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Abstract There is a 3P2 neutron superfluid region in NS (neutron star) interior. For a rotat-
ing NS the 3P2 superfluid region is like a system of rotating magnetic dipoles. It will give
out electromagnetic radiation, which may provide a new heating mechanism of NSs. This
mechanism plus some cooling agent may give a sound explanation to NS glitches.

Key words: stars: neutron — pulsars: general — dense matter — magnetic fields

1 INTRODUCTION

Since the discovery of the NS (neutron star) and glitches in late 1960s, it is generally believed that there
is superfluidity in NS’s interior (Ruderman 1976; Shapiro et al. 1983; Elgarøy et al. 1996). Cooling mech-
anism associated with superfluidity was first proposed by Flowers et al. (1976). Not until recently, is the
importance of superfluidity recognized seriously in the “Minimal model” (Gusakov et al. 2004; Page et al.
2004; Kaminker et al. 2006).

One may ask: Since the cooling agent associated with superfluidity must be considered in the “Minimal
model”, what about heating mechanisms? A heating mechanism accompanying superfluidity has been pre-
sented by Alpar et al. (1989), and was taken into the NS cooling model by Umeda et al. (1994), Page et al.
(2006) and Tsuruta (2006). Here we investigate another possible heating mechanism: microscope magnetic
dipole radiation (MMDR).

Our basic consideration is as follows: there is 3P2 superfluid region in the interior of an NS. We calcu-
late its paramagnetic properties in the presence of a background magnetic field. Since the neutron superfluid
is in a vortex state, the 3P2 superfluid region is like a system of rotating magnetic dipoles, which will induce
magnetic dipole radiation. Because the emitted photons can not penetrate the NS matter, a heating mech-
anism would result. The origin of this mechanism is the microscopic magnetic dipole radiation: we call it
MMDR heating of NSs. Moreover, this heating mechanism plus some cooling agent may give an adequate
explanation of the NS glitches (Bai et al. 2006; Peng et al. 2006; Peng 2008, in preparation).

2 SUPERFLUIDITY IN NS

First, we check the superfluidity in NSs. There are two relevant regimes of neutron superfluid inside the
NS interior: one is the isotropic 1S0 neutron superfluid within the density range 1 × 1010 < ρ(g cm−3) <
1.6 × 1014. The critical temperature is Tc(1S0) ≈ 1 × 1010 K.

Another regime is the anisotropic 3P2 neutron superfluid within a wide density range: 1.3 × 1014 <
ρ (g cm−3) < 7.2 × 1014. The critical temperature is

Tc(3P2) = Δmax(3P2)/2k ≈ 2.78 × 108 K . (1)

We note that the energy gap Δ(3P2) is almost a constant at the maximum with an error less than 3%
over a rather wide density range, 3.3 × 1014 < ρ (g cm−3) < 5.2 × 1014 (see fig. 2 of Elgarøy et al. 1996,
but we neglect the F state of neutron Cooper pair here).
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It is well known that a rotational superfluid must be in superfluid vortexes. In general the vortex fila-
ments are arranged in a symmetrical lattice, almost exactly parallel to the axis of rotation of the NS. The
circulation of every vortex filament, Γ, is quantized:

Γ =
∮

v · dl = nΓ0, (2)

Γ0 =
2πh̄

2mn
. (3)

Here n is a circulation quantum number of the vortex, mn the neutron mass, h̄ the Planck’s constant and Γ0

the unit vortex quantum (Feynman 1955; Lifshitz et al. 1999).
It is supposed that the core of the superfluid vortex is a cylindrical region of normal neutron fluid

immersed in the superfluid neutron sea. Normally, the radius of the vortex core, a0, is taken to be the
coherent length of the neutron superfluid,

a0 =
EF

kF Δ
≈ (3π2)1/3 h̄2

2 m
4/3
n

ρ1/3

Δ
. (4)

Here EF is the Fermi energy of the neutrons, kF the corresponding Fermi wave number, and ρ the total
density of the neutron superfluid region (Ruderman 1976). Outside the core of the vortex, the neutrons are
in a superfluid state.

