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Abstract The polarization vector (PV) of an electromagnetic wave (EW) will experience a
rotation in a region of spacetime perturbed by gravitational waves (GWs). Based on this con-
sideration, Cruise’s group has built an annular waveguide to detect GWs. We give detailed
calculations of the rotations of polarization vector of an EW caused by incident GWs from
various directions and in various polarization states, and then analyze the accumulative effects
on the polarization vector when the EW passes n cycles along the annular waveguide. We re-
examine the feasibility and limitation of this method to detect GWs of high frequency around
100MHz, in particular the relic gravitational waves (RGWs). By comparing the spectrum of
RGWs in the accelerating universe with the detector sensitivity of the current waveguide, it
is found that the amplitude of the RGWs is too low to be detected by the waveguide detectors
currently operating. Possible ways of improvements on detection are suggested.
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1 INTRODUCTION

Gravitational wave (GW) is one of important predictions of general relativity. Although there has been
some indirect evidence of GW radiation from the binary pulsar B1913+16 (Hulse & Taylor 1975; Weisberg
& Taylor 2004), so far direct detection of GWs has not been accomplished. The GWs can have different
frequencies generated by various kinds of sources. Currently, besides the conventional method of cryogenic
resonant bar (Allen et al. 2000; Aston et al. 2001) a number of detectors using new techniques have been
operating or under construction aiming at direct signals of GWs. For the frequency range 1 ∼ 104 Hz, the
method of ground-based laser interferometers is applied, for example, in LIGO (Abramovici et al. 1992),
Virgo (Bradaschia et al. 1990), and TAMA (Takahashi & Tagoshi 2004). For a lower frequency range,
10−4 ∼ 1 Hz, space-based laser interferometers can be used, such as the LISA (Jafry et al. 1994) that is
being planned. For much lower frequencies ∼ 10−18 Hz, detections of CMB polarization of “magnetic”
type might give direct evidence of the existence of GWs (Seljak & Zaldarriaga 1997; Kaminkowski et
al. 1997; Pritchard & Kaminkowski 2005; Zhao & Zhang 2006; Baskaran et al. 2006). There have also
been attempts to detect GWs of very high frequencies from MHz to GHz, employing various techniques,
for instance, laser beam (Li et al. 2000, 2003, 2006). One interesting method proposed by Cruise uses an
linearly polarized electromagnetic wave (EW) in a waveguide (Cruise 2000; Cruise & Ingley 2005, 2006).
When a GW passes through the region of the waveguide, the polarization vector (PV) of the EW will
generally undergo a rotation (Cruise 1983). A prototype GW detector has been built by Cruise & Ingley
(2005, 2006), which mainly consists of one or several torus-shaped annular waveguides. This method has
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the advantage of being capable, depending on the size of the waveguide, of detecting GWs in the very high
frequency range of 106 ∼ 109 Hz, that was not covered by the laser interferometer method. Note that GWs
in the frequency range 106 ∼ 109 Hz are generally not generated by usual astrophysical processes, such
as binary neutron stars, binary black holes, merging of neutron stars or black holes, or collapse of stars
(Grishchuk et al. 2001; Zhang et al. 2004).

However, the background of relic gravitational waves (RGWs) has a spectrum stretching over a whole
range of 10−18 ∼ 1011 Hz (Grishchuk 1975, 1997; Zhang et al. 2005). Depending on the frequency range,
its different portions can be detected by different methods, e.g., the very low frequency range 10−18 ∼
10−16 Hz by the curl type of polarization in the CMB (Seljak & Zaldarriaga 1997; Kaminkowski et al.
1997; Pritchard & Kaminkowski 2005; Zhao & Zhang 2006; Baskaran et al. 2006), the low frequency range
10−3 ∼ 10−2 Hz by LISA, the intermediate frequency range 102 ∼ 103 Hz is covered by LIGO, and the
very high frequency range 106 ∼ 109 Hz can be the target of Cruise’s EW polarization method. Therefore,
one of the main objects of detection by the annular waveguide is the very high frequency RGWs. The
detection of high frequency RGWs from MHz to GHz is complementary to the usual detectors working
in the range of 10−4 ∼ 104 Hz. RGWs are stochastic background generated by the inflationary expansion
of the early universe (Grishchuk 1975; Zhang et al. 2005a,b, 2006; Giovamini 1999; Zhao & Zhang 2006;
Miao & Zhang 2007), and its spectrum depends sensitively on the inflationary and the subsequent reheating
stages. Besides, the current accelerating expansion also affects both the shape and the amplitude of the RGW
spectrum (Grishchuk 1975; Zhang et al. 2005a,b, 2006; Miao & Zhang 2007). The RGWs carry valuable
information on the universe, therefore, their detection is much desired and might open a new window for
astronomy.

