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Abstract We aim at investigating the effect of rotation up to the third order in the angular
velocity of a star on the p and g modes, based on the formalism developed by Soufi et al. Our
ultimate goal is the study of oscillations of β Cephei stars which are often rapidly rotating
stars. Our results show that the third-order perturbation formalism presented by Soufi et al.
should be corrected for some missing terms and some misprints in the equations. As a first
step in our study of β Cephei stars, we quantify by numerical calculations the effect of rota-
tion on the oscillation frequencies of a uniformly rotating zero-age main-sequence star with
12 M�. For an equatorial velocity of 100 km s−1, it is found that the second- and third-order
corrections for (l, m) = (2, 2), for instance, are of the order of 0.01% of the frequency for
radial order n = 6 and reaches up to 0.5% for n = 14.
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1 INTRODUCTION

Pulsating stars on the upper main sequence, particularly δ Scuti and β Cephei stars, are rapid rotators as
well as being multimode pulsators. The ratio ε = Ω/ω of the rotation rate Ω to the typical frequency
of oscillations ω seen in these stars is no longer a small quantity as it is for e.g. the Sun. These stars have
typically equatorial velocities ∼ 100 km s−1, and oscillation periods from half to a few hours which implies
ε ∼ 0.1, whereas for the Sun ε ∼ 10−4. The effect of rotation on stellar structure and stellar oscillations is
usually calculated through a perturbation analysis in which ε is the small parameter. For the Sun a first-order
perturbation analysis is sufficient, given the accuracy of observed oscillation frequencies, but for stars it is
not. In order to achieve the full potential of astroseismology for testing of models for upper main sequence
stars a more careful treatment of the effect of rotation on oscillation frequencies is required.

Rotation not only modifies the structure of the star but also changes the frequencies of normal modes.
It removes mode degeneracy creating multiplets of modes. If the rotational angular velocity, Ω, does not
have any latitudinal dependence, and the rotation is sufficiently slow, the multiplets show a Zeeman-like
equidistant structure. At faster rotation rates non-negligible quadratic effects in Ω cause the position of the
centroid frequency of multiplets to shift with respect to that of a non-rotating model of the same star, see
Karami et al. (2003).

Our long term goal is to study the oscillation properties of rapidly rotating β Cephei star. In this paper,
we start with the study of rotation up to third order in the angular velocity of the star on p and g normal
modes. To do this we use the third-order perturbation formalism according to Soufi et al. (1998), hereafter
S98, with the correction of some misprints and missing terms in some of their equations. We carry out
numerical calculations for the frequency corrections for a zero-age main-sequence (ZAMS) star model with
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mass M = 12 M�. Section 2 gives a brief overview of previous relevant work on rotational perturbation
theory for stellar oscillations. Section 3 shows the equations for the effect of rotation on oscillations up to
third order and discusses the zeroth-order eigensystem. Section 4 presents corrections to eigenfrequencies
and coupling coefficients. The numerical results are presented in Section 5. Section 6 is devoted to con-
cluding remarks. A summary of the differences between the present formulation and that of S98 is given
in Appendix A. Lengthy formulae are collected in Appendix B. The hermiticity properties of an oscillating
rotating system are discussed in Appendix C.

2 PREVIOUS ROTATIONAL PERTURBATION ANALYSIS

Simon (1969) and Saio (1981) studied the frequency corrections due to rotation up to second order for poly-
tropes. Chlebowski (1978) calculated the same corrections for white dwarf models. Gough & Thompson
(1990) studied the effects of rotation and magnetic field on stellar oscillations up to second order. They
investigated the linearized adiabatic oscillation equation in a rotating frame under the Cowling approxima-
tion and without viscous and resistive dissipative forces. However, they considered only an axisymmetric
magnetic field, but allowed for its axis not to coincide with the rotation axis. They concluded that rotation
and a magnetic field not only split the degenerate frequency multiplets but also shift the central frequency
of each multiplet. The shift arises both from the direct effect of the perturbed inertial and Lorentz forces
on the waves, and also because the unperturbed centrifugal and Lorentz forces change the structure of the
star to one which is no longer spherically symmetric. Gough & Thompson (1990) succeeded in formulating
the differential equations governing the oscillatory motions in a form that is Hermitian. The hermiticity of
the oscillation equations for the rotating star was preserved by means of an appropriate mapping of each
point in the distorted model to a corresponding point in the spherically symmetric stellar model. Although
their main attention was on the effect of a magnetic field on the normal modes, they also performed some
numerical calculations of the effect of rotation for three different, latitudinally independent, angular veloc-
ity profiles Ω(r). They found that the effect of the second-order centrifugal distortion changes little with
spherical harmonic degree, l, and can be approximated well by the asymptotic estimate. Also, for low l the
second-order correction due to the advection term is negligible compared with the second-order centrifugal
distortion and only for l ≥ 50 are the two comparable in magnitude.

Dziembowski & Goode (1992) derived a formalism for calculating the effect of differential rotation
on normal modes of rotating stars up to second order. They considered angular-velocity profiles with both
radial and latitudinal dependency and found that at faster rotation non-negligible quadratic effects in Ω
cause a departure from equidistant splitting. They also obtained generalized asymptotic formulae for g-
mode splitting for which the Coriolis term is included in the zero-order treatment. These asymptotic results
are relevant for white dwarfs and δ Scuti stars. Dziembowski & Goode (1992) concluded that for solar
oscillations the second-order effects are dominated by distortion for l < 500.

Soufi et al. (1998) extended the formalism of Dziembowski & Goode (1992) up to third order for a
rotation profile that is a function of radius only. Their analysis has two advantages compared with previous
investigations. By taking into account parts of the effects of the Coriolis force in the zero-order system,
the eigenvalue problem for stellar oscillations can be solved up to cubic order without having to solve
successive equations for the eigenfunctions at each order. Also the usual m-degeneracy occurring in the
absence of rotation is removed at the lowest order. S98 found that near-degenerate coupling due to rotation
only occurs between modes with either the same degree l (and different radial orders) or with modes which
differ in degree by 2. The first case involves modes in avoided crossings. The second case concerns modes
that have close enough frequencies in the non-rotating model to be shifted into resonance if the rotation is
sufficiently rapid. In general they showed that the total coupling comes from three distinct contributions:
the Coriolis contribution, the non-spherically-symmetric distortion, and a coupling term which involves a
combination of these two effects.

Sobouti (1980) studied the normal modes of rotating fluids up to O(Ω2). He argued that the p modes
allow a perturbation expansion in Ω, whereas this is not the case for the g modes. From a mathematical point
of view, the condition for a perturbation series to converge is that the perturbing operator remains smaller
than the unperturbed operator throughout the Hilbert space spanned by the normal modes; this condition
is not meet by the g modes. Sobouti & Rezania (2001) considered the toroidal modes of rotating fluids,
and showed that: a) At O(Ω) the neutral toroidal motions of the non-rotating fluid organize themselves into
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a sequence of modes with a definite (l, m) symmetry, but their radial degeneracy persists at this order. b)
Coupling of a given toroidal mode of (l, m) symmetry with (l± 2, m) toroidal and with (l± 1, m) poloidal
modes, as well as the removal of the radial degeneracy come about at O(Ω2).

Results of calculation of frequency corrections up to third order were presented for models of δ-
Scuti stars by Goupil et al. (2001), Goupil & Talon (2002), Pamyatnykh (2003), and Goupil et al. (2004).
Daszyńska-Daszkiewicz et al. (2002) studied the effects of mode coupling due to rotation on photometric
parameters (amplitude and phase) of stellar pulsations. They reconfirmed the conclusion of S98 that the
most important effect of rotation is coupling between close frequency modes of spherical harmonic degree,
l, differing by 2 and of the same azimuthal order, m. They presented some numerical results for a sequence
of β Cephei star models with uniform rotation and for two- and three-mode couplings. Their calculations
were carried out to cubic order in the ratio of rotation to pulsation frequency, according to the third-order
formalism of S98. They concluded that due to the increasing effect of centrifugal distortion with the mode
frequency, the coupling between acoustic modes is stronger than between gravity modes.

