investigated in Section 3. A running
average method is proposed in Section 4 to improve the prediction of R m using the varying trend found.
Finally, a discussion and conclusions are given in Section 5.

2 DATA

The Wolf sunspot number has been the most important index of solar activity because of its long span of
records. However, the data before 1850 are based on inaccurate or interrupted observations, and hence are
less accurate than those after 1850 (Hoyt & Schatten 1998a,b). The present work uses the more homo-
geneous time series of Group Sunspot Number introduced by Hoyt & Schatten (1998a,b). It has a longer
time series than the Wolf sunspot number, being available from 1610 to 1995. The smoothed monthly mean
values (http://www.ngdc.noaa.gov/stp/SOLAR/getdata.html) are used to determine the R m and Pm values
listed in Table 1. The max-max cycle length was used, because it is directly correlated with R m and is not
dependent on the definition of minima. The data in the last row (cycle 23) were taken from the Wolf sunspot
number, and were only used in the prediction of cycle 24, because the time series of Group Sunspot Number
is close to that of Wolf sunspot number over the last few decades (Hoyt & Schatten 1998a,b).

Table 1 Values of Pm and Rm from Cycles −11 to 22

n Pm (mon.) Rm date n Pm (mon.) Rm date
−11 131 42.8 1625 Nov 6 182 31.5 1816 Sep
−10 193 95.8 1641 Dec 7 159 64.4 1829 Dec
−9 125 6.71 1652 May 8 87 116.8 1837 Mar
−8 99 2.00 1660 Aug 9 140 93.2 1848 Nov
−7 195 2.13 1676 Nov 10 143 85.8 1860 Oct
−6 90 1.42 1684 May 11 121 99.9 1870 Nov
−5 132 0.13 1695 May 12 160 68.2 1884 Mar
−4 120 5.47 1705 May 13 118 96.0 1894 Jan
−3 174 34.2 1719 Nov 14 145 64.6 1906 Feb
−2 123 64.7 1730 Feb 15 138 111.3 1917 Aug
−1 136 57.3 1741 Jun 16 131 81.6 1928 Jul

0 105 71.7 1750 Mar 17 105 125.1 1937 Apr
1 134 71.0 1761 May 18 123 145.2 1947 Jul
2 100 106.5 1769 Sep 19 128 186.1 1958 Mar
3 113 78.2 1779 Feb 20 147 109.3 1970 Jun
4 104 90.1 1787 Oct 21 109 154.2 1979 Jul
5 165 51.1 1801 Jul 22 139 153.5 1991 Feb

23a 114 120.8 2000 May

a Based on the Wolf numbers, only used in the prediction on cycle 24.
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Fig. 1 Plot of r6
−7(n) versus n is roughly a wave with periodicity T = 16.35± 2.31 (cycle). The solid line

is the observed curve, and the dashed line is the fitting curve, with error bars on either sides (dotted lines).

3 RUNNING CORRELATION COEFFICIENTS BETWEEN Rm AND Pm AT DIFFERENT
CYCLE LAGS

In order to understand the long-term behavior of solar cycles, we study the running correlation coefficient
between Rm and Pm for a given cycle lag (l) at cycle n,

rw
l (n) =

n∑
i=n−w+1

[Rm(i) − Rm][Pm(i + l) − Pm]√
n∑

i=n−w+1

[Rm(i) − Rm]2
n∑

i=n−w+1

[Pm(i + l) − Pm]2
, (1)

where Rm(i) and Pm(i + l) are the values of Rm in cycle i and Pm in cycle i + l (−11 ≤ i, i + l ≤ 22),
respectively, w is the ‘window’ width for the cycles used, and

Rm =
1
w

n∑
i=n−w+1

Rm(i), Pm =
1
w

n∑
i=n−w+1

Pm(i + l), (2)

are the average Rm and Pm, respectively. As an example, we show r6
−7(n) in Figure 1.

It should be noted in Figure 1 that r6−7(n) varies in a wave with an obvious periodicity of about 16
cycles. It is positive around n = 7, negative around n = 15, and positive again around n = 22, indicating
that the correlation varies in time. As a quantity to describe the long-term temporal evolution of sunspot
numbers, r6

−7(n) can be fitted with a sinusoidal function,

r6
−7(n) = 0.49 sin(2πn/T + 5.44)− 0.076 ± 0.18, (3)

T = 16.35± 2.31, (4)

rc = 0.89(CL > 99%), (5)

where ‘±’ means the standard deviation, T = 16.35 ± 2.31 (in units of 11 - yr cycles) is the regression
periodicity, and rc = 0.89 is the correlation coefficient between the fitting values (dashed line) and observed
ones (solid line). The confidence level (CL) is greater than 99%. It means that r 6

−7(n) varies with n in a
sinusoidal wave with an obvious periodicity of 16.35 - cycle (∼ 180 - yr).