The kinetic properties of superfluid vortexes follow directly from the Feynman circulation theorem,
Equation (2). The superfluid neutrons revolve around the vortex line with velocity

vs(r) =
n h̄

2mnr
, (5)

where r is the distance from the field point to the axis of the vortex filament. The distribution of angular
velocity in the neutron superfluid revolving around the vortex filament is

ωs(r) =
nh̄

2mnr2
. (6)

Therefore, the revolution of the superfluid neutrons around the vortex filament is in a differential state:
the closer to the center of the vortex, the faster the superfluid neutrons rotate. In places near r ≈ a0, the
angular velocity reaches its maximum

ωc =
nh̄

2mna2
0

, (7)

and inside the core of the vortex, r < a0, the normal neutron fluid revolves rigidly at angular velocity of ωc.
According to Feynman (1955), the number of superfluid vortex filament per unit area is 2Ω/n̄Γ0, where

Ω is the macroscopic angular velocity, n̄ is the mean circulation quantum number. Then the average sepa-
ration b between vortex filaments and the total number of superfluid vortexes are, respectively,

b =
(

n̄h̄

2mnΩ

)1/2

, (8)

Nvort =
(

R

b

)2

=
2mnΩ

n̄h̄
R2 . (9)

Here R is the radius of the 3P2 superfluid region.
In this paper, we only consider the thermodynamic condition, n = n̄ = 1. Here the deviation from

equilibrium has been checked by Yakovleve et al. (2001) and Reisenegger et al. (1995, 2006).
For a 3P2 neutron superfluid vortex in the interior of an NS, a0 ∼ 10−10 cm and b ∼ 10−3 cm.

Therefore, the vortex core is very tiny, and the distribution of the vortex filament is exceedingly sparse. The
separation between vortex filaments reaches a macroscopic scale, and so the superfluidity is a macroscopic
quantum phenomenon.
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3 INDUCED PARAMAGNETIC MOMENT OF THE 3P2 NEUTRON SUPERFLUID IN THE
B-PHASE

3.1 Two Phases of the 3P2 Neutron Superfluid

A 3P2 neutron Cooper pair has spin angular momentum with a spin quantum number, s = 1. The magnetic
moment of the 3P2 neutron Cooper pair is twice that of a neutron, 2μn in magnitude, where μn = −0.966×
10−23 ergG−1 is the anomalous neutron magnetic moment. Its projection on an external magnetic field (z-
direction) is sz ×2 μn, sz = 1, 0,−1. It is interesting to note that the behavior of the 3P2 neutron superfluid
is very similar to that of the liquid 3He at very low temperature (Leggett 1975):

1. The projection distribution for the magnetic moment of the 3P2 neutron Cooper pairs in the absence of
external magnetic field is stochastic, or “Equal Spin Pair” (ESP) phase. The 3P2 neutron superfluid is
basically isotropic and with no significant magnetic moment in the absence of external magnetic field.
We call it the A-phase of the 3P2 neutron superfluid, similar to the A-phase of the liquid 3He at very
low temperature (Leggett 1975).

2. However, the projection distribution for the magnetic moment of the 3P2 neutron Cooper pairs in the
presence of an external magnetic field is not stochastic. There are more 3P2 neutron Cooper pairs with
paramagnetic moment than with diamagnetic moment. Therefore, the 3P2 neutron superfluid has a net
induced paramagnetic moment and its behavior is anisotropic in the presence of an external magnetic
field. We call it the B-phase of the 3P2 neutron superfluid, similar to the B-phase of the liquid 3He at
very low temperature (Leggett 1975).

3.2 Induced Paramagnetic Moment of the 3P2 Neutron Superfluid in the B-phase

We now consider the paramagnetism of 3P2 neutron superfluid regions. Following standard treatment of
magnetism (Pathria 2003; Feng et al. 2005), the Hamiltonian of the system in the presence of an external
field is

H = −2µn · B = −2μnzB . (10)

Here B is the external field (in the z direction), 2µn is the magnetic moment of the 3P2 neutron Cooper
pair, and 2μnz is its projection on the z direction.