Reese et al. (2006) checked the effects of rotation due to both the Coriolis and centrifugal accelerations
on pulsations of rapidly rotating stars by a non-perturbative method. They showed that the main differences
between complete and perturbative calculations come essentially from the centrifugal distortion. Suárez et
al. (2006) obtained the oscillation frequencies including corrections for rotation up to the second order in
the rotation rate for δ Scuti star models.

3 THIRD ORDER PERTURBATION FORMALISM

Following Unno et al. (1989), the equilibrium state of a rotating star can be characterized by a velocity field

v0 = Ω× r = Ωr sin θeϕ , (1)

where Ω denotes the angular velocity. The rotation axis of the star lies along the θ = 0 axis of a spherical
coordinate system (r, θ, ϕ). Ω is assumed to be independent of latitude and can be written as

Ω = Ω(r)ez = Ω̄[1 + η(r)]ez , (2)

where Ω̄ is the mean rotation rate. The stationary equation of motion in an inertial frame of reference is

−(v0 · ∇)v0 =
∇p

ρ
+ ∇φ , (3)

where p, ρ and φ are the pressure, density and gravitational potential, respectively. One can show that the
left hand side of Equation (3) is equal to the centrifugal acceleration, F , in a corotating frame, as

F = −Ω× (Ω × r) = rΩ2 sin θes = −(v0 · ∇)v0 , (4)

where ez , and es = sin θer + cos θeθ are unit vectors in the cylindrical coordinates (s, ϕ, z), see Tassoul
(2000).

3.1 Equilibrium Structure of Rotating Stars

The stationary equation of motion, Equation (3), is solved following Chandrasekhar (1933) and
Chandrasekhar & Lebovitz (1962) by expanding the equilibrium quantities in terms of Legendre poly-
nomials as

f(r, θ) = f̃(r) + ε2f2 = f̃(r) + ε2f22(r)P2(cos θ) , (5)

where P2(cos θ) = 3/2 cos2 θ−1/2 is the second Legendre polynomial and f can be p, ρ or φ. For a rotation
rate that is a function of r only, higher-order multipole moments (i.e., P4, P6, ..) need not be considered.
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3.1.1 Spherically Symmetric Distortion

The spherically symmetric part of the equilibrium structure can be obtained by substituting Equation (5) in
the θ-independent part of the radial component of Equation (3). The result is

dp̃

dr
= −ρ̃ge , (6)

where the effective gravity is ge,

ge = g̃ − 2
3
rΩ2 , (7)

with

g̃ =
dφ̃

dr
=

GMr

r2
, (8)

and Mr is the mass within radius r. Equation (6) is similar to the equation of hydrostatic equilibrium of a
non-rotating star but with the inclusion of the spherically symmetric part of the centrifugal force. Note that
other equations governing the quantities of internal structure do not change; hence, as in S98, following the
approach described by Kippenhahn & Weigert (1994) a standard evolutionary code only modified according
to Equation (6) can be used to follow the evolution. Of course, in order to compute a model at a given age,
the profile of the rotation rate is needed which requires the knowledge of its temporal evolution.

3.2 Non-spherically Symmetric Distortion

Substituting Equation (5) in the θ-dependent parts of the radial and the tangential components of
Equation (3) and neglecting O(ε4) terms yields the non-spherically-symmetric part of the equilibrium struc-
ture as:

p22 = −ρ̃r2(Ω̄/ε)2u2 , (9)

ρ22 =
ρ̃r(Ω̄/ε)2

g̃

(
d ln ρ̃

d ln r
u2 + b2

)
, (10)

where
u2 = φ22

r2 (Ω̄/ε)−2 + 1
3 (1 + η2) ,

b2 = 1
3r

dη2
dr

,
(11)

with η2 = η(η + 2). The perturbed gravitational potential φ22 satisfies the perturbed Poisson equation:

1
r2

d

dr

(
r2 dφ22

dr

)
− 6

r2
φ22 = 4πGρ22 . (12)

Equation (12) can be solved by numerical integration and with the appropriate boundary conditions: φ22 ∝
r2 at the centre of the star, and φ22 ∝ r−3 at the surface. Equations (9)–(12) are identical to equations (77)–
(80) (with k=1) of Dziembowski & Goode (1992) and also with equations (15)–(17) of S98.

3.3 Zeroth-order Eigensystem

Following S98, we include parts of the Coriolis and non-spherical distortion effects in the zero-order eigen-
system. This yields eigenfrequencies ω0 of eigenmodes which are no longer m-degenerate, even at zero
order. The way of building the zero-order eigensystem and the associated basis of eigenmodes enables one
to solve the eigenvalue problem up to cubic order without having to solve the successive equations for the
eigenfunctions at each order.

A zero-order mode ξ0 is defined by
ξ0 = ξp0 + εξt1 , (13)

where the poloidal ξp0 and toroidal ξt1 eigenfunctions are characterized by a single spherical harmonic, as
in the case of a non-rotating model, and are given by

ξp0 = r(yY m
l + z∇HY m

l ),

ξt1 = r Ω̄
ω̂0

(τl+1er ×∇HY m
l+1 + τ̂l−1er ×∇HY m

l−1) ,
(14)
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where ∇H ≡ ( ∂
∂θeθ + 1

sin θ
∂

∂ϕeϕ) is the horizontal part of the gradient operator and ω̂0 = ω0 + mΩ.
According to equation (39) in S98 the eigenfrequency ω0 can be rewritten as:

ω0 = ω
(0)
0 + ω1 , (15)

where ω
(0)
0 is the usual normal-mode frequency of the system when rotation is absent, and

ω1 = mΩ̄(CL − 1 − J1) . (16)

The quantities CL and J1 are given by equation (40) in S98 and references therein. Note that, following
S98, we assume a dependence of the perturbations on time t and longitude ϕ as ∝ exp[i(mϕ + ωt)], such
that prograde modes have m < 0.

The frequency ω0 includes the first-order correction due to rotation, ω1, as well as the second-order
correction due to spherically symmetric distortion. Also note that ω1 is the usual first-order frequency shift
due to the Coriolis force and can be rewritten as:

ω1 = −m

I

∫
Ω(r)

[
y2 + (Λ − 1)z2 − 2yz

]
r4ρ̃dr , (17)

where I is the mode inertia,

I = 〈ξp0 | ρ̃ξp0〉 =
∫

drρ̃r4(y2 + Λz2) , (18)

with Λ = l(l + 1).

3.4 Poloidal Eigenfunctions

Following Unno et al. (1989), we define the dimensionless variables yt, v and w as

yt ≡
1

ger

(
φ̃′ +

p̃′

ρ̃

)
, v ≡ φ̃′

ger
, w ≡ 1

ge

dφ̃′

dr
. (19)

Then as in S98, the expression for the poloidal components is obtained as

r
dy
dr

= (Vg − 3 + h1)y + (ζ − Vg)yt + Vgv

= λ − 3y + Λz ,
(20)

r
dyt

dr
=
(

Crσ̂
2 − A − h2

1

ζ

)
y + (A + 1 − U − χ − h1)yt − Av , (21)

r
dv

dr
= (1 − U − χ)v + w , (22)

r
dw

dr
=

UA

1 − σr
y +

UVg

1 − σr
yt +

(
Λ − UVg

1 − σr

)
v − (U + χ)w , (23)

Λz − ζyt − h1y = 0 . (24)

Here σ2 = R3ω2/GM is the square of the dimensionless oscillation frequency and

σ̂ ≡ σ + mσΩ , σΩ ≡ Ω√
GM/R3

, (25)

A ≡ 1
Γ1

d ln p̃

d ln r
− d ln ρ̃

d ln r
, Vg ≡ − 1

Γ1

d ln p̃

d ln r
, (26)

U ≡ d ln Mr

d ln r
, σr ≡ 2

3
rΩ2/g̃ , (27)
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C ≡ (r/R)3

(Mr/M)
, Cr ≡ C

1 − σr
, (28)

λ ≡ Vg(y − yt + v) , α ≡ 2m
σΩ

σ̂
, (29)

χ ≡ 2rΩ2

3ge

(
U − 3 − d ln Ω2

d ln r

)
, (30)

ζ ≡ Λ
Λ − α

Λ
Crσ̂

2 , h1 ≡ Λα

Λ − α
. (31)

Here M and R are the star’s mass and radius respectively and G is the gravitational constant.
For radial oscillations (l = Λ = 0) the Poisson equation for ξp0, Equation (12), reduces to

dφ̃′

dr
= −g̃Uy . (32)

Thus φ̃′ can be eliminated from the problem; instead of Equation (19) we define the dimensionless variable
yt in this case as

yt =
p̃′

gerρ̃
, (33)

obtaining

r
dy

dr
= (Vg − 3)y − Vgyt , (34)

r
dyt

dr
=
(

Crσ̂
2 − A +

U

1 − σr

)
y + (A + 1 − U − χ)yt . (35)

For radial oscillations there is no transverse component, i.e., z = 0.