Two more examples, r10
−8(n) and r9

0(n), are given in Figure 2, showing obvious sinusoidal variations
with periodicities T = 15.54 ± 1.27 (171 - yr) and 48.27 ± 8.43 (530 - yr), respectively. Although only
some of the values are significant at 95% confidence level (circled dots), it is clearly shown that they vary
regularly in sinusoidal waves. The correlation coefficients between the fitting and observed values are very
high, being r = 0.96 in both cases. Figure 2b shows that Rm was inversely correlated with Pm of the same
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Fig. 2 (a) Plot of r10
−8(n) in periodicity of T = 15.54 ± 1.27. (b) Plot of r9

0(n) in periodicity of T =
48.27 ± 8.43. The circle dots denote the values significant at 95% confidence level.

Fig. 3 (a) Plot of r9
7(n) in periodicity of T = 22.79 ± 4.02. (b) Plot of r9

−7(n) in periodicity of T =
16.53 ± 4.93.

cycle at 95% confidence level from n = 5 to 18, meaning that large amplitudes had short lengths in these
cycles, but this correlation was becoming weaker from n = 19 onward.

The cyclical behavior of rw
l (n) is not confined to l ≤ 0. Figure 3 shows that r9

7(n) varies cyclically
in a periodicity of T = 22.79 ± 4.02 (251 - yr) and that r 9

−7(n) varies sinusoidally in a periodicity of
T = 16.53 ± 4.93 (182 - yr). The behaviors of r9

l (n) for l = ±7 are different from each other, implying
that the correlation is not symmetric for ±l. Figure 3a shows that Rm was positively correlated with the Pm

seven cycles later at 95% confidence level from n = −3 to 0, while this correlation became weaker since
then, and positive again now around n = 15.

Far from a constant, rw
l (n) is variable and even does not keep a stable sign. It varies in a cyclical

wave rather than in a stochastic way. The cyclical behavior of r w
l (n) exists for nearly all l and w (in fact,

all cases for l = 0,±1, · · · ,±17, w = 3, 4, · · · , 17 have been examined), but shows different periodicities
for different l and w (Figs. 1–3). For different w, it shows a similar behavior, larger w having a little
more smooth behavior (see Figs. 1 and 3b). This cyclical behavior reflects the variations in cycle lengths
and amplitudes, and may be modulated by some long-term cycles such as 80 - yr (Gleissberg 1971), 179 -
yr (Jose 1965; Landscheidt 1999) and so on (notice that not all these periodicities were found in solar
activities). It provides a quantity to study the long-term variations in sunspot numbers, especially when
applied to the prediction on solar cycles.
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4 APPLICATIONS OF rw
l (n) IN THE PREDICTION ON SOLAR CYCLES

Most workers pursue a high correlation coefficient between two or more parameters to study solar activities
and/or to predict solar cycle amplitudes. Besides, they tend to make use of the time series as long as possible
to seek a single correlation coefficient between the parameters involved. However, it is now known from
Figures 1–3 that the coefficients vary in cyclical waves, and that the cyclical behaviors are different for
different l. One coefficient can not be expected to provide enough information to show its varying trend and
can not indicate whether the prediction is reasonable or not. In the present section, we show how to employ
this cyclical behavior to improve the prediction on solar cycles.

4.1 A Running Average Method for Predicting the Amplitude and Length of Solar Cycles

We know from Appendix A that a prediction (extrapolated value) lies on the original regression line and
increases the strength of the correlation — whether positive or negative, the correlation coefficient after
including the additional pair of (prediction) data on the regression line must be stronger than the original
one. However, the coefficient does not always behave in this way. If a prediction does not satisfy the varying
trend of the coefficient, it may likely fail, which may be one of the reasons for some unsuccessful predictions
in the past and the divergences of predictions from different authors.

Therefore, a prediction is reasonable only when its correlation coefficient and the corresponding ob-
served one have the same varying trend, which can be expressed by the following condition,

∆r(n) = rw
l (n − 1)[rw

l (n) − rw
l (n − 1)] > 0. (6)

The value of rw
l (n) may not be known, whose trend can be estimated from its varying behavior.