The ensemble average only gives an additional thermal factor,

〈2μn〉 = 2μnf(μnB/k T ), (11)

f(μnB/k T ) =
2 sinhβ2μnB

1 + 2 coshβ2μnB
. (12)

In the limit of high temperature

f(μnB/kT ) =
4
3

μnB

kT
. (13)

The ∝ 1
T behavior is just Curie’s law of paramagnetism in terrestrial laboratory. The qualitative behavior is

as follows: as the NS cools down, its internal temperature T decreases, while the thermal factor increases,
and the 3P2 neutron Cooper tends to align in the same direction. This is the mathematical formalism of the
B-phase of the 3P2 neutron superfluid.

As shown by Lifshitz et al. (1999), there is a finite probability for two neutrons to combine into a
Cooper pair. Since only the particles in the vicinity of the Fermi surface make a contribution, only a finite
fraction q of the Fermi sphere can be in the condensate state,

q =
4πp2

FΔk
4π
3 p3

F

= 3
√

Δ
EF

∼ 0.087 . (14)

We have used the relation: Δk =
√

2mnΔ, pF =
√

2mnEF. Here Δ ∼ 0.05MeV is the energy gap of
the 3P2 superfluid region, EF ∼ 60MeV is the Fermi energy of the neutron system, pF the corresponding
Fermi momentum and Δk the thickness of the shell which will combine to Cooper pairs.
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In conclusion, in any given volume, ΔV , of 3P2 neutron superfluid region, only a small fraction of the
Fermi sphere can combine into 3P2 Cooper pairs. The ensemble average gives another thermal factor. So
the net magnetic moment of the specific volume is

MΔV = ΔV ρNAμn q f(μnB/kT ) , (15)

where NA is Avogadro’s constant. The volume ΔV is specially chosen, so that it is large enough to contain
a large number of Cooper pairs, but small enough compared with macroscopic scale: it is a mesoscopic vol-
ume. This is required by the coherence calculation of the microscopic magnetic dipole radiation (MMDR)
below.

For a rotating NS, the 3P2 superfluid region is in vortex state. In the presence of external field, it has
a paramagnetic moment on the mesoscopic scale. So the 3P2 neutron superfluid vortex is like a system of
rotating magnetic dipoles, which will give magnetic dipole radiation. This radiation can not penetrate the
NS matter, thus provides a heating mechanism of NS associated with superfluidity.

4 MICROSCOPIC MAGNETIC DIPOLE RADIATION HEATING

4.1 A Working Assumption

In a superfluid vortex, each superfluid neutron revolves round the axes of the vortex with angular velocity
ω(r) (Eq. (6)). It is well known that a rotating magnetic dipole will give out magnetic dipole radiation
(MDR). Therefore, the 3P2 superfluid neutron will give electromagnetic radiation, and the frequency of the
emitted photons is equal to the rotational frequency of the neutron.

We will use a phenomenological method to explore the radiation problem in this paper (see, e.g.
Feynman 1955; Androdikashvili et al. 1966). The process is as follows: the rotational velocities of su-
perfluid neutron decrease during the emission of the magnetic dipole radiation due to the dissipation of its
energy. The superfluid neutrons, hence, will drift out according to Equation (6), and then the transverse
pressure exerting on the normal neutrons in the vortex cores decrease. The normal neutrons move out to
r > a0 and become superfluid ones. At the end of the vortexes, other normal neutrons located in the normal
neutron layer in the interior of neutron stars will flow into the vortex cores along the axes. At the same
time, the density of superfluid neutrons at the boundaries of the vortex lattices increases, driving a flow into
the normal neutron layer along the direction perpendicular to the axes. In this way, a “local circulation”
is formed in the superfluid vortex region. This process is very similar to the Ekman pumping (Greenspan
1968; Anderson et al. 1978). The normal neutrons in the crust of the neutron star drift inward during the
process of these local circulations, and the crust shrinks a little slowly. We may suppose that the energy of
the magnetic dipole radiation really comes from the release of gravitational energy of the inward moving
crust through the local circulation.