In this paper we give an investigation of the rotation of the PV of EWs in a conducting torus caused
by incident GWs, and explore the feasibility and limitation of Cruise’s method of detecting GWs. First,
we review the RGWs in the currently accelerating universe. Secondly, we present detailed calculations of
the rotation of the PV of EWs in the waveguide caused by incoming GWs from various directions and in
various polarization states, then we analyze the multi-cycle accumulating effect and the resonance when the
circling frequency of EWs is nearly equal to that of the GWs’. Thirdly, we examine the possible detection of
RGWs by the annular waveguide system around 100MHz, and relate the predicted spectrum of the RGWs
in the accelerating universe in regard to the sensitivity of the detector (Cruise & Ingley 2005, 2006). Finally,
we state our conclusions and outline possible ways of improving the detection.

2 RELIC GRAVITATIONAL WAVES

In an expanding universe, RGWs can be regarded as a small perturbation of the Robertson-Walker metric,

ds2 = a2(τ)[−dτ2 + (δij + hij) dxidxj ], (1)

where a(τ) is the scale factor, τ is the conformal time, and hij is a transverse-traceless representation of
the RGWs,

∂i hij = 0, δij hij = 0 . (2)

Of the six components hij only two are independent (two polarization states). Generally, |hij | � 1. The
wave equation for the RGWs is

∂μ (
√−g ∂μ hij(x, τ)) = 0. (3)

The solution of Equation (3), hij , and the spectrum h(ν, τH) defined by

〈hijhij〉 =
∫ ∞

0

h2(k, τH)
dk

k
(4)

have been given for an accelerating universe (Zhang et al. 2005a,b, 2006; Miao & Zhang 2007; Grishchuk
2001). Figure 1 plots h(ν, τH), defined by the acceleration parameter γ, the inflation parameter β, the
reheating parameter βs and the tensor/scalar ratio r. The redshift zE at the time of equal dark energy and
matter, τE , is given by

1 + zE =
a(τH)
a(τE)

� (
ΩΛ

Ωm
)

1
3 . (5)
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Fig. 1 Spectrum h(ν, ηH) of RGW in the accelerating universe (Miao & Zhang 2007; Zhang et al. 2006).

For detecting RGWs of frequencies ∼ 108 Hz, we quote the analytic approximate spectrum in this range
(Zhang et al. 2006):

h(k, τH) ≈ A0

( ks

kH

)βs kH

k2

( k

kH

)β−βs+1 1
(1 + zE)3+ε

, (6)

where k is the comoving wavenumber related to the physical frequency by ν = k
2πa(τH) , A0 a constant

determined by the CMB anisotropies (Seljak & Zaldarriaga 1997; Zhang et al. 2005a,b, 2006; Grishchuk
2001; Spergel et al. 2003), ε ≡ (1 + β)(1 − γ)/γ is a very small value, kH = 2πγ and ks � 1026kH . Note
that the RGWs hij described above exist everywhere and for all the time in the universe. We may deem that
the universe is filled with a stochastic background, consisting of all the modes of different wave-vectors,
kμ=(k0, k1, k2, k3). So the RGWs serve as an object for GW detection.

In the frequency range ∼ 100MHz for the waveguide detector, RGWs can be approximated as plane
waves. A beam of monochromatic plane GWs with a wave-vector can be written in the following form
(Misner et al. 1973)

hij = Re{Aije
iφ}, (7)

where Aij represents the amplitude and φ the phase of GWs,

φ = kμxμ = gμνkμxν , (8)

with xμ the point of spacetime which the waves currently pass.

3 THE ANNULAR WAVEGUIDE

Consider an annular waveguide in the shape of a torus, as shown in Figure 2. Its radius is R, and the cross
section is a rectangle with sides a > b, both being much less than R, say, a, b ∼ 1 cm, and R ∼ 1 m. Note
that the waveguide actually used by Cruise & Ingley (2005, 2006) actually has the shape of a rectangle,
instead of a torus. For simplicity of analysis, here we consider a torus since the working mechanism is
the same. Inside the torus one can input a beam of linearly polarized EW propagating around the toroidal
loop, which consists of a TE10 mode (transverse electric field) with the electric field E pointing along the
x3−axis. The EWs are microwaves, e.g., with a wavelength λe ∼ 1mm and a frequency νe = c/λe ∼
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1011 Hz. The guided EWs of the TE10 mode in the torus travel around the loop at a group speed (Li et al.
1997),

v = c

√
1 − (

λe

2a
)2, (9)

where c is the speed of light, and v is very close to c. For instance, for λe ∼ 1mm and a = 1 cm, the
difference between the two is ∼ (λe/2a)2/2 ∼ 10−3. As is well-known, for a TE10 mode to exist in the
waveguide, one has to have λe ≤ 2a. The angular velocity of the EWs cycling around the loop is then