A running average method to predict Rm is illustrated as follows. If we use certain l(< 0) and w to
predict Rm in cycle n, we may (i) take w pairs of Rm(i) and Pm(i + l), i = n− w, n − w + 1, · · · , n − 1,
to calculate the regression equation and the correlation coefficient r w

l (n − 1); (ii) substitute the Pm value
of cycle n − 1 + l + 1 = n + l into this equation, and a prediction of Rm in cycle n can be made, Rp(n);
(iii) estimate rw

l (n) and the corresponding predicted value rp(n) using Rp(n), then check if this prediction
is reasonable using Equation (6); (iv) increase n by 1 each step and repeat the process above until suitable
number of predictions are made.

For example, for l = −7 and w = 6, to predict Rm in cycle n = 21, we use six pairs of Rm(i) and
Pm(i − 7), i = 15, 16, · · · , 20, to calculate the regression equation,

Rm = 46.4 + 0.624Pm,−7, σ(n) = 32.2, (7)

where Pm,−7 means the value of Pm seven cycles earlier, and σ(n) = 32.2 is the standard deviation used
to estimate the prediction deviation in (the next) cycle n. Substituting Pm(14) = 145 (month) of cycle
n + l = 14 into Equation (7), the next Rm(n) value can be predicted as Rp(21) = 136.9. Its prediction
error, ∆Rp(21) = ‖Rp(21)−Rm(21)‖ = 17.2, is small compared with the estimated deviation σ(n). The
reason is that the predicted value, Rp(21), will make the extended correlation coefficient, rw+1

p (21) = 0.45
(coming from the formula of rw+1

l (21) after replaced Rm(21) by Rp(21)), even greater, rw+1
p (21) >

r6
−7(20) = 0.44 > 0 (see Appendix A). As a result, the predicted running correlation coefficient, r p(21) =

0.47 (coming from r6
−7(21) after replaced Rm(21) by Rp(21)), is possibly near to the observed r6

−7(21) =
0.50, both having the same increasing trend, rw

l (n) > rw
l (n−1), then the condition (Eq. (6)) is satisfied and

the prediction is good. Notice that r6
−7(20) is not high, and that it is even insignificant at 95% confidence

level.
Therefore, if the current rw

l (n − 1) is positive and the next rw
l (n) is likely higher estimated from its

varying trend, rw
l (n) > rw

l (n−1) > 0, a good prediction (with a relatively small error) of Rm can be made
from the linear regression equation of Rm versus Pm in the ascending phase of rw

l (n) (e.g., for n = 21−22
in Fig. 1).

On the other hand, if the current rw
l (n − 1) is negative and rw

l (n) > rw
l (n − 1) (e.g., for n= 17 – 19

in Fig. 1), it can not yield a good prediction of Rm(n) because the predicted value will make the extended
rw+1
p (n) even more negative, rw+1

p (n) < rw
l (n−1) < 0 (see Appendix A). Thus it can hardly make rp(n),

i.e., the predicted rw
l (n), satisfy the ascending varying trend of rw

l (n).
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Table 2 Predictions of Rm in Cycles 9 – 22 for l = −7 and w = 6

Cycle Current cycle Prediction
n Used Regression Rm(n) rw

l
(n) Rp(n)a rp(n)b σ(n)c ∆Rd

p rw+1
p (n)e ∆r(n)f

8 −4 – 8 23.4+0.368Pm,−7 116.8 0.29
9 −3 – 9 58.0+0.128Pm,−7 93.2 0.11 60.2 0.35 28.7 32.9 0.33 −
10 −2 – 10 123.7−0.421Pm,−7 85.8 −0.20 72.5 −0.18 31.0 13.3 0.11 −
11 −1 – 11 136.7−0.475Pm,−7 99.9 −0.25 79.9 −0.16 30.2 20.0 −0.22 +
12 0 – 12 103.7−0.130Pm,−7 68.2 −0.17 58.3 −0.31 29.1 9.9 −0.39 −
13 1 – 13 109.1−0.119Pm,−7 96.0 −0.25 80.0 −0.51 19.5 16.0 −0.23 +
14 2 – 14 111.4−0.195Pm,−7 64.6 −0.47 90.2 −0.34 15.5 25.6 −0.26 +
15 3 – 15 127.9−0.298Pm,−7 111.3 −0.63 94.4 −0.49 13.2 16.9 −0.52 +
16 4 – 16 133.2−0.331Pm,−7 81.6 −0.66 86.1 −0.67 14.4 4.5 −0.63 +
17 5 – 17 141.4−0.344Pm,−7 125.1 −0.47 85.8 −0.60 13.9 39.3 −0.66 −
18 6 – 18 161.4−0.414Pm,−7 145.2 −0.46 99.7 −0.40 21.3 45.5 −0.48 −
19 7 – 19 110.6+0.062Pm,−7 186.1 0.04 95.1 −0.50 26.1 91.0 −0.47 −
20 8 – 20 46.4+0.624Pm,−7 109.3 0.44 117.9 0.43 43.9 8.7 0.04 +
21 9 – 21 −25.3+1.153Pm,−7 154.2 0.50 136.9 0.47 32.2 17.2 0.45 +
22 10 – 22 −29.0+1.270Pm,−7 153.4 0.76 133.8 0.75 31.7 19.7 0.50 +
23 137.3 0.90 17.4 0.76 +