4.2 MMDR Heating

First, we calculate the magnetic dipole radiation by one single vortex. The power radiated by one neutron
is (Huang et al. 1982)

W (n) =
2ω4

3c3

∑
f

|〈f |M̂z|i〉|2 (16)

=
2ω4

3c3

∑
f

〈i|M̂ †
z |f〉〈f |M̂z|i〉

=
2ω4

3c3
〈i|M̂ †

zM̂z|i〉, (17)

where c is the speed of light, ω the angular velocity of the 3P2 superfluid neutron, |f〉 the final state, |i〉 the
initial state, and M̂z the operator of magnetic moment. If we consider a coherent small volume ΔV , and
take

〈i|M̂ †
zM̂z|i〉 = 〈i|M̂2

z |i〉 ≈ M2
ΔV sin2 θ , (18)
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where MΔV is the corresponding paramagnetic moment in a specific volume of ΔV , θ is the angle between
the background field B and the rotational axis Ω, thus the required magnetic dipole radiation rate is

WΔV =
2ω4

3c3
|MΔV |2 sin2 θ . (19)

The formula is similar to the classical case (Shapiro et al. 1983), because we have made approximations in
obtaining Equation (18).

In the calculation of the radiation power, the coherence effect must be taken into consideration (Peng
et al. 1982). This is like the coherence effect in electromagnetism. We first calculate the contribution of a
specific volume ΔV , then make a summation of all the specific volumes. This is done for one superfluid
vortex. The total power of MMDR is simply the sum of all single vortex contributions. See Appendix for
details.

The total power of MMDR is

Wtot = Nvort η A
1
2

log
b

a0
. (20)

Here Nvort is the total number of superfluid vortexes of Equation (9) and η the efficiency of coherence.
Radiation of one single vortex is A1

2 log b
a0

, where the contribution factor A is

A =
8π4

3c2
sin2 θ|ρNAμnqf |2Rω3

ca4
0 . (21)

The factor A is proportional to R, and the vortex number Nvort is proportional to R2, as can be seen in
Equation (9). So the total power Wtot is proportional to R3, that is proportional to the volume of the 3P2

neutron superfluid region. This is what it should be.

5 MMDR vs. OTHER HEATING MECHANISMS

Heating mechanisms in NSs can be classified into different categories according to their energy input.
There are several kinds of energy input: magnetic, rotational, chemical and confinement energy, etc. The
corresponding heating mechanisms are respectively:

1. Ohm heating (Page et al. 2006 and reference therein);
2. Vortex creep heating (Alpar et al. 1989; Umeda et al. 1994);
3. Rotochemical heating (Reisenegger 1995; Reisenegger et al. 2006);
4. Deconfinement heating (Yuan et al. 1999; Kang et al. 2007).

MMDR heating has two distinguished features compared with the heating mechanisms stated above:

1. It is a heating mechanism associated with superfluidity, thus no superfluid suppression.
2. Its energy input is gravitational energy as stated in our working assumption.

6 CONCLUSIONS

Here we have presented another possible heating mechanism of NSs, associated with superfluidity. It can
be compared with other heating mechanisms and cooling agents of NSs (Gusakov et al. 2004; Page et al.
2006; Tong et al. 2007).

As shown in Figure 1, MMDR heating may dominate only in the photon cooling stage. So it will not
affect the cooling scenario of young and middle age NSs. For old NSs, e.g. PSR 1055–52, however, it may
serve as a moderate heating agent (Tsurata 2006; Page 2006).

Using the toy model given by Yakovlev et al. (2003), we can make an illustrative calculation of NS
cooling, including the MMDR heating.

Figure 2 shows that there is a plateau in the late stage of NS cooling curves. This plateau can be
compared with that of Kang & Zheng (2007).

The MMDR heating must cease after some time. In our case the cease of MMDR heating has several
possibilities.
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Fig. 1 MMDR Heating vs. Cooling. The dotted line represents MMDR heating. It increase with decreasing
temperature, as a result of increasing thermal factor. The dashed, dot-dashed, and solid line corresponds to
photon cooling, MUrca (Modified Urca) process, and PBF (Pair Breaking and Formation) process, respec-
tively (Adapted from Gusakov et al. 2004).