ω0 =
v

R
� c

R
. (10)

As will be seen below, when the angular frequency ω of the incident GWs is very close to ω0, i.e., when
at the resonant condition, the detector responds most sensitively to the GWs. Therefore, such a device of
given radius R will primarily detect GWs of a resonant frequency around

νg � c

2πR
. (11)

For example, if the radius is R = 1 m, the frequency of GWs to be detected is νg � 5 × 107 Hz, three or
four orders smaller than νe. The frequency of GWs to be detected can be varied by adjusting the size R,
which is an advantage. For the 4-d spacetime, one can choose a coordinate system {xμ} with μ = 0, 1, 2, 3
and x0 ≡ ct, such that the waveguide lies on the (x1, x2) plane, see Figure 2. Note that the geometric size R
of the waveguide is negligibly small in comparison with the Hubble radius, ∼ c/H , so the effect of cosmic
expansion on the torus can be totally neglected.

We consider a beam of GWs passing through the detector. Assume the wavelength λg of GWs is much
longer than that of of the EWs in the waveguide, λe, i.e., λg � λe, so that the geometric optics approxima-
tion applies in describing the EWs (Cruise 1983; Misner et al. 1973). In fact, this assumption on the incident
GWs is automatically satisfied if the GWs satisfy the resonant condition. The PV of the linearly polarized
EWs can be described by a 4-vector, Πμ = (Π0, Π1, Π2, Π3), which is real and normal to the wave vector
Pμ of the EWs

ΠμPμ = 0 , (12)

and satisfies the normalized condition (Misner et al. 1973; Cruise 1983)

ΠμΠμ = 1 . (13)

Equation (12) shows that one can add a multiple of Pμ to Πμ without affecting any physical measurements
(Misner et al. 1973), since Pμ is a null vector with PμPμ = 0. Suppose that the EWs are propagating along
the x1−axis with wave vector Pμ = (P 0, P 1, 0, 0), which satisfies PμPμ = 0. Then by Equation (12), the
PV of the EWs can be generally written as Πμ = (κP 0, κP 1, Π2, Π3), where κ is an arbitrary constant.
Then, Equation (13) leads to

|Π2|2 + |Π3|2 = 1. (14)

Since initially the electric field E of EWs inside the torus is set to be along the x3− axis and Πi is, by
definition, in the direction of E, so the initial PV is

Πμ = ( 0, 0, 0, 1), (15)

i.e., initially the PV has a vanishing Π2 = 0 component.
However, the presence of GWs will cause a rotation of the Πμ about the direction of propagation,

generating a non-vanishing Π2 = 0 i.e., a component E2 = 0 of the electric field E of the EWs in the
waveguide. One puts an electric field probe inside the waveguide at the intersection of the x2− axis and
the torus. The probe is on the line of x2-axis, so it can probe the non-vanishing electric field E2 due to the
rotation of E caused by the GWs (Cruise & Ingley 2005, 2006). The GWs induce an electric voltage on the
electric probe V = E0α l sin (2πνet), where E0 is the TE10 mode electric field in the waveguide, l is the
length of the conducting probe.
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Fig. 2 A sketch of the annular waveguide. The cross section of the waveguide is a rectangle with side a and
b which are much smaller than the radius R. EWs travel inside the waveguide and GWs propagate along
the x3-axis.

In the geometric optics approximation, the motion of Πμ is described as being parallel-propagating
along the rays of EWs with the equation

dΠμ

ds
+ Γμ

νσΠν dxσ

ds
= 0, (16)

where s is an affine parameter, which can be chosen to be s = t/T0 with T0 = 2π/ω0 the period of the
EWs traveling around the torus. Note that when s goes from 0 to 1, EWs go one cycle around the torus.
Since a, b � R, one can view the EWs in the waveguide as travelling along the 1−dimensional loop path,

xμ = R

(
2πcs

v
,− sin 2πs, cos 2πs, 0

)
, (17)

where v is the group speed of EWs.
With the initial setup of the polarization of EWs in the torus, we only need to consider the component

Π2 of the polarization.