3.5 Toroidal Eigenfunctions

Following again S98 the components τ , τ̂ of the toroidal part, ξt1, for a mode k ≡ (nk, lk, mk), are obtained
as follows:

τk+1 ≡ τnk,lk+1,mk

= i
βk+1

(Λlk+1 − αk)

(
2Pk + 3mk

Ω̄
ω̂0

dk

)
,

(36)

τ̂k−1 = τ̂nk,lk−1,mk

= i
βk

(Λlk−1 − αk)

(
2P̂k + 3mk

Ω̄
ω̂0

dk

)
,

(37)

with
Pk = (1 + η)(lk + 2)(−yk + lkzk) , (38)

P̂k = (1 + η)(lk − 1)(yk + (lk + 1)zk) , (39)

βk =

√
(l2k − m2

k)
4l2k − 1

, (40)

βk+1 being defined similarly, but with lk replaced by lk + 1, and

dk =
(

ge

g̃
vk + yk − Cσ̂2

kzk

)(
d ln ρ̃

d ln r
u2 + b2

)
+ λku2 . (41)
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4 CORRECTION TO EIGENFREQUENCIES AND COUPLING COEFFICIENTS

As discussed in S98, in general the correction to the eigenfrequencies must take into account coupling be-
tween nearby modes. Thus we need to evaluate the coupling coefficients between different modes. However,
in the case of an isolated mode, k, the correction ωc, to the eigenfrequency ω = ω0 + ωc, is obtained from

ωc =
Hkk

2Iω
(0)
0

≡ Hkk

= ωT + ωD + ωC + O(ε4) , (42)

where Hkq is the matrix of the coupling coefficients and is defined as

Hkq ≡ Hkq

2Jkq
= Tkq + Dkq + Ckq + O(ε4) , (43)

and Jkq =
√

ω
(0)
0k ω

(0)
0q IkIq . Note that for an isolated mode each contribution ωT = Tkk , ωD = Dkk and

ωC = Ckk to the frequency correction arises from the corresponding diagonal term of the interaction matrix
Hkk .

In order to obtain expressions for the different contributions to the total coupling coefficients Hkq , it is
convenient (see equations (B1)–(B2) in S98), to define a dimensionless radius x and density ¯̃ρ:

x ≡ r/R ,
¯̃ρ ≡ ρ̃/ρc ,

(44)

where ρc is the value of the density at the centre of the (deformed) star in equilibrium. The second-order
perturbation terms of pressure, density and gravitational potential are also made dimensionless as follows:

p̄22 ≡ p22/pc ,
ρ̄22 ≡ ρ22/ρc ,
φ̄22 ≡ φ22/φc ,

(45)

where pc = ρcφc and φc = R2Ω̄2. The oscillation frequencies are made dimensionless with the dynamical
time scale of the star:

σ
(0)
0 ≡ ω

(0)
0√

GM/R3
,

σΩ̄ ≡ Ω̄√
GM/R3

.
(46)

The dimensionless mode inertia terms are:

Īk ≡ Ik

ρcR
5 ,

J̄kq ≡ Jkq

ρcR
5
√

GM/R3

=
√

σ
(0)
0k σ

(0)
0q Īk Īq .

(47)

4.1 Coriolis Contribution: Tkq

As in S98 the elements Tkq are obtained as

T kq ≡ Tkq√
GM/R3

= T qk = δlklqT
(1)

+ δlklq+2T
(2)

kq + δlklq−2T
(2)∗
qk ,

(48)
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where ∗ denotes complex conjugate; here the diagonal and off-diagonal terms are:

T
(1)

=
σ2

Ω̄

2J̄kq

{∫ 1

0

dx¯̃ρx4×
× (Λk+1τ

∗
k+1τq+1 + Λk−1τ̂

∗
k−1 τ̂q−1)

− 4mσΩ̄
σ0k + σ0q

∫ 1

0

dx¯̃ρx4(1 + η)×

×(τ∗
k+1τq+1 + τ̂∗

k−1 τ̂q−1)
}

,

(49)

T
(2)

kq =
σ2

Ω̄

2J̄kq

{∫ 1

0

dx¯̃ρx4Λk−1τ̂
∗
k−1τq+1

− 4mσΩ̄
σ0k + σ0q

∫ 1

0

dx¯̃ρx4(1 + η)τ̂∗
k−1τq+1

}
.

(50)

We recall that some effects of distortion are already included in the toroidal zeroth-order system. Therefore,
distortion contributes indirectly through the toroidal part of the eigenfunctions, i.e., through the components
τ and τ̂ .

Note that the case k 
= q represents a coupling between near-degenerate modes. Equation (48) shows
that the coupling occurs between modes either with same degree l (and generally different radial orders) or
with degrees that differ by ±2. The frequency correction, ωT, for a single mode can be obtained from the
diagonal element Tkk as

σT =
ωT√

GM/R3
= T kk ≡ σT

2 + σT
3 , (51)

with the second-order contribution,

σT
2 = 1

2 (σ0

Ī
)(σΩ̄

σ0
)2
∫ 1

0

dx¯̃ρx4 (Λk+1 | τk+1 |2

+ Λk−1 | τ̂k−1 |2) ,
(52)

and the third-order contribution

σT
3 = m(σ0

Ī
)(σΩ̄

σ0
)3
{

CL − 1 − J1
2

∫ 1

0

dx¯̃ρx4×
× (Λk+1 | τk+1 |2 +Λk−1 | τ̂k−1 |2)

−
∫ 1

0

dx¯̃ρx4(1 + η)(| τk+1 |2 + | τ̂k−1 |2)
}

.

(53)

Equations (48)–(53) are identical with equations (B3)–(B7) of S98.
Note that to separate the frequency correction into second and third orders in respect of ε = σΩ̄/σ0,

one also needs to use the following approximations:

ω0

ω
(0)
0

= σ0

σ
(0)
0

� 1 +

(
1 − σ

(0)
0
σ0

)

= 1 + σΩ̄
σ0

(
σ0 − σ

(0)
0

σΩ̄

)

= 1 + m Ω̄
ω0

(CL − 1 − J1) ,

(54)

σ2
Ω̄

J̄
�
(

σ0

Ī

)(
σΩ̄
σ0

)2
[
1 + σΩ̄

σ0

(
σ0 − σ

(0)
0

σΩ̄

)]

∝ O(Ω̄2) + O(Ω̄3) ,

(55)

in which the following has been used:

σ0 − σ
(0)
0

σΩ̄

= m(CL − 1 − J1) ∝ O

(
Ω̄
Ω̄

)
= O(1) . (56)
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4.2 Non-spherically Symmetric Distortion: Dkq

Following again S98, coefficients Dkq can be obtained in an explicitly symmetric form as follows:

Dkq = Dqk = 1

2Jkq

∫
d3x

{
(Γ1p2)∇ · ξ∗p0k∇ · ξp0q+

ρ2(ξp0q · ∇φ̃
′∗
k + ξ∗p0k · ∇φ̃

′
q)

− 1
ρ̃∇p2 · (ξp0q ρ̃

′∗
k + ξ∗p0k ρ̃

′
q) + ρ̃r2W

− ρ2ω̂
2
0ξ

∗
p0k · ξp0q

}
,

(57)

where

W = ykyqY
∗
k Yq

[
P2w1 + (1 − P2)

2
3
r
dΩ2

dr

]
− 1

3
r
dΩ2

dr
×

× (ykzqY
∗
k ∇HYq + yqzkYq∇HY ∗

k ) · ∇HP2 , (58)

where Yk ≡ Y mk

lk
, P2 is the second Legendre polynomial and w1 is defined by

w1 =
d

dr

(
1
ρ̃

)
dp22

dr
+

1
ρ̃

d

dr

(
ρ22

ρ̃

)
dp̃

dr
. (59)

Equations (57)–(59) are identical to equations (B8)–(B10) in S98. Note that Dkq is non-zero only when
mk = mq .