goodg σg =25.1 δg =16.1 +
badh σb =25.0 δb =38.7 −

a The predicted value of Rm(n) from the regression equation in cycle n − 1.
b rp(n): The predicted value of rw

l
(n) after replaced Rm(n) by Rp(n).

c The standard deviation of regression equation in cycle n − 1, used to estimate the prediction deviation in cycle n.
d ∆Rp = ‖Rp − Rm‖: prediction error.
e rw+1

p (n): the extended value rw+1
l

(n) after replaced Rm(n) by Rp(n).
f The ‘+’ or ‘−’ means whether or not condition (6) is satisfied.
g When condition (6) is satisfied, the mean prediction error is δg = 16.1, and the corresponding mean estimated deviation

σg =25.1.
h When condition (6) is not satisfied, the mean prediction error is δb = 38.7, and the corresponding mean estimated deviation

σb =25.0.

For example, r6−7(16) = −0.6611 is highly negative for n − 1 = 16 (its minus peak), but it is inferred
from Figure 1 that r6

−7(17) > r6
−7(16). With data up to cycle 16, the regression equation can be calculated

as
Rm = 133.2− 0.331Pm,−7, σ(n) = 13.9. (8)

The value of Rm(n) in n = 17 is predicted as Rp(17) = 85.8. The prediction error, ∆Rp(17) =
‖Rp(17) − Rm(17)‖ = 39.3, is large compared with the estimated deviation σ(n). The reason is that
the predicted value Rp(17) will make the negative value of r6

−7(16) even more negative, r6+1
p (17) =

−0.6614 < r6
−7(16) < 0, opposite to its ascending trend. As a result, the predicted rp(17) = −0.60 is

unlikely near to the observed r6−7(17) = −0.47, and Equation (6) is not satisfied.
With this technique, the predictions of Rm(n) for cycles 9 – 22 can be tested. The results are listed in

Table 2, and the values of r6−7(n), rp(n), ∆Rp(n), and σ(n) are shown in Figure 4.
From Table 2 and Figure 4, we note:

a) When the predicted rp(n) (dotted line) is close to the observed rw
l (n) (solid line), the predicted value,

Rp(n), is near to the observed Rm(n), e.g., for n = 10, 16, 20– 22.
b) When Equation (6) is satisfied [∆r(n) > 0, 8 cases], the prediction error ∆Rp(n) (dashed line) usually

(6/8 cases) falls below the estimated deviation σ(n) (the dash-dot-dot line), and below 20 (triangles, 7/8
cases). The mean prediction error, δg =16.1, is less than the corresponding mean estimated deviation,
σg =25.1. This situation occurs where rw

l (n − 1) > 0 in the ascending phase (e.g., for n = 20 – 22)
and rw

l (n − 1) < 0 in the descending phase (e.g.,for n = 11, 13, 15– 16).
c) When Equation (6) is not satisfied [∆r(n) < 0, 6 cases], the prediction error ∆R p(n) is usually

above (4/6 cases) the estimated deviation σ(n), and above 20 (4/6 cases). The mean prediction error,
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Fig. 4 Predictions of Rm from regression equation. Upper panel: observed r6−7(n) (solid line), and pre-
dicted rp(n) (dotted line). Lower panel: the prediction error ∆Rp = ‖Rp − Rm‖ (dashed line), and the
estimated deviation σ(n) (dash-dot-dot-line). ∆Rp is usually less than σ(n), and less than 20 (triangles)
when Equation (6) is satisfied.