4 CHANGE OF Π2

Even the setup of the waveguide detector is fixed in the laboratory, GWs in space can come in any direction
at random. Therefore, we need to determine the rotation of polarization of EWs caused by GWs travelling
along the directions xi, i = 1, 2, 3, respectively.

4.1 GWs Travelling along the Positive x3-axis

Consider a beam of monochromatic plane GWs travelling along the positive x3-axis with wave vector kμ =
(2π/λg, 0, 0, 2π/λg). As the GWs pass the annular waveguide whose position is given by Equation (17),
substituting it into Equation (8) will yield the phase of the GWs at the point inside the annular waveguide,

φ = −2πs ω/ω0. (18)

Here ω = 2πc/λg represents the angular frequency of the GWs, and ω0 = (2π/T0) is the cycling angular
frequency of the EWs around the torus. One can take the flat spacetime slightly perturbed by the GWs to
represent the local region of the waveguide. In the transverse traceless (TT) gauge, the metric tensor can be
written as

gμν = ημν + hμν =

⎛
⎜⎝

−1 0 0 0
0 1 + h⊕ h⊗ 0
0 h⊗ 1 − h⊕ 0
0 0 0 1

⎞
⎟⎠ ,



Detecting Very-High-Frequency Relic Gravitational Waves 319

and

gμν = ημν − hμν =

⎛
⎜⎝

−1 0 0 0
0 1 − h⊕ −h⊗ 0
0 −h⊗ 1 + h⊕ 0
0 0 0 1

⎞
⎟⎠ ,

where h⊕ and h⊗ denote the + and × modes of polarization of the GWs, respectively. In general, these
two modes may not be coherent, i.e. their phases are random and independent, similar to the natural light
of EWs. If they have the same phase φ, which is known as the linearly polarized GWs (Misner et al. 1973),
then by Equation (7) one has

h⊕ = A⊕ cosφ, h⊗ = A⊗ cosφ, (19)

where A⊕ and A⊗ are real numbers.
As can be checked, the change in Π3 due to the GWs is of order of |hij |2, so in the subsequent calcula-

tion Π3 = 1 is assumed. To calculate the change of Π2 up to the linear order of hij , one needs the following
Christoffel components,

Γ2
31 = −πA⊗ sin φ/λg,

Γ2
32 = πA⊕ sin φ/λg, (20)

the other components are either zero or of order |hij |2, having no contributions. Integrating Equation (16)
gives an expression of the change in Π2 around one circle of the torus,

ΔΠ2 =
∫ 1

0

dΠ2

ds
ds = −

∫ 1

0

(
Γ2

31Π
3 dx1

ds
+ Γ2

32Π
3 dx2

ds

)
ds. (21)

Substituting Equations (17) and (20) into the integration, one has

ΔΠ2 =
2π2R

λg

∫ 1

0

(
A⊗ sin

(
2πs

ω

ω0

)
cos 2πs − A⊕ sin

(
2πs

ω

ω0

)
sin 2πs

)
ds. (22)

Carrying out the integration results in

ΔΠ2 =
A⊗
2

(1 − cos (2π�))
�2

�2 − 1
− A⊕

2
sin (2π�)

�

�2 − 1
, (23)

where � ≡ ω/ω0. So the change of Π2 depends on ω.
Let us see what value ΔΠ2 will take when the cycling angular frequency of the EWs is equal to the

angular frequency of the GWs, i.e., at the resonant condition,

ω0 = ω. (24)

Taking the limit � → 1 in Equation (23) yields a constant value

ΔΠ2 = −πA⊕
2

, (25)

which has only contribution from the + mode. This is a known result in Cruise (2000).
We now check other special cases of Equation (23).
(1) If GWs are given such that A⊕ = 0, i.e., there is only the × mode, then

ΔΠ2 =
A⊗
2

(1 − cos (2π�))
�2

�2 − 1
, (26)

See Figure 3. It is shown that ΔΠ2, as a function of �, can be both positive and negative. A maximum
value of ΔΠ2 is reached at � � 1.434.
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Fig. 3 ΔΠ2 as an oscillating function of � when A⊕ = 0, showing a maximal value of 1.864A⊗ at
� = 1.434 and a minimal value of −0.643A⊗ at � = 0.743. Note that (1) ΔΠ2 = A⊗, for � � 1 and
� half integers; (2) ΔΠ2 = 0, for � integers; (3) ΔΠ2 = 0, for � → 0.
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Fig. 4 ΔΠ2 as a function of � when A⊗ = 0, which has a minimum −1.585A⊕ at � = 1.036.
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Fig. 5 ΔΠ2 as a function of � when A⊗ = A⊕ = A, showing a maximum 1.842 at
� = 1.546 and a minimum −1.802 at � = 0.889.
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(2) If there is only the + mode,