The angular parts of the integral Equation (57) can be evaluated analytically. Finally the result can be
written in dimensionless form as follows:

Dkq ≡ Dkq√
GM/R3

= δlklqD̄ + δlklq+2(3
2βkβq+1)D̄kq

+ δlklq−2(3
2βk+1βq)D̄kq ,

(60)

with

D̄ = Qkk2D̄kq +
σ2

Ω̄

J̄kq

∫ 1

0

dx¯̃ρx4ykyqb2 , (61)

and

D̄kq = D̄
(1)
kq + D̄

(2)
kq + D̄

(3)
kq + D̄

(4)
kq + D̄

(5)
kq , (62)

where the expressions for the different terms appearing in D̄kq are given in Appendix B.
The diagonal elements Dkk reduce to the frequency correction ωD as

σD =
ωD√

GM/R3
= Dkk = σD

2 + σD
3 , (63)

where the second-order contribution is

σD
2 =

(σ0

Ī

)(σΩ̄

σ0

)2(
J̄kk

σ2
Ω̄

)
D̄ , (64)

and the third-order contribution is

σD
3 =

(
σ0

Ī

)(
σΩ̄
σ0

)3 (σ0 − σ
(0)
0

σΩ̄

)(
J̄kk

σ2
Ω̄

)
D̄

= m(CL − 1 − J1)
(

σ0

Ī

)(
σΩ̄
σ0

)3
(

J̄kk

σ2
Ω̄

)
D̄ ,

(65)
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in which D̄ is given by Equation (61).
Note that Equations (60)–(65) differ from equations (B12)–(B21) in S98. The differences come from

the fact that S98 carried out further integration by parts to remove d ln ρ̃/d ln r = −(A + Vg) which
sometimes can cause numerical oscillations of the integrand of Equation (57). For the models we considered
(see Sect. 5) no such numerical problem exists and we choose to compute the coefficient directly from the
definition in Equation (57). We furthermore note that the partial integration gives rise to surface terms which
are neglected in S98; in fact, for models without an extended atmosphere they become considerable. We
return to this subject in Appendix A1.

Also, in the third-order terms of the relations, the approximation z � yt/Cσ2
0 , which is identical with

the non-rotating case, instead of its exact relation Equation (24) was used by S98. We find in our numerical
results that this is not true and Equation (24) must be used (see Sect. A2).

4.3 Distortion and Coriolis Coupling: Ckq

As in S98, the coupling coefficients Ckq can be obtained as:

Ckq = Cqk ≡ Ckq√
GM/R3

= δlklq C̄ + δlklq+2(3
2βkβq+1)C̄kq

+ δlklq−2(3
2βk+1βq)C̄kq ,

(66)

where

C̄ = m
2J̄kq

σ3
Ω̄
(σ0k + σ0q)

∫ 1

0

dx¯̃ρx4C(1 + η)×
×[b2 − (A + Vg)u2]×
×[zkzq + Qkq2(ykzq + yqzk + 3zkzq)] ,

(67)

C̄kq = m
2J̄kq

σ3
Ω̄
(σ0k + σ0q)

∫ 1

0

dx¯̃ρx4C(1 + η)×
×[b2 − (A + Vg)u2][ykzq + yqzk + 3zkzq],

(68)

an expression for Qkq2 ≡
∫

sin θdθdφY ∗
k YqP2 is given by equation (B18) of S98. The diagonal coefficients

correspond to the contribution to the frequency correction ωC = Ckk . This contribution has only terms of
third order,

σC = Ckk ≡ ωC√
GM/R3

= σC
3

= m
Ī

σ3
Ω̄

∫ 1

0

dx¯̃ρx4C(1 + η)[b2 − (A + Vg)u2]×
× [z2 + Qkk2(2yz + 3z2)] .

(69)

Equations (66)–(68) are identical to equation (B22) in S98. However, Equation (69) differs from equa-
tion (B25) in S98 where again a partial integration had been carried out to eliminate the density derivative.

Note that Equations (53), (65) and (69) show that for the case m = 0 there are no third-order contribu-
tions to the frequency corrections.

The expressions for the separate terms in Hkq (see Eq. (43)), i.e., Equations (48), (57) and (66), are
all explicitly symmetric and real-valued. Therefore, one can conclude that the total coupling coefficient is
symmetric, real-valued and therefore also Hermitian, Hkq = Hqk.

4.4 Close Frequencies and Mode Coupling

The existence of close frequencies can lead to large values of the perturbation terms to the extent that it
invalidates the perturbative approach outlined in the previous sections. For such cases one needs to use a
degenerate perturbation formalism. Following S98, the zeroth-order eigenfunction of an individual mode is
written as a superposition of degenerate eigenfunctions,

ξ =
∑

k

Akξ0k , (70)
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where ξ0k is the degenerate eigenfunction of the zeroth-order system with amplitudes, Ak, the expansion
coefficients normalizable to 1. As in S98, the solution of the eigenvalue problem for the eigenfunction ξ,
corresponding to an eigenvalue ω, satisfies the following linear system:

Akμkk +
∑
q �=k

Aqμkq = 0 , (71)

where the components μkq are defined by

μkk ≡ (ωk − ω)2ω
(0)
0k Ik ,

μkq ≡ 2JkqHkq , for q 
= k .
(72)

One notes that μkq = μqk, because of the symmetric properties of Hkq . The eigenvalues, ω, can be obtained
from the existence condition of nontrivial solutions of Equations (71), i.e.,

det[μij ] = 0 , i, j = 1, . . . , N , (73)

where det is the determinant and N is the total number of the near-degenerate modes.
Here we consider the coupling between N = 2 modes. Equations (73) reduces to

(ω1 − ω)(ω2 − ω) −H2
12 = 0 . (74)

In this case the eigenfrequencies, ω = ω±, can be obtained trivially from the zeroth-order near-degenerate
eigenfrequencies and the total corrections due to rotation and coupling are

ω± =
(

ω1 + ω2

2

)
±

√(
ω1 − ω2

2

)2

+ H2
12 + O(ε4) . (75)

Also, the normalized amplitude bmA ≡ (A1,A2) appearing in Equation (70) can be derived from
Equation (71) as

A(±)
1 = [1 + (μ(±)

11 /μ12)2]−1/2

= [1 + (μ12/μ
(±)
22 )2]−1/2,

A(±)
2 = −(μ(±)

11 /μ12)A(±)
1

= −(μ12/μ
(±)
22 )A(±)

1 ,

(76)

where the quantities labeled (±) are related to the eigenvalues ω±.
The coupling coefficients Hkq appearing in Equation (72) show that near-degenerate coupling only

occurs between modes with the same m and with either the same degree l (and different radial orders) or
with degrees differring by ±2.

5 OSCILLATIONS OF A RAPIDLY ROTATING B STAR

In order to calculate the effect of rotation on normal modes, I consider a uniformly rotating, 12 M�, ZAMS
model generated by the evolution code of Christensen-Dalsgaard (1982) (see also Christensen-Dalsgaard &
Thompson 1999). The parameters of the model are listed at Table 5.