δb =38.7, is greater than the corresponding mean estimated deviation, σ b =25.0. This situation occurs
where rw

l (n−1) < 0 in the ascending phase (e.g., for n = 17 – 19) and rw
l (n−1) > 0 in the descending

phase (e.g., for n = 9).

An exception occurs in cycle 12. Here, Equation (6) is not satisfied, but its prediction error, 9.9, is small,
because r6

−7(n) is in its descending phase and Equation (6) should have been satisfied. In fact, Equation (6)
will be satisfied when using the predicted rp(11) = −0.16 (Table 2 and Fig. 4), thus this good prediction
seems reasonable. Another exception is in cycle 14, the condition is satisfied, but its prediction error (25.6)
is larger than σ(14) = 15.5, which may be caused by the very small Rm(14) = 64.6 in the modern era data
since cycle 8. Considering that Equation (6) will not be satisfied when using the predicted r p(13) = −0.51
(Table 2 and Fig. 4), this bad prediction seems reasonable. In summary, in most cases, the predictions are
reasonable when Equation (6) is considered.

Vitinsky et al. (1986) pointed out that there are systematic uncertainties of about 25% in monthly
sunspot numbers due to observational conditions in the definition of groups (and individual sunspots). A
prediction is rather good if its prediction error can be limited within the mean estimated deviation, σ =
25, in the modern era data. In the case r6

−7(n), the mean prediction error is only about δg =16.1 when
Equation (6) is satisfied, much smaller than δb =38.7 when Equation (6) is not satisfied. Therefore, a
prediction is called ‘good’ when Equation (6) is satisfied, and ‘bad’ otherwise.

However, if Equation (6) is not satisfied, suitable l and w can always be selected to satisfy this condition
and so to yield a better prediction. For example, the condition is not satisfied in cycles 17 – 19. So the cases
r6
−12(n) and r4

−13(n) have been considered, and similar works have been repeated as before. Their results
are shown in Table 3 and Figure 5.

Similar conclusions can be obtained, (i) in the case r6−12(n), the mean good prediction error, δg = 12.4,
is smaller than the mean bad prediction error, δb = 31.2; (ii) in the case r4

−13(n), the mean good prediction
error, δg = 16.3, is smaller than the mean bad prediction error, δ b = 40.1. Here attentions are focused
on the prediction errors in cycles 17 – 19. In Figure 5a, Equation (6) is satisfied in cycles 17– 18, and the
prediction errors (0.6, 5.4) are now both small. In Figure 5b, when Equation (6) is satisfied in cycle 19,
the prediction error, 36.4, is much less than those when Equation (6) is not satisfied (∼ 91 in Fig. 4, and
∼ 62 in Fig. 5a). It suggests that the prediction error can be greatly reduced when Equation (6) is satisfied
(see also cycles 17–18 in Table 3). It should be pointed out that cycle 19 can not be accurately predicted
even using other methods. For example, Kane (2007) has ever used a very high correlation coefficient
(r = +0.94) in precursor method to ‘predict’ the size of cycle 19, but the prediction error, 52, is great
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Table 3 Comparison of the Predictions of Rm in Cycles 9 – 23 for some l and w

l = −7, w = 6 l = −12, w = 6 l = −13, w = 4

n Rm Rp ∆Rp
a Rp ∆Rp

a Rp ∆Rp
a

9 93.2 60.2 32.9− 66.5 26.6− 68.1 25.1+

10 85.8 72.5 13.3− 74.4 11.4+ 59.3 26.4−

11 99.9 79.9 20.0+ 73.6 26.3+ 88.6 11.3−
12 68.2 58.3 9.9− 67.6 0.7− 99.2 31.0−

13 96.0 80.0 16.0+ 88.4 7.5+ 92.4 3.6+

14 64.6 90.2 25.6+ 87.6 23.0+ 87.6 23.0+

15 111.3 94.4 16.9+ 77.9 33.4− 107.4 3.9+

16 81.6 86.1 4.5+ 76.1 5.5+ 91.7 10.1−

17 125.1 85.8 39.3− 125.7 0.6+ 99.8 25.2−
18 145.2 99.7 45.5− 139.8 5.4+ 10.9 134.3−

19 186.1 95.1 91.0− 124.2 61.9− 149.7 36.4+

20 109.3 117.9 8.7+ 69.4 39.9− 151.7 42.4−
21 154.2 136.9 17.2+ 129.7 24.4− 104.1 50.1−