ΔΠ2 = −A⊕
2

sin (2π�)
�

�2 − 1
, (27)

then we have the result shown in Figure 4. A minimum value of ΔΠ2 is reached at � � 1.036.
(3) If A⊗ = A⊕ = A, where A is real, as is likely the case for relic gravitational waves, then one

obtains

ΔΠ2 =
A

2
(� − � cos(2π�) − sin(2π�))

�

�2 − 1
. (28)

See Figure 5, which is compounded of Figures 3 and 4.
Instead of a linearly polarized GWs in Equation (19), we consider the case of circularly polarized GWs

with A⊕ = iA⊗ = A,
h⊕ = A cosφ, h⊗ = A sin φ . (29)

By similar calculations, one has the relevant Christoffel components,

Γ2
31 = πA cosφ/λg ,

Γ2
32 = πA sin φ/λg . (30)

Integrating Equation (21) yields

ΔΠ2 =
A� sin (2π�)

2(1 + �)
, (31)

which is shown in Figure 6.

2 4 6 8 10
�

-0.4

-0.2

0.2

0.4

��2�A

Fig. 6 Relation between ΔΠ2 and � for circularly polarized GWs. The value of ΔΠ2 will
always be less than A/2.

4.2 GWs Travelling along the Positive x1-axis

Different from the above, now consider a plane GW travelling along the positive x1-axis. The wave vector
is kμ = 2π/λg(1, 1, 0, 0). By Equations (8) and (7) the phase of the GW in the torus is

φ = −2πx0/λg + 2πx1/λg = −(2πs + sin (2πs))ω/ω0. (32)

The metric is now

gμν = ημν + hμν =

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 + h⊕ h⊗
0 0 h⊗ 1 − h⊕

⎞
⎟⎠ .
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Similar calculations give the relevant Christoffel components

Γ2
30 = πA⊗ sin φ/λg,

Γ2
31 = −πA⊗ sinφ/λg , (33)

and the change in Π2 around one circuit of the path

ΔΠ2 =
2π2rA⊗

λg

∫ 1

0

(1 + cos (2πs)) sin
(

ω

ω0
(2πs + sin (2πs))

)
ds. (34)

Integrating Equation (34) gives rise to

ΔΠ2 = A⊗ sin2 (π�). (35)

This oscillates between A⊗ and 0. Note that A⊕ makes no contribution.
In the case of circularly polarized GWs, Equations (33) and (34) should be replaced by

Γ2
30 = −πA cosφ/λg,

Γ2
31 = πA cos φ/λg, (36)

and

ΔΠ2 =
2π2rA

λg

∫ 1

0

(1 + cos (2πs)) cos
(

ω

ω0
(2πs + sin (2πs))

)
ds, (37)

and one has

ΔΠ2 =
A

2
sin (2π�), (38)

oscillating between A/2 and −A/2.

4.3 GWs Travelling along the Positive x2-axis

When plane GWs travel along the positive x2-axis, the metric tensor of spacetime is

gμν = ημν + hμν =

⎛
⎜⎝

−1 0 0 0
0 1 + h⊕ 0 h⊗
0 0 1 0
0 h⊗ 0 1 − h⊕

⎞
⎟⎠ .

Similar calculations show that the relevant Christoffel components are 0, and thus

ΔΠ2 = 0. (39)

Thus, GWs travelling along the x2-axis will not change Π2. Therefore, to avoid a null result of detection
in case of an incident GWs in the x2 direction, one should put two probes with 900 separation along the
annular waveguide.

5 CUMULATIVE EFFECT

When EWs pass n cycles along the annular waveguide, the change of Π2 may be accumulative. This is of
practical significance in actual detections. We need only consider GWs along the x3- and x1- directions.

First, for the linearly polarized incident GWs in the x3- direction, integrating Equation (22) form 0 to
n gives the change of Π2 for n cycles

(ΔΠ2)n =
A⊗
2

(1 − cos (2πn�))
�2

�2 − 1
− A⊕

2
sin (2πn�)

�

�2 − 1
. (40)

For the special case A⊗ = 0, Figure 7 gives a plot of (ΔΠ2)n for n = 10. In contrast to Figure 6 for n = 1,
(ΔΠ2)n is now sharply peaked at � � 1 with a much larger amplitude, as a prominent feature. As given
in Table 1, under the resonance condition � → 1, the amplitude of (ΔΠ2)n increases linearly with n. In
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Table 1 Case of A⊗ = 0. The amplitude of
(ΔΠ2)n increases linearly with n, as � → 1.

n �min ΔΠ2
min/A⊕

1 1.036 −1.585
10 1.00038 −15.71
100 ∼ 1 −157.08
1000 ∼ 1 −1570.8
2000 ∼ 1 −3141.6
10000 ∼ 1 −15708

0.5 1 1.5 2
�

-20

-15

-10

-5

5

10
���2�10�A�

Fig. 7 Case of A⊗ = 0 and n = 10. (ΔΠ2)n has a minimum −15.071A⊕ at � = 1.00038.