The behaviors of some of the equilibrium quantities of the model with the fractional radius, x = r/R
are shown in Figure 1. It shows that: 1) From the centre to radius x = 0.25, the star is in a convective regime
where N2 < 0 and, outside of this radius it is in a radiative regime where N2 > 0; 2) The spherically
symmetric density ρ decreases smoothly from its maximum value to nearly zero at the surface. 3) The non-
spherically-symmetric correction to the density ρ22 decreases to a negative maximum value at x = 0.3 and
then slowly increases to zero at x � 0.9; 4) The non-spherically-symmetric correction to the gravitational
potential φ22 is obtained as the numerical solution of the Poisson relation, Equation (12), by a Runge-Kutta
method with an adaptive step-size control. The absolute value of φ22 increases smoothly to its maximum
value at the surface.
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Table 1 Stellar parameters of a rotating zero-age main-sequence star in solar units. M , Mconv ,
R, Rconv , pc, and ρc are the total mass, the mass of convective core, the radius, the radius of
convective core, the central pressure and density, and � denotes solar values; σΩ̄ and ε are
the dimensionless mean angular velocity and the perturbational expansion coefficient; Tdyn,
Trot, and Vrot are the dynamical time scale (free fall time), the equatorial period and velocity,
respectively. For comparison note that T�dyn = 0.5 h, T�rot = 25 d, and V�rot = 2 kms−1.

M = 12 M� Mconv = 0.34 M
R = 4.32 R� Rconv = 0.25 R
pc = 3.72 × 10−1 p�c ρc = 4.83 × 10−2 ρ�c

σΩ̄ = 1.38 × 10−1 ε = Ω/ω = σΩ̄/2π = 2.2 × 10−2

Tdyn =
√

R3/GM = 1.15 h Trot = 2πR/Vrot = 2.15 d

Vrot = RΩ = RσΩ̄/Tdyn = 100 km s−1
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Fig. 1 Dimensionless equilibrium quantities including squared buoyancy frequency N2 = (ge/r)A with
A = (1/Γ1)(d ln p/d ln x) − (d ln ρ/d lnx), spherically and non-spherically-symmetric contributions ρ
and ρ22 to the density, and non-spherically-symmetric gravitational-potential contribution φ22, in units of
GM/R3, ρc and R2Ω̄2, respectively, against fractional radius x = r/R for a zero-age main-sequence star
with M = 12M�.
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5.1 Eigenfunctions

The zero-order eigenfunctions are computed from the zero order eigenvalue problem with the pulsation
code of Christensen-Dalsgaard (see Christensen-Dalsgaard & Berthomieu 1991), modified according to
Equations (20)–(24).

In Figure 2 the radial (y) and horizontal (z) components of the zero-order poloidal eigenfunctions
as well as the quantity rρ1/2ξr/(R2ρ

1/2
c ) related to the radial energy density, where ξr = ry is the radial

displacement, are plotted against the fractional radius x = r/R for the selected f and p modes with (l, m) =
(2, 2) and n = (0, 1, 8). Note that in the case of the radial oscillation (l = 0), the results are derived from
the reduced set of differential equations composed of Equations (34) and (35).
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Fig. 2 Zero-order radial y (left) and horizontal z components (middle) and rρ1/2ξr/(R
2ρ

1/2
c ), related to

the energy density (right), as functions of the fractional radius x = r/R for selected f and p modes with
(l, m) = (2, 2) and n = (0, 1, 8) for the model described in Table 5.
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Figure 2 shows that: 1) The number of nodes coincides with the radial order n. 2) At lower radial order,
the energy is distributed throughout most of the star. At higher radial order, the displacement is large only
in the outer part of the model. 3) The magnitude of the horizontal component z decreases with increasing n
(see also Sobouti 1980). In other words, the higher-order p modes oscillate radially rather than horizontally
because they are acoustic and longitudinal waves.

5.2 Eigenfrequencies and Corrections

The zero-order eigenfrequency, σ0, is derived from numerical solutions of Equations (20)–(24) by the mod-
ified pulsation code; note that using the eigensystem in Equations (20)–(24) the first-order frequency cor-
rection, σ1, is implicitly included in σ0 (see Eqs. (15) and (16)). The second- and third-order Coriolis
contributions, (σT

2 , σT
3 ), the second- and third-order non-spherically-symmetric distortions, (σD

2 , σD
3 ),

and the third-order distortion and Coriolis coupling, σC
3 , are derived from numerical integrations of

Equations (52),(53),(64),(65) and (69).
In Tables 2 to 5.2 the results of different contributions of frequency corrections due to effect of rotation

up to third order are tabulated. Included are the selected p modes with (l, m) = (0, 0), (1, 1), (2, 1) and
(2, 2) with n = (0, . . . , 14), (1, . . . , 15), and (0, . . . , 14). The fundamental modes are known with n = 0
and labelled f. The modes with n ≥ 1 are labelled by p1, . . . , pn.

Tables 2 to 5.2 show that: 1) The values of zero-order eigenfrequency, σ0, increase as the radial order n
increases. 2) For the case m = 0, the odd-order frequency corrections, i.e., in the present case those of first
and third order, vanish. In this case only the second-order frequency corrections exist (see Eqs. (17), (52),
(53), (64), (65), and (69)). 3) For radial oscillation (l = 0) only the second-order Coriolis contribution exists
and the second-order non-spherically-symmetric distortion which results from centrifugal force vanishes
for a uniform rotation (see Eq. (64)). 4) In non-radial cases, at lower radial orders, the Coriolis contribution
and non-spherically-symmetric distortion have the same order of magnitude. At higher orders, however,
the magnitude of the non-spherically-symmetric distortion becomes greater than Coriolis contribution. 5)
With increasing n, the frequency correction due to distortion and Coriolis coupling increases and decreases
respectively.

Table 2 Values of eigenfrequency σ0 (including the O(Ω) contribution from rotation), second- and third-
order Coriolis contributions σT

2 and σT
3 , second- and third-order non-spherically-symmetric distortions σD

2

and σD
3 , third-order distortion and Coriolis coupling σC

3 , and total frequency σtot = σ0 + σc corrected
up to third order, for p modes in a zero-age main-sequence star with M = 12M�, (l, m) = (1, 1) and
n = (1, . . . , 15). Here σc = σT

2 + σT
3 + σD

2 + σD
3 + σC

3 is the total third-order frequency correction. All
frequencies are in units of

√
GM/R3 = 2.42 × 10−4 s−1.

Mode n σ0 σT
2 σD

2 σT
3 σD

3 σC
3 σtot

p1 1 3.3700 2.940×10−3 −1.873 × 10−3 −1.43 × 10−4 6.53 × 10−5 6.98×10−5 3.3711
p2 2 4.5499 2.173×10−3 −2.227 × 10−3 −7.91 × 10−5 5.85 × 10−5 7.45×10−5 4.5499
p3 3 5.6388 1.759×10−3 −2.695 × 10−3 −5.27 × 10−5 5.87 × 10−5 9.54×10−5 5.6380
p4 4 6.6669 1.483×10−3 −2.777 × 10−3 −3.81 × 10−5 5.22 × 10−5 1.06×10−4 6.6657
p5 5 7.7061 1.285×10−3 −2.701 × 10−3 −2.88 × 10−5 4.44 × 10−5 1.01×10−4 7.7048
p6 6 8.8212 1.129×10−3 −2.648 × 10−3 −2.23 × 10−5 3.85 × 10−5 9.12×10−5 8.8198
p7 7 9.9704 1.003×10−3 −2.522 × 10−3 −1.77 × 10−5 3.28 × 10−5 8.32×10−5 9.9690
p8 8 11.152 8.986×10−4 −2.051 × 10−3 −1.42 × 10−5 2.40 × 10−5 7.87×10−5 11.151
p9 9 12.336 8.098×10−4 −5.514 × 10−4 −1.17 × 10−5 5.88 × 10−6 7.89×10−5 12.336

p10 10 13.503 7.323×10−4 3.330 × 10−3 −9.67 × 10−6 −3.26 × 10−5 8.44×10−5 13.507
p11 11 14.635 6.661×10−4 1.135 × 10−2 −8.15 × 10−6 −1.03 × 10−4 9.17×10−5 14.647
p12 12 15.741 6.153×10−4 2.329 × 10−2 −7.01 × 10−6 −1.97 × 10−4 9.26×10−5 15.765
p13 13 16.851 5.780×10−4 3.771 × 10−2 −6.17 × 10−6 −2.99 × 10−4 8.51×10−5 16.889
p14 14 17.971 5.472×10−4 5.833 × 10−2 −5.48 × 10−6 −4.35 × 10−4 7.58×10−5 18.029
p15 15 19.065 5.197×10−4 1.110 × 10−1 −4.92 × 10−6 −7.83 × 10−4 6.84×10−5 19.176