22 153.4 133.8 19.7+ 135.8 17.6+ 148.0 5.5+

23 120.8b 137.3 16.5+ 135.3 14.5+ 150.9 30.1−

24c 99.2 ±13.7− 157.6 ±19.0− 140.4 ±15.7+

goodd δg 16.1 12.4 16.3
bade δb 38.7 31.2 40.1

a ‘+’ means Equation (6) is satisfied, and ‘−’ means Equation (6) is not satisfied.
b The amplitude of Wolf sunspot number in cycle 23.
c Results when using 120.8 as the amplitude in cycle 23. The values of ∆Rp in cycle 24 are

the estimated deviations from cycle 23.
d The mean prediction error when Equation (6) is satisfied, except for cycle 24.
e The mean prediction error when Equation (6) is not satisfied, except for cycle 24.

Fig. 5 Observed rw
l (n)(solid line), predicted rp(n)(dotted line) and prediction error ∆Rp = ‖Rp −

Rm‖ (dashed line, right-hand scaled). (a) For r6
−12(n), Equation (6) is satisfied in cycles 17 – 18, and

the prediction errors are now 0.6 and 5.4. (b) For r4
−13(n), Equation (6) is satisfied in cycle 19, and the

prediction error is now reduced to about 36.

— much larger than 36.4 when using a not-high correlation (∼ 0.6) in Figure 5b. The reason is that cycle
19 was an abnormally largest cycle and “most of the predictions about this cycle have proved grossly
erroneous” (Kane 2007). Apart from this special cycle, the prediction errors are all less than about 26 under
the condition of Equation (6), and the mean is only about 15.

In general, the prediction error is usually less when Equation (6) is satisfied than it is not satisfied
(e.g., cycles 17–18 in Table 3), and large prediction errors always appear in the cases when the condition
is not satisfied, especially when rw

l (n) changes sign (e. g., cycle 19 in Fig. 4 and cycle 18 in Fig. 5b).
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Therefore, Equation (6) can provide a better prediction than that without this condition. If only one corre-
lation coefficient is to be used, its varying trend (and whether the condition satisfies) is not known. When
the correlation coefficient is at its positive maximum (or negative minimum), the prediction will destroy its
varying trend. In this case, the prediction should be treated with caution and may likely be unsuccessful
because Equation (6) will not be satisfied. In summary, a good prediction depends on the varying trend of
rw
l (n) under the condition of Equation (6) rather than just a high(est) correlation coefficient.

4.2 Predicting the Size of Cycle 24

For an application to cycle 24, the parameters have been extended to cycle 23 by taking the amplitude of
smoothed monthly mean Wolf sunspot number (120.8 in May 2000) as the R m value in cycle 23. Then the
method in Section 4.1 was used in the cases of r6

−7(n), r6
−12(n) and r4

−13(n) to estimate the size of cycle
24. The results are listed in Table 3. Of the three predictions, only one may be reasonable.

a) From the regression equation of r6
−7(23), Rm(24) is predicted to be Rp(24) = 99.2 ± 13.7. It should

be noted in Figure 4 that r6
−7(23) is most likely in its positive peak, thus Equation (6) would not be

satisfied in the next cycle, so this prediction is bad.
b) From r6

−12(23), Rm(24) is predicted to be Rp(24) = 157.6± 19.0. It can be seen in Figure 5a that the
next r6

−12(24) value should be positive and in the descending phase, thus Equation (6) would not be
satisfied in the next cycle, so this prediction is also bad.

c) From r4
−13(23), Rm(24) is predicted to be Rp(24) = 140.4 ± 15.7. In view of the varying trend of

r4
−13(n) in Figure 5b, its negative value is just in the descending phase, thus Equation (6) would be

satisfied in the next cycle, so this prediction is reasonable.

According to the above analysis, the size of cycle 24 should be reasonably predicted as R p(24) =
140.4± 15.7 — it is unlikely to be less than 100 or greater than 158. The predicted value is near to the 136
predicted by Li et al. (2005a), to the 142±24 by Kane (2007), to the 145±30 by Hathaway & Wilson (2004),
to the 149.5 ± 27.6 by Du et al. (2006), and to the 150.3 ± 22.4 by Du (2006a), but it is lower than the
prediction (∼ 168) by Dikpati et al. (2006), and higher than that (∼ 76) by Choudhuri et al. (2007), both
based on a flux-transport dynamo model.