Table 2 Case of A⊕ = 0. The amplitudes of extrema of (ΔΠ2)n increase with n.

n �max ΔΠ2
max/A⊗ �min ΔΠ2

min/A⊗

1 1.434 1.864 0.743 –0.643
10 1.038 12.027 0.964 –10.761
100 1.0037 114.456 0.9963 –113.189
1000 1.00037 1138.85 0.99963 –1137.58
2000 1.00019 2277.07 0.99982 –2275.8
10000 1.00004 11382.8 0.999963 –11381.5

fact, this linearly-increasing amplitude ΔΠ2
min at very large n is also obtained by taking the resonance limit

� → 1 in Equation (40), which yields

(ΔΠ2)n = −nπA⊕
2

, (41)

which is in accord with the result obtained by Cruise (2000).
The special cases of A⊕ = 0 and of A⊕ = A⊗ are quite similar to each other. (ΔΠ2)n has, for each

given n, both a sharp maximum ΔΠ2
max at �max > 1 and a sharp minimum ΔΠ2

min at �min < 1. As
n → ∞, the amplitudes ΔΠ2

max and ΔΠ2
min increase with n approximately linearly, and their locations

�max and �min approach 1 from either side, respectively. Figures 8 and 9 show (ΔΠ2)n with n = 10
for A⊕ = 0 and for A⊕ = A⊗, respectively. Tables 2 and 3 list the increase with n of the amplitudes of
extrema ΔΠ2

max and ΔΠ2
min for A⊕ = 0 and for A⊕ = A⊗, respectively.

For circularly polarized GWs in the x3- direction, the n- cycle result is

(ΔΠ2)n =
A� sin(2πn�)

2(1 + �)
, (42)

which does not accumulate with n, but vibrates more rapidly than Equation (31).
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Table 3 Case of A⊕ = A⊗. The amplitudes of extrema of (ΔΠ2)n increase with n.

n �max ΔΠ2
max/A⊗ �min ΔΠ2

min/A⊗

1 1.546 1.842 0.889 –1.802
10 1.055 11.05 0.982 –20.214
100 1.0055 103.504 0.9981 –205.148
1000 1.00055 1028.1 0.99981 –2054.59
2000 1.00027 2055.43 0.999907 –4109.52
10000 1.00005 10274.1 0.999981 –20549

0.5 1 1.5 2
�

-15

-10

-5

5

10

15
���2�10�A�

Fig. 8 Case of A⊕ = 0 and n = 10. ΔΠ2
max = 12.027A⊗ at � = 1.038, and

ΔΠ2
min = −10.761A⊗ at � = 0.964.
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Fig. 9 Case of A⊗ = A⊕ = A and n = 10. ΔΠ2
max = 11.05A at � = 1.055, and

ΔΠ2
min = −20.214A at � = 0.982.

Secondly, for the lineal polarized incident GWs in the x1- direction, the n- cycle result is

(ΔΠ2)n = A⊗ sin2 (nπ�), (43)

which shows no accumulating effect. For the circularly polarized GWs in the x1- direction,

(ΔΠ2)n =
A sin(2nπ�)

2
, (44)

without any accumulating effect either.
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So the above detailed analysis on the n-cycle accumulating effect yields a simple conclusion: Only
linearly polarized incident GWs in the x3-axis has a linearly accumulating effect on the rotation of the PV of
the EWs in the limit � → 1. In order to experimentally obtain a maximum effect of n-cycle accumulation,
the circling EWs in the waveguide should be running so that n is as large as possible. Of course, due
to attenuation of EWs in actual waveguides, for a given waveguide made of conducting metal, such as
copper, an input beam of EWs in the waveguide can run only a finite number of turns around the torus. The
maximum value of n is approximately equal to the quality factor Q, mainly determined by the conducting
metal employed and the pump resonances. For instance, Cruise’s group (Cruise & Ingley 2005, 2006) has
used copper for the waveguide, and the measured value of the quality factor Q � 2000. As for the selective
response of the detector to the particular x3- direction of the incident GWs under the resonant condition
ω � ω0, it is a problem for gravitational radiations from certain sources, since they generally exist for a
finite short period of time (from minutes to hours) and have some fixed direction of propagation. However,
for the RGWs as the detection object, it is not a problem at all, as they consist of various modes in all
directions and of all frequencies, and they are a stochastic background existing everywhere and at all time.
Therefore, RGWs serve as a natural object of detection. What one needs to do is to set up a convenient
position of the torus and to fix the the cycling angular frequency ω0 = v/R of EWs around the waveguide.
There are always modes of RGWs in the x3- direction with angular frequency ω � ω0.