In Figures 3–6 the results in Tables 2–5 are plotted. The plots show that for high-order p modes: 1) σ0

increases as a linear function of n, which is very similar to the pattern of vibration in a simple string; this also
follows from the asymptotic analyses of high-order acoustic modes (e.g., Vandakurov 1967; Tassoul 1980).
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Fig. 3 Frequency corrections versus radial order n for p modes with (l, m) = (1, 1) and n = (1, . . . , 15)
for a zero-age main-sequence star with M = 12M�. Here σ0 is the zero-order eigenfrequency, σT

2 and
σT

3 are the second- and the third-order Coriolis contributions, σD
2 and σD

3 are the second- and the third-
order non-spherically-symmetric distortions, σC

3 is the third-order distortion and Coriolis coupling, and
σc = σT

2 + σT
3 + σD

2 + σD
3 + σC

3 is the total third-order frequency correction. All frequencies are in units
of
√

GM/R3 = 2.42 × 10−4 s−1.

2) (σT
2 , σD

2 ) and (σT
3 , σD

3 ) have almost regular asymptotic behaviors as 1/σ0 ∝ 1/n and 1/σ2
0 ∝ 1/n2,

respectively. See Equations (52), (64) and (53), (65). 4) The distortion and Coriolis coupling, σC
3 , has no

clear asymptotic relation (see Eq. (69)). 5) The total frequency shift corrected up to third order, σc, for
radial and non-radial modes decreases and increases, respectively, with increasing n; in the non-radial case
this is caused by the dominance of the term σD

2 which vanishes in the radial case. Note that for the case of
(l, m) = (2, 2), in the diagrams of σT

2 and σT
3 a break between f and p1 appears. This happens because the

inertia for the f mode is two orders of magnitude greater than for p1.
In Table 6, the results on the third-order frequency corrections for the case of two near-degenerate

modes, derived from Equations (75)–(76), are tabulated. As discussed above the coupling exists only for
the two near-degenerate poloidal modes belonging to the same m but with l differing by ±2.
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Fig. 5 Same as Fig. 3, for f and p modes with (l, m) = (2, 1) and n = (0, . . . , 14).
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Table 3 Same as Table 2, for p modes with (l, m) = (0, 0) and n = (1, . . . , 15).
There is no σT

3 , σD
3 , and σC

3 = 0 for m = 0 (see Eqs. (53), (65) and (69)). Also σD
2

vanishes since l = m = 0 and the model is a uniformly rotating star (see Eq. (64)).

Mode n σ0 σT
2 σtot

p1 1 2.9941 8.488×10−3 3.0026
p2 2 3.9460 6.440×10−3 3.9524
p3 3 5.1853 4.901×10−3 5.1902
p4 4 6.2697 4.053×10−3 6.2738
p5 5 7.3206 3.471×10−3 7.3241
p6 6 8.4203 3.018×10−3 8.4233
p7 7 9.5645 2.657×10−3 9.5671
p8 8 10.742 2.366×10−3 10.745
p9 9 11.932 2.130×10−3 11.934

p10 10 13.112 1.938×10−3 13.114
p11 11 14.261 1.782×10−3 14.262
p12 12 15.374 1.653×10−3 15.376
p13 13 16.478 1.542×10−3 16.479
p14 14 17.591 1.445×10−3 17.592
p15 15 18.702 1.359×10−3 18.704

Table 4 Same as Table 2, for f and p modes with (l, m) = (2, 1) and n = (0, . . . , 14).

Mode n σ0 σT
2 σD

2 σT
3 σD

3 σC
3 σtot

f 0 2.8330 4.196×10−3 7.327 × 10−4 −2.89 × 10−4 −2.25 × 10−5 −4.70 × 10−5 2.8376
p1 1 3.7712 3.696×10−3 1.364 × 10−3 −1.85 × 10−4 −4.13 × 10−5 −5.92 × 10−5 3.7760
p2 2 4.9925 2.947×10−3 1.750 × 10−3 −1.11 × 10−4 −4.38 × 10−5 −5.24 × 10−5 4.9970
p3 3 6.0592 2.470×10−3 1.960 × 10−3 −7.72 × 10−5 −4.16 × 10−5 −5.34 × 10−5 6.0635
p4 4 7.0920 2.129×10−3 1.953 × 10−3 −5.71 × 10−5 −3.59 × 10−5 −5.14 × 10−5 7.0959
p5 5 8.1662 1.856×10−3 1.890 × 10−3 −4.33 × 10−5 −3.04 × 10−5 −4.44 × 10−5 8.1698
p6 6 9.2940 1.638×10−3 1.849 × 10−3 −3.36 × 10−5 −2.63 × 10−5 −3.89 × 10−5 9.2974
p7 7 10.458 1.460×10−3 1.697 × 10−3 −2.67 × 10−5 −2.15 × 10−5 −3.40 × 10−5 10.461
p8 8 11.641 1.317×10−3 1.138 × 10−3 −2.16 × 10−5 −1.30 × 10−5 −3.12 × 10−5 11.643
p9 9 12.820 1.200×10−3 −4.768 × 10−4 −1.80 × 10−5 4.99 × 10−6 −3.03 × 10−5 12.821
p10 10 13.973 1.107×10−3 −4.344 × 10−3 −1.53 × 10−5 4.18 × 10−5 −3.13 × 10−5 13.970
p11 11 15.092 1.030×10−3 −1.138 × 10−2 −1.32 × 10−5 1.02 × 10−4 −3.21 × 10−5 15.082
p12 12 16.197 9.630×10−4 −2.066 × 10−2 −1.15 × 10−5 1.72 × 10−4 −3.04 × 10−5 16.177
p13 13 17.312 9.018×10−4 −3.214 × 10−2 −1.01 × 10−5 2.51 × 10−4 −2.69 × 10−5 17.281
p14 14 18.433 8.470×10−4 −5.165 × 10−2 −8.90 × 10−6 3.80 × 10−4 −2.34 × 10−5 18.383

Table 5 Same as Table 2, for f and p modes with (l, m) = (2, 2) and n = (0, . . . , 14).

Mode n σ0 σT
2 σD

2 σT
3 σD

3 σC
3 σtot

f 0 2.7478 6.772×10−4 −1.418 × 10−3 −5.38 × 10−5 8.90 × 10−5 1.07×10−4 2.7472
p1 1 3.6591 1.204×10−3 −2.159 × 10−3 −8.78 × 10−5 1.30 × 10−4 1.73×10−4 3.6584
p2 2 4.8688 1.144×10−3 −2.276 × 10−3 −6.83 × 10−5 1.14 × 10−4 1.96×10−4 4.8679
p3 3 5.9318 9.859×10−4 −1.848 × 10−3 −4.97 × 10−5 7.88 × 10−5 2.30×10−4 5.9312
p4 4 6.9627 8.531×10−4 −1.224 × 10−3 −3.71 × 10−5 4.51 × 10−5 2.36×10−4 6.9625
p5 5 8.0358 7.468×10−4 −9.157 × 10−4 −2.83 × 10−5 2.95 × 10−5 2.10×10−4 8.0359
p6 6 9.1626 6.624×10−4 −6.114 × 10−4 −2.22 × 10−5 1.74 × 10−5 1.91×10−4 9.1629
p7 7 10.326 5.932×10−4 −1.074 × 10−4 −1.78 × 10−5 2.74 × 10−6 1.73×10−4 10.326
p8 8 11.508 5.350×10−4 1.394 × 10−3 −1.44 × 10−5 −3.21 × 10−5 1.66×10−4 11.510
p9 9 12.687 4.848×10−4 5.227 × 10−3 −1.19 × 10−5 −1.10 × 10−4 1.68×10−4 12.693

p10 10 13.840 4.406×10−4 1.378 × 10−2 −9.97 × 10−6 −2.66 × 10−4 1.81×10−4 13.854
p11 11 14.959 4.036×10−4 2.844 × 10−2 −8.48 × 10−6 −5.10 × 10−4 1.91×10−4 14.987
p12 12 16.064 3.759×10−4 4.673 × 10−2 −7.37 × 10−6 −7.82 × 10−4 1.84×10−4 16.111
p13 13 17.181 3.548×10−4 6.849 × 10−2 −6.51 × 10−6 −1.07 × 10−3 1.65×10−4 17.249
p14 14 18.305 3.364×10−4 1.043 × 10−1 −5.81 × 10−6 −1.54 × 10−3 1.47×10−4 18.408
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Fig. 6 Same as Fig. 3, for f and p modes with (l, m) = (2, 2) and n = (0, . . . , 14).