Recently, Kane (2007) used the precursor method to predict the size of cycles 19–24. From his table 2,
one notes that the prediction errors are small (less than 20) when Equation (6) is satisfied (in cycles 21–
22), and large (larger than 20) when Equation (6) is not satisfied (in cycles 19–20, and 23), although the
correlations he used are all very high (∼ 0.9). His results testified the rationale of Equation (6) in the
precursor method. Since the correlation (0.89) he used to predict cycle 24 is his lowest one, its varying
trend should satisfy Equation (6) and thus his prediction value, 142, should also be reasonable.

Certainly, there may be many different pairs of w and l satisfying (or not satisfying) the Equation (6) for
a certain n. Our study gives only three special cases in order to show how to improve solar cycle predictions
using this condition. The only reasonable prediction is the one that satisfies Equation (6).

4.3 Predicting the Peak Date of Cycle 24

To estimate the peak date of cycle 24, we use r9
−7(n) of Pm -Rm (similar to using r9

7(n) of Rm - Pm in
Fig. 3a) on repeating the process above. The results are shown in Figure 6. It should be noted that, when
Equation (6) is satisfied (cycles 10, 13, 16, 18 and 23), the mean prediction error (δ g = 10.4) is much less
than when Equation (6) is not satisfied (cycles 8, 9, 11, 12, 15, 17, 20 and 21, δ b = 28.8), and that the larger
prediction errors always occur in the cases when Equation (6) is not satisfied (cycles 8, 9, 11, 12, 17 and
21). The behaviour of r9−7(n) in Figure 6 shows that its positive value is in an ascending phase near n = 23,
so it is most likely that Equation (6) will be satisfied in the next cycle. Therefore, the prediction for cycle
24, Pp(24) = 144 ± 11 months, is reasonable, and the peak of cycle 24 should occur in May 2012 ± 11
months. This is later than the predictions by some authors (Sello 2003; Li et al. 2005a; Du et al. 2007; Xu
et al. 2008) that the peak of cycle 24 may occur in 2011.

5 DISCUSSION AND CONCLUSIONS

The 11 - yr (Schwabe) cycle is fundamental, while the 80 - yr Gleissberg cycle is often described as an am-
plitude modulation of the solar cycle (Cole 1973). Apart from these two cycles, some other periodicities
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Fig. 6 Predictions of Pm from the regression equation, Pm - Rm at lag −7. Upper panel: the observed
r9
−7(n) (solid line) and the predicted rp(n) (dotted line). Lower panel: the prediction error ∆Pp = ‖Pp −

Pm‖ (dashed line), and the estimated deviation σ(n) (dash-dot-dot line). ∆Rp is usually less than σ(n),
and less than 12 months (triangles) when Equation (6) is satisfied.

seem insignificant in the sunspot numbers (Li et al. 2005b). Studies of the correlations between cycle ampli-
tudes and cycle lengths are important for understanding the mechanism of the solar cycle (Bracewell 1988;
Dicke 1988). A high and stable correlation coefficient between two parameters is often searched after when
the regression equation is used to study and/or predict solar activities.

However, a high correlation coefficient does not mean a successful prediction, such as the high cor-
reltion coefficients in the so-called precursor methods for predicting the size of cycle 23 (Li et al. 2001).
One reason may be that solar activities are modulated by long-term trends, for which a single correlation
coefficient can hardly incorporate.

The present work shows that the running correlation coefficient (r w
l (n)) between Rm and Pm at a

certain cycle lag varies in a cyclical way with the cycle number following a long-term periodicity rather
than keeping to a constant value. This cyclical behavior may partly reflect the long-term trends in the solar
activity. The same width, w, aims to make the values has the same accuracy of measurement for comparison.
If rw

l (n) could be estimated from its varying behavior, then the Rm(n) value may be predicted. A good
prediction of Rm does not depend so much on a high value of the current correlation coefficient as on the
next rw

l (n) value to be predicted.
A running average method is proposed to predict the size and length of a solar cycle. Through the

varying trend of rw
l (n), the prediction may be improved.Various values of l and w have been examined with

the result that the prediction error under the proposed condition is usually much less than when Equation (6)
is not satisfied. This condition reflects some long-term trends in sunspot cycles and is based on the fact that
the prediction, as an extrapolation, must be on the regression line and increase the strength of correlation.
Therefore, a reasonable prediction can be made through selecting suitable l and w to satisfy the condition.