6 CAPABILITY FOR DETECTING VERY HIGH FREQUENCY RGWS

We examine the capability of the waveguide detector built up by Cruise & Ingley (2005, 2006) particularly
in regards to RGWs. Consider the favorable case of GWs travelling along the x3-direction. Since the rotation
ΔΠ2 is small, it is equal to the rotated angle α, α � ΔΠ2. This angle can be measured by the electric probe.
In general the detector sensitivity will be limited by thermal noise in the electronic amplifiers. It has been
found that the minimum detectable angle of rotation is (Cruise & Ingley 2006)

αmin =

√
ab kTB

fP l2
, (45)

where f is an efficiency factor of the probe transferring electric signals to the following electronic ampli-
fiers, k the Boltzmann constant, T the amplifier noise temperature, and B the detector bandwidth in Hertz.
Thus, for a constant amplitude on the time scale ∼ Q/ν0, during which the EWs travel Q turns around the
loop. By Equation (41) the minimum detectable amplitude hmin of the GWs is

hmin =
2
π

αmin

Q
=

2
π

√
abkTB

fPinQ3l2
, (46)

where the input power Pin is related to the circulating power P by Pin = P/Q, Q being the quality factor
of the waveguide. For a random signals of GWs with amplitude varying considerably over the time scale
∼ Q/ν0, the minimum detectable amplitude is

hmin =
2
π

√
abkTB

fPinQ2l2
, (47)

since the angle α of rotation accumulatively increases as α ∝ √
Q, as for a random walk.

The waveguide detector is used to monitor GWs of frequency ∼ 108 Hz, which primarily come from
the stochastic background of RGWs with a very broad frequency range (10−18 ∼ 1010) Hz (Grishchuk
2001; Zhang et al. 2005a,b, 2006). The RGW spectrum h(ν, ηH) as given by Equation (6) in a frequency
range > 107 Hz depends sensitively on the reheating parameter βs. The spectra for three different values
of βs = 0.5, 0, −0.3, respectively, are given in Figure 10 for a model with β = −1.8, r = 0.22, and
ΩA = 0.75. A larger βs has a lower amplitude in the range 107 ∼ 109 Hz, but around ν ≥ 109 Hz
the spectrum begins to increase considerably. Therefore, if the detector can accurately detect the RGWs
signals, it will, in principle, be able to constrain the model parameters β and βs, and distinguish different
models of reheating during the early universe.
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Fig. 10 Spectrum of h(ν, ηH) with different parameter βs for β = −1.8.

Other sources of GWs, such as binary neutron stars or black holes, merging of neutron stars or black
holes, can produce GWs, but the frequency is much lower than 108 Hz (Zhang et al. 2004). Thus they
cannot be detected by the waveguide detector discussed here. There might be other astrophysical processes,
which can give rise to high frequency GWs. Thermal gravitational radiation of stars can generate GWs at
most probable frequencies ∼ 1015 Hz (Bisnovatyi & Rudenko 2004; Weinberg 1972), but this frequency
is too high for the waveguide detector. The predicted grazer beams in interstellar plasma can generate
GWs with “optical” frequencies > 1012 Hz, which are still too high for the waveguide detector (Servin &
Brodin 2003). The GW radiation from primordial black holes of M ≤ 10−5M� can generate GWs with
frequencies≥ 1010 Hz, which are also too high for the waveguide detector, and the rate of event is very low
(∼ 5×10−2 year−1 galaxy−1, Nakamura et al. 1997). Therefore, our primary object of detection is RGWs,
whose spectrum in the current accelerating universe has been derived, e.g., Zhang et al. (2005a,b, 2006) and
Miao & Zhang (2007).