Table 6 Values of zero-order eigenfrequency σ0, total frequency σ± corrected up to third order, total third-
order frequency correction Δσ± = (σ±−σ0) due to rotation and coupling, expansion coefficients A(±)

1 and
A(±)

2 normalized to 1, i.e., A2
1 +A2

2 = 1, for selected pairs of near-degenerate poloidal modes in a zero-age
main-sequence star with M = 12M�. All frequencies are in units of

√
GM/R3 = 2.42 × 10−4 s−1.

m l n coupling σ0 σ± Δσ± A(±)
1 A(±)

2

0 0 1 p1 2.9941 3.0027 8.5940×10−3 0.99950 −0.03152
0 2 0 f 2.9199 2.9262 6.2499×10−3 0.04412 0.99903

0 0 3 p3 5.1853 5.1907 5.3200×10−3 0.99719 0.07496
0 2 2 p2 5.1189 5.1266 7.6955×10−3 0.08727 −0.99618

0 0 9 p9 11.932 11.934 2.5947×10−3 0.99858 0.05319
0 2 8 p8 11.775 11.782 7.0084×10−3 0.05738 −0.99835
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6 CONCLUDING REMARKS

The third-order effect of rotation on the p and f modes for a uniformly rotating zero-age main-sequence
star of mass 12M� has been investigated. The third-order perturbation formalism presented by S98 was
used, with corrections for some misprints and missing terms in some of their equations. Following S98,
the Coriolis and spherically-symmetric distortion effects were included in the zero-order eigensystem.
This yields eigenfrequencies ω0 of eigenmodes which are no longer m-degenerate, even at zero order.
Furthermore, this procedure enables one to obtain eigenfrequencies with the required ε3 accuracy without
the computation of eigenfunction corrections at successive orders of ε. The zero-order eigenvalue problem
was solved by the pulsation code modified in this manner. Numerical calculations of the oscillation fre-
quencies were carried out for our selected model and the second- and third-order frequency corrections due
to Coriolis, non-spherically-symmetric distortion and Coriolis-distortion coupling were computed. For the
case of m = 0 there are no first- and third-order frequency corrections. For the case of radial oscillation
(l = m = 0) the second-order non-spherically-symmetric distortion is also zero and only the second-order
Coriolis contribution exists. We discuss the validity of neglecting the surface terms which arise when the
density derivatives are removed through an integration by parts. They become significant for higher-order
modes, particularly in the present model whose atmosphere is relatively thin. Coupling only occurs between
two poloidal modes with the same m and with l differing by 0 or 2.

We have carried out a careful comparison with the results of the independent implementation of the
third-order formalism by S98. After taking into account the modifications discussed in Appendix A the
results of the two formalisms for the combined second- and third-order corrections agree to within a few
per cent.

In a subsequent paper we intend to investigate numerically the effect of rotation up to third-order for a
sequence of β Cephei star models with uniform or radially varying rotation profiles.
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Appendix A: SUMMARY OF MODIFICATIONS COMPARED WITH THE FORMULATION OF
S98

The third-order perturbation formalism for the influence of rotation on stellar oscillations that is presented
here is to a large extent re-derivation of the results of S98. We consider it necessary to present some results
of the derivations because of a number of typographical errors and some missing terms in S98, which might
lead to confusion. For convenience we here summarize the required corrections to that paper, and other
modifications in the present formulation:

– There are several corrections to S98, equations (A10). In the second of these equations the term −h2
1/ζ

is mistakenly omitted (cf. Eq. (21)). In the same equation U/(1 − σr) must be used instead of U in the
radial case (cf. Eq. (35)). In the last of S98, equations (A10), the term in v should be(

Λ − UVg

1 − σr

)
v

(cf. Eq. (23)).
– In the definition of ζ, S98 equations (A11), Cr must be used instead of C (cf. Eq. (31)).
– In equation (A15), S98 neglected the factor (ge/g̃) as being O(Ω2) and approximated (ge/g̃)vk by vk .

We use the full expression in Equation (41).
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– The factor 2J/ω0 in equation (A22) of S98 was mistakenly omitted. The corrected form of the relation
should be

〈ξt1q | ρ̃ξt1k〉 = δmk,mq

(
2Jkq

ω0

)(
Ω̄
ω0

)2

[δlk,lqK1+

δlk,lq+2K2kq + δlk,lq−2K
∗
2qk] ,

(A.1)

where K1 and K2kq are given by equation (B5) in S98.

A.1. Surface Effects

We have considered two approaches for the computation of the frequency corrections. In the first, the
corrections are calculated from equations (B6)–(B7), (B19)–(B21), and (B25) of S98. In the second which
is used in present work, those coefficients are computed from Equations (52), (53), (64), (65) and (69).

There are two substantial differences between the equations used in the two approaches. In the formu-
lation of S98, the density derivatives are eliminated through an integration by parts and the resulting surface
terms are ignored. For instance, in equation (B25) of S98 the neglected surface term is

S.T =
m

J

Ω̄3

ω0
r5u2(1 + η)(δlklqg1 + Qkq2g2)ρ̃

∣∣
r=R

, (A.2)

where g1 = Cσ2
0zkzq and g2 = Cσ2

0(ykzq + yqzk + 3zkzq). In Figure A1 the surface term given by
Equation (A2) as well as its effect on the third-order distortion and Coriolis coupling correction, σC

3,Soufi
(see eq. (B25) in S98), are plotted against radial order. The plot shows that for lower radial orders n the
effect of surface term is negligible, whereas for higher orders it becomes important. Note that for higher
radial orders the dominant term in surface term comes mostly from g2. Our study shows that for the model
used in the present paper the surface terms become considerable. Because the boundary has been located at
X := r/R = 1, where the density is not exactly zero.

A.2. Using the Approximation z � yt/Cσ2
0 in the Third-Order Correction Terms

The other important difference which should be noted is that in the S98 approach for computing the third-
order correction terms the approximation z � yt/Cσ2

0 , which is valid for the non-rotating case, is used. In
the present paper, on the other hand, the exact relation Equation (24) is used. To investigate this difference
in detail, in Figure A2 the two terms included in Equation (24) as well as the full relation for z are plotted
for several p modes with (l, m) = (1, 1) and n = (3, 8, 15) in the 12M� ZAMS model considered here.
Figure A2 shows that from the centre to near the surface the second term h1y/Λ is negligible compared
with the first term ζyt/Λ. However, very close to the surface the second term becomes important and with
increasing radial order n it becomes dominant compared with the first term. Hence, we conclude that the
approximation of neglecting the second term everywhere, particularly near the surface, is not valid. We find
that the magnitude of this difference between the two approaches is more significant than the magnitude of
the difference due to of the surface terms.

If we include the surface terms in the S98 approach and use the approximation z � yt/Cσ2
0 in the

present formulation the results of the two numerical approaches are in good agreement. For lower radial
orders, the difference in the combined second- and third-order frequency correction σc is then smaller than
one percent and increases slightly for higher orders.