Fig. 2 Cooling curves including MMDR heating. The lower and upper curves correspond to MUrca- and
bremsstrahlung- dominated cases, respectively, while the plateau at the late stage is due to MMDR heating.
The physical input is the same as Yakovlev et al. (2003) except that we included the MMDR heating. Note,
these cooling curves are for illustrative use only.

1. As shown by Huang et al. (1982), the energy input of MMDR heating is through the Ekman pumping.
When this agent is inoperative, the MMDR heating has to pause.

2. When there is a phase transition in the core, e.g. deconfinement of hardrons, all the hadron processes
disappear including the MMDR heating.

3. Due to complexities of the superfluidity gap (Elgarøy et al. 1996), the 3P2 superfluidity region becomes
slimmer when the core becomes more compact. The MMDR heating contribution can be ignored in this
case.

We have presented another possible NS heating mechanism associated with superfluidity. The exact
effect of MMDR heating needs accurate calculation of the cooling curves. This heating mechanism plus
some cooling agent may give a sound explanation of the NS glitches. A detailed investigation can be found
in Peng (2007).
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Appendix A: CALCULATION OF MMDR POWER

We will follow the routine of Peng et al. (1982). At radius r from the center of the 3P2 neutron superfluid
vortex, the neutron rotational frequency is

ωs(r) =
h̄

2mnr2
. (A.1)

As stated in the main text, the frequency of radiated photons is equal to the neutron rotational frequency
ωs(r). The wave length of the radiated photon is

λs(r) =
2πc

ωs(r)
=

4πcmnr
2

h̄
(r > a0). (A.2)

The length of one single superfluid vortex is H̄ = π
2 R, where R is the radius of the superfluid region. One

superfluid vortex can be separated into several segments, we need only consider the coherence effect inside
each segment. If we assume a length scale λs(r), then a cylindrical shell between the radius r and r + dr
can be cut into H̄/λs(r) segments. Here the specific volume ΔV is

ΔV = 2πrdrλs(r). (A.3)

Paramagnetic moment in the specific volume is

MΔV = ΔV ρNAμnqf

(
μnB

kT

)
. (A.4)

Using Equation (19), the differential power of one single superfluid vortex is,

dW (1) =
2ω4

3c3

H̄

λs(r)
|MΔV |2 sin2 θ (A.5)

=
2ω4

3c3

H̄

λs(r)
sin2 θ|ρNAμnqf |2|2πrdrλs(r)|2 (A.6)

=
8π2ω4

3c3
H̄λs(r) sin2 θ|ρNAμnqf |2r2dr2 (A.7)

=
8π4

3c2
sin2 θ|ρNAμnqf |2Rω3r2dr2. (A.8)

In obtaining the final expression, we have used the definition of λs(r) and H̄ . Using non-dimensional
quantities,

ωs(r) = ωcω
′(r),

r = a0r
′,

ω′ =
1
r′2

,

(A.9)

the differential power is

dW (1) =
8π4

3c2
sin2 θ|ρNAμnqf |2Rω3

ca
4
0ω

′3r′2dr′2 (A.10)

= Aω′3r′2dr′2 (A.11)

= AdI. (A.12)
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Integrating dI , a δ-function is included automatically, δ(ω′ − 1/r′2). Performing the integration from a0 to
b gives 1

2 log b
a0

. The contribution factor A is

A =
8π4

3c2
sin2 θ|ρNAμnqf |2Rω3

ca4
0. (A.13)

The MMDR power of one superfluid vortex is

W (1) = A
1
2

log
b

a0
. (A.14)

In the above calculation, we assumed a length scale λs(r). More generally, if the length scale is taken
to be ηλs(r), where η is an efficiency factor, the MMDR power of one superfluid vortex is

W (1) = ηA
1
2

log
b

a0
. (A.15)

In Section 2 the total number of superfluid vortexes has been presented,

Nvort =
(

R

b

)2

=
2mnΩ

h̄
R2. (A.16)

In conclusion, the total power of MMDR in the 3P2 neutron superfluid region in the interior of NS is

Wtot = NvortηA
1
2

log
b

a0
. (A.17)
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