What the waveguide detector actually detects is the root-mean-square (r.m.s.) amplitude of RGWs per
Hz1/2 at a given ν, which can be written simply as (Grishchuk 2001)

h(ν)√
ν

, (48)

where h(ν) denotes the value of the spectrum h(ν, ηH) given in Equation (6). Since the waveguide detector
works around frequency 108 Hz, so we need to examine h(ν, ηH) around this frequency predicted by the
calculations (Zhang et al. 2005a,b, 2006; Miao & Zhang 2007). For a cosmological model with the ten-
sor/scalar ratio r = 0.22, dark energy ΩΛ = 0.75, and reheating parameter βs = 0.3, one can read from
Figure 1 the values h(ν) � 10−28, 10−34 for inflationary parameter β = −1.8, −2.02, respectively. Then
the corresponding r.m.s amplitude per Hz1/2 at ν = 108 Hz is

h(ν)√
ν

� (10−32, 10−37) Hz−1/2, (49)

for the two values of β, respectively. On the other hand, the detector sensitivity can be improved by using
the cross correlation of two or more detectors. From a short run of 4 seconds of two detectors, Cruise &
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Ingley (2006) gave the cross correlation sensitivity,

5 × 10−15Hz−1/2, (50)

which is within a factor 4 of the predicted sensitivity for parameters Pin = 69mW, T = 300K, Q = 2000,
(ad)/l2 = 0.5, and f > 0.9. Comparing the preliminary experimental result in Equation (50) with the
predicted values, it is shown that the predicted value of RGWs in the model β = −1.8 is lower than the
prototype detector sensitivity by 17 orders. As has been analyzed in Cruise & Ingley (2006), the detector
sensitivity of the current detector could be improved by a factor of 104 ∼ 105, by taking advantage of
optimization of the transducers, cryogenic amplifiers and multiple detector correlation, but even with these
improvements, there still are 12 orders short to measure the predicted amplitude of RGWs in Equation (49).

An interesting feature of the spectrum of RGWs is that it has a higher amplitude in lower frequencies.
This may be suggestive for new ways of enhancing the chance of detections. As is seen from Equation (11),
if one increases the radius R of the annular waveguide, e.g., from 1 meter to 100 meters, the frequency of
GWs to be detected will subsequently be reduced to a low value νg � 5 × 105 Hz, at which the spectral
amplitude h(ν, ηH) increases by a factor ∼ 103, as is seen from Figure 1, and the r.m.s amplitude per
Hz1/2 will be h(ν)/

√
ν ∼ 10−28 Hz−1/2. Now, it is only 8 orders lower than the detector sensitivity of the

improved device. Therefore, according to our calculation of the RGWs, it is unlikely to detect signals of
RGWs using the annular waveguide detectors as they stand today, but enlarging the radius R will enhance
the detection probability considerably, of course this involves a larger cost and a more complex construction.
Note that LIGO is still unable to detect the RGWs by 2 orders of magnitude, even though it has achieved its
design sensitivity (Miao & Zhang 2007). Moreover, there are possibilities that the waveguide detector can
detect signals from other kinds of sources of GWS with a much improved sensitivity.

7 CONCLUSIONS

From the calculations of the rotation of the PV of EWs, it is found that, essentially, the detector only
responds to linearly polarized RGWs travelling in the x3-axis under the resonant condition. Both circularly
polarized RGWs travelling along any direction and linearly polarized RGWs travelling along the x1- or
x2-axis give no observable clues, but these will not cause any problem when the object of detection is
RGWs.

From our analysis comparing the RGWs spectrum with the detector sensitivity, we find that the RGWs
in the accelerating universe have a very low amplitude and are not possible to detect using the current
detector. The gap between them is some 17 orders of magnitude under the current experimental conditions.
Even with the improvements on the current detector system as planned in 2005, there will still be a gap of 12
orders of magnitude. Focusing on the detector itself, Equations (46) and (47) show that the sensitivity of the
detector can be directly improved by several means: (1) by using cryogenic devices at temperature T lower
than that of the environment, i.e., to reduce thermal noise of the amplifiers; (2) by increasing the quality
factor Q of the waveguide, so the EWs can travel more number of turns around the loop, (3) by increasing
the input power Pin of the EWs into the waveguide; (4) by using multiple detectors, whose correlation can
improve the sensitivity of the detector. On the other hand, the shape of the RGW spectrum h(ν) is such
that its amplitude is higher in lower frequencies. Therefore, it may be more promising to detect RGWs in
a relatively lower frequency range. For instance, if the radius of the torus is increased to R = 100 meter,
the detecting frequency νg ∼ 5 × 105 Hz, and the gap will reduced down to 8 orders of magnitude. An
overall estimate is that significant improvements of the current prototype detector are needed for a possible
detection of RGWs.
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