Appendix B: DIFFERENT CONTRIBUTIONS OF NON-SPHERICALLY-SYMMETRIC
DISTORTION

The dimensionless off-diagonal terms D̄kq , in Equation (62), are split into five separate integrals for conve-
nience:

D̄
(1)
kq = −

σ2
Ω̄

2J̄kq

∫ 1

0

dx¯̃ρx4Γ1λkλqu2 , (B.1)

D̄
(2)
kq =

σ2
Ω̄

2J̄kq

∫ 1

0

dx¯̃ρx4(1 − σr){b2 − (A + Vg)u2}

× {yqwk + wqyk + (Λ̄ − 3)(zqvk + vqzk)} , (B.2)
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D̄
(3)
kq = − σ2

Ω̄

2J̄kq

∫ 1

0

dx¯̃ρx4
{u2

2
×

×[zq(Λq − Λk + 6)(λk − (A + Vg)yk)
+ (λq − (A + Vg)yq)(Λk − Λq + 6)zk]

+[b2 − (A + Vg)u2 + 2
3 (1 + η2) + 1

x
dφ̄22
dx

]

×[λkyq + ykλq − 2(A + Vg)ykyq]
}

,

(B.3)

D̄
(4)
kq =

σ2
Ω̄

2J̄kq

∫ 1

0

dx¯̃ρx4 {(1 − σr)×
×[b2 − (A + Vg)u2][(U + χ − 4)ykyq

+ (λq + Λqzq)yk + (λk + Λkzk)yq]
−ykyq(A + Vg)[(2 − σr)(b2 − (A + Vg)u2)

+ 2
3 (1 + η2) + 1

x
dφ̄22
dx

]
−2b2[ykyq + 1

4ykzq(Λq − Λk + 6)
+ 1

4yqzk(Λk − Λq + 6)]
}

,

(B.4)

D̄
(5)
kq = − σ2

Ω̄

2J̄kq

∫ 1

0

dx¯̃ρx4C(
σ2

0k + σ2
0q

2
)×

×[b2 − (A + Vg)u2][ykyq + (Λ̄ − 3)zkzq] ,

(B.5)

where Λ̄ = (Λk + Λq)/2, and

Qkk2 = 3
2 (β2

k+1 + β2
k) − 1

2 = (lk + 1)β2
k − lkβ2

k+1

= Λk − 3m2
k

4Λk − 3 .
(B.6)

Appendix C: THE HERMITICITY OF AN OSCILLATING ROTATING SYSTEM

The hermiticity of the equations of oscillation in a rotating fluid has already been investigated by Gough
& Thompson (1990) who ensured the hermiticity for the rotating star by means of mapping each point
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Fig. A.1 Surface term and its effect on eq. (B25) in Soufi et al. (1998) for p modes with (l, m) = (2, 2)
and n = (0, . . . , 14) for a zero-age main-sequence model.
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Fig. A.2 First ζyt/Λ (left), second h1y/Λ (middle), and total terms (right) of zero-order horizontal com-
ponent z of eigenfunction against fractional radius x = r/R for selected p modes (l, m) = (1, 1) and
n = (3, 8, 15).

in the distorted model to a corresponding point in the spherically symmetric stellar model. Lynden-Bell
& Ostriker (1967) demonstrated that all of the linearized operators appearing in a rotating system for a
constant rotation profile are Hermitian. Here we extend the argument of Lynden-Bell & Ostriker (1967) to
the case of a rotation profile that is a function of radius.

To study the hermiticity of the operator L, equation (21) in S98, we need to show only that the operator
A, equation (22) in S98, is Hermitian. The other operators B, D and C which appear in equation (22) of
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S98, also appear in the total coupling coefficient H (see eqs. (B1)–(B2) of S98), which is symmetric and
Hermitian, as is shown in Section 4.

Let ξ and ζ be two displacement eigenvectors of an oscillating rotating system. Then one can show that
the operator A, equation (22) of S98, satisfies the following relation

〈ζ | Aξ〉 = 〈Aζ | ξ〉 + S.T. , (C.1)

where the surface term (S.T.) is

S.T. =
∮

S {p̃′ζ∗ + (ζ∗ · ∇p̃)ξ + (Γ1p̃∇ · ζ∗)ξ
+ρ̃(φ̃′ζ∗ − φ̂′∗ξ)
+ 1

4πG(φ̃′∇φ̂′∗ − φ̂′∗∇φ̃′)
}
· dS ,

(C.2)

with dS = erR
2 sin θdθdφ; here hat and tilde indicate components of the eigenfunctions associated with

ζ and ξ, respectively. In particular, φ̂′ is given by the Poisson equation, Equation (12), for eigenvector ζ.
Following Unno et al. (1989), the relevant boundary conditions for an oscillating rotating star are

p̃ = ρ̃ = 0 , at r = R , (C.3)

p̃′ = 0 , at r = R , (C.4)

dφ′

dr
+

(l + 1)
r

φ′ = 0 , at r = R . (C.5)

The first and second boundary conditions, Equations (C.3) and (C.4), result in removing all terms in
Equation (C.2) that include p̃ and p̃′, and also all terms that include ∇p̃ because they are proportional
to ρ̃ (see eqs. (12) and (19) in S98). The last boundary condition eliminates the last surface term in
Equation (C.2). Hence all the surface terms go to zero at the surface of the star and therefore S.T. = 0.
With the result Equation (C.1) becomes

〈ζ | Aξ〉 = 〈Aζ | ξ〉 , (C.6)

and therefore the operator A is Hermitian.
We note that from a theoretical point of view, the density vanishes exactly at the surface, whereas for

a realistic model obtained from numerical calculations the density is not exactly zero at the surface. Hence
from a numerical point of view the surface terms are not exactly zero; consequently, whether the surface
term can be removed or not depends on the required accuracy. For instance, we saw before that the effect
of surface terms is not negligible when the cubic frequency corrections are computed.
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Daszyńska-Daszkiewicz J., Dziembowski W. A., Pamyatnykh A. A., Goupil M-J., 2002, A&A, 392, 151
Dziembowski W. A., Goode P. R., 1992, ApJ, 394, 670
Gough D. O., Thomson M. J., 1990, MNRAS, 242, 25
Goupil M. J., Dziembowski W. A., Pamyatnykh A., Talon S., 2001, in Delta Scuti and related stars, eds. M. Breger, M.

H. Montgomery, ASP Conf. Ser., 210, 267
Goupil M. J., Samadi R., Lochard J., Dziembowski W. A., Pamyatnykh A., 2004, in Stellar structure and habitable

planet finding, eds. F. Favata, S. Aigrain & A. Wilson, ESA SP-538, p.133
Goupil M. J., Talon S., 2002, in Radial and Nonradial Pulsations as Probes of Stellar Physics, eds. C. Aerts, T. R.

Bedding, J. Christensen-Dalsgaard, ASP Conf. Ser., 259, 306



308 K. Karami

Karami K., Christensen-Dalsgaard J., Pijpers F. P., 2003, in Solar and Solar-Like Oscillations: Insights and Challenges

for the Sun and Stars, 25th meeting of the IAU, Joint Discussion 12, Abstract Book, p.213
Kippenhahn R., Weigert A., 1994, Stellar Structure and Evolution, Berlin: Springer-Verlag
Lynden-Bell D., Ostriker J. P., 1967, MNRAS, 136, 293
Pamyatnykh A., 2003, in Asteroseismology across the HR diagram, eds. M. J. Thompson, M. S. Cunha, M. J. P. F. G.

Monteiro (Dordrecht: Kluwer), p.97 (also Ap. Sp. Sci., 284, 97)
Reese D., Lignières F., Rieutord M., 2006, A&A, 455, 621
Saio H., 1981, ApJ, 244, 299
Simon R., 1969, A&A, 2, 390
Sobouti Y., 1980, A&A, 89, 314
Sobouti Y., Rezania V., 2001, A&A, 375, 680
Soufi F., Goupil M. J., Dziembowski W. A., 1998, A&A, 334, 911
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