From the analysis above, we can summarize the conclusions as follows:

a) The running correlation coefficient between solar cycle amplitudes and max-max cycle lengths at a
certain cycle lag varies in a cyclical way on the cycle number.

b) A reasonable prediction can be made under the condition that the running correlation coefficient be-
comes stronger.

c) Using the proposed condition, it is predicted that cycle 24 will have a peak sunspot number of 140.4±
14.7 and that the peak will occur in May 2012 ± 11 months.
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Appendix A: THE CORRELATION COEFFICIENT AFTER ADDING A PAIR OF DATA ON
THE REGRESSION LINE

For two time series, X={x1, x2, · · · , xw} and Y={y1, y2, · · · , yw}, their correlation coefficient is given by

r =

w∑
i=1

∆xi∆yi√
w∑

i=1

∆x2
i

w∑
i=1

∆y2
i

=

w∑
i=1

∆xi∆yi

SxSy
, (A.1)

where x = 1
w

∑w
i=1 xi, y = 1

w

∑w
i=1 yi, ∆xi = xi − x, ∆yi = yi − y, Sx =

√∑w
i=1 ∆x2

i , and Sy =√∑w
i=1 ∆y2

i . Suppose that the regression equation is y = kx + c with k, c constants, then y = kx+ c, and
k has the same sign with r.

For a given point (xw+1, yw+1) on the regression line, let xw+1 = x+ ∆x, then yw+1 = kxw+1 + c =
kx + k∆x + c = y + k∆x. The “extended” correlation coefficient is given by

r′ =

w+1∑
i=1

∆x′
i∆y′

i√
w+1∑
i=1

∆x′
i
2

w+1∑
i=1

∆y′
i
2

, (A.2)

where

x′ =

w∑
i=1

xi + xw+1

w + 1
= x +

∆x

w + 1
, (A.3)

y′ =

w∑
i=1

yi + yw+1

w + 1
= y +

k∆y

w + 1
, (A.4)

∆x′
i = xi − x′ = ∆xi − ∆x/(w + 1), (A.5)

∆y′
i = yi − y′ = ∆yi − k∆x/(w + 1), (A.6)

∆x′
w+1 = (x + ∆x) − x′ = w∆x/(w + 1), (A.7)

∆y′
w+1 = (y + k∆x) − y′ = wk∆x/(w + 1). (A.8)

It follows,

r′ =

w∑
i=1

∆x′
i∆y′

i + ∆x′
w+1∆y′

w+1√(
w∑

i=1

∆x′
i
2 + ∆x′

w+1
2

) (
w∑

i=1

∆y′
i
2 + ∆y′

w+1
2

)

=
rSxSy + kδ2√

(S2
x + δ2)

(
S2

y + k2δ2
) , (A.9)

where δ2 = w∆x2/(w + 1).
Now we consider

θ(r) = (r′2 − r2)
(
S2

x + δ2
) (

S2
y + k2δ2

)
/δ2

= k2δ2 + 2rkSxSy − r2(k2S2
x + S2

y + k2δ2). (A.10)

Because for the quadratic function θ(r),
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(a) θ′′(r) = −2(k2S2
x + S2

y + k2δ2) < 0;
(b) if r = 0, then θ(0) = k2δ2 > 0;
(c) if r = 1, then Sy = kSx, θ(1) = (1 − r2)k2δ2 − r2(Sy − kSx)2 + 2rkSxSy(1 − r) = 0;
(d) if r = −1, then Sy = −kSx, θ(−1) = (1 − r2)k2δ2 − r2(Sy + kSx)2 + 2rkSxSy(1 + r) = 0.

The function θ(r) must have a maximum θm ≥ θ(0) at a certain −1 < rm < 1. (i) If −1 < rm < 0, θ(r)
will increase from θ(−1) = 0 to its maximum θm as r increases from −1 to rm, and then decrease from θm

to θ(0) and to θ(1) = 0 as r increases from rm to 0 and to 1. (ii) If 0 < rm < 1, θ(r) will increase from
θ(−1) = 0 to θ(0) and to θm as r increases from −1 to 0 and to rm, and then decrease from θm to θ(1) = 0
as r increases from rm to 1. Therefore, for any r, we have always θ(r) > 0, i.e., r ′2 > r2 or ‖r′‖ > ‖r‖.

If r > 0, then r′ > r, the point on the regression line will increase the positive correlation coefficient.
If r < 0, then −r′ > −r or r′ < r, the point on the regression line will also strengthen the negative
correlation coefficient.
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