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Abstract We develop a new procedure to improve the angular resolution of coded-mask
telescopes by the Direct Demodulation Method (DDM). DDM has been applied to both real
and simulated data of INTEGRAL/IBIS. The angular resolution of IBIS/ISGRI has been
improved from about 13′ to 2′.
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1 INTRODUCTION

For coded aperture telescopes (Caroli et al. 1987; Goldwurm 1995; Skinner 1995) the source radiation
is spatially modulated by a mask with both opaque and transparent elements before being recorded by a
position sensitive detector. The mask patterns are designed to allow each source in the field of view to cast
a unique shadowgram on the detector in order to avoid ambiguities in the reconstruction of the sky image.
This reconstruction (deconvolution) is generally based on a correlation procedure between the recorded
image and a decoding array derived from the mask pattern.

Representing the mask with an array M of 1 (transparent) and 0 (opaque) elements and the detector
array with D, the sky image generated by the cross-correlation is:

Fc = D ∗ G, (1)

where * represents convolution and G = M − M with M the average of M.
It would be ideal to find a mask pattern that makes

M ∗ G = δ. (2)

Then,
Fc = D ∗ G = F ∗ M ∗ G = F ∗ δ = F, (3)

where F is the source distribution. Mask patterns with such a property including the uniformly redundant
arrays (URA) were found in the 1970 s (Fenimore & Cannon 1978) and were successfully applied in X/γ-
ray telescopes onboard several high energy missions (Caroli et al. 1987; Paul et al. 1991). In practice,
Modified URA (MURA) (Gottesman & Fenimore 1989) masks are widely used. Despite some fluctuations,
random coded masks have this property as well.

It is shown in Equation (3) that the cross-correlation is almost optimal for the image reconstruction
of coded mask systems with the property shown by Equation (2). Therefore, the angular resolution of the
cross-correlation is treated as the intrinsic angular resolution of the coded mask system.
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In practice, Equation (3) is tenable only in the fully coded part of F of the (M)URA coded mask system.
Below, whenever reconstruction of F is mentioned it is meant that while the whole F is reconstructed, only
the fully coded part is analyzed.

In the theoretical study, The detector elements and the mask elements are usually of the same size : sd =
sm. The angular resolution of such a system is arctan(sm/d), d the distance between the detector array and
the mask. In practice, however, sm and sd are usually not the same. To perform the cross-correlation, the
decoding array G must be resampled at the detector’s pixel size. The corresponding angular resolution is
arctan(

√
s2
m + s2

d/d) (Gros et al. 2003), which is a bit worse than arctan(sm/d).
Apart from the cross-correlation method mentioned above, the method of Direct Demodulation (DDM)

(Li & Wu 1993, 1994) can also be used to reconstruct the image F. More generally, the modulation process
can be represented by the following modulation equation:

P · V(F) = V(D), (4)

where P is the response matrix of the system, V is an operator and V(F) the vector form of F. The DDM
solves directly the modulation equations by iteration subject to give physical constraints. The iteration
used in DDM could be Gauss-Seidel iteration, Jacobi iteration or Richardson-Lucy iteration (Richardson
1972; Lucy 1974), etc. DDM can obtain high signal-noise ratio images, with greatly decreased effect of
background and noise. Also, it can greatly improve the location precision and raise the angular resolution
to even much higher than the intrinsic angular resolution of the instrument. This technique has been applied
successfully to imaging analysis of many missions and different kinds of instruments, e.g., EXOSAT/ME
(Lu et al. 1996), HEAO1-A4 (Lu et al. 1995), CGRO/COMPTEL (Zhang et al. 1997, 1998), RXTE/ASM
(Chen et al. 2000), ROSAT/PSPC (Chen et al. 1997; Lu et al. 2001), and XMM-Newton (Feng et al. 2003).

In Section 2, the accelerated DDM (ADD) (Shen & Zhou 2007) is applied directly to the imaging of
coded mask telescopes in which sm > sd, which improves the angular resolution to arctan(sd/d). Then
a technique is introduced in Section 3 to achieve much better angular resolutions than arctan(sd/d). In
Section 4, real and simulated data of INTEGRAL/ISGRI (Ubertini et al. 2003) are used to demonstrate the
performance of these techniques. Section 5 presents a discussion.

For the convenience of description, two operators are defined here: “.×” and “./”. C = A.×B means
C(i, j) = A(i, j) × B(i, j) and C = A./B means C(i, j) = A(i, j)/B(i, j) for every i, j.

2 IMPROVING THE ANGULAR RESOLUTION BY DDM

Theoretically, DDM can be used directly to solve Equation (4), but in this case it consumes extremely large
amount of computation time and memory space for the storage of P which contains NF × ND elements,
where NF and ND are the number of elements of F and D, respectively. Fortunately, a coded mask system
is a shift-invariant system and the modulation Equation (4) can be rewritten into the convolution form:

M ∗ F = D. (5)

Consequently we can directly use the ADD to do the DDM imaging efficiently. ADD can accelerate the
DDM imaging process by hundreds of times. M, which has fewer than NF elements, is stored instead of
P. This greatly deceases the computation time and memory space. Explicitly, the process is as follows:

1. Estimate the background B of the image; cf. Li & Wu (1993, 1994).
2. Let

S = W ∗ ones, (6)

where W is obtained by rotating M by 180◦, ones is a matrix whose elements are all ones and has the
same size as D.

3. Let r represent the current iteration step, r = 0, and F(0) to a matrix and all of which elements are
ones.

4. Take equations
D(r) = M ∗ F(r), (7)

T(r) = D./D(r), (8)
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Fig. 1 Split every pixel into four sub-pixels and label them a1, a2, b1 and b2, respectively.

P(r)
0 = W ∗ T(r), (9)

F(r+1) = F(r). × P(r)./S. (10)

5. For every j, h, if F(r+1)(i, j) < B(i, j), then F(r+1)(i, j) = B(i, j).
6. If the criterion to stop the iteration is not satisfied, then r = r + 1 and go to 4.

The criterion used in the simulation study below is:

|F(r+1)
F − F(r)

F |
|F(r+1)

F |
< ε, (11)

where FF means the fully coded part of F, |F| equals
√∑

i,j(F(i, j))2 (for every i, j) and ε a param-

eter which is preset according to the requirement of the imaging accuracy.

In the above procedure, the angular resolution is limited by the pixel size of the detector. For a coded
mask telescope with sm > sd, the decoding array will be resampled at the detector’s pixel size, and the cor-
responding pixel size of the image is arctan(sd/d), which is the best angular resolution that this procedure
can reach. However, this resolution is probably less than the best angular resolution of DDM.

To achieve better angular resolution, smaller pixel size of the image should be used. Furthermore, a
new DDM procedure is required to deal with this case.

3 TO ACHIEVE BETTER ANGULAR RESOLUTION

According to the experiences of the former applications of DDM to other instruments, the DDM can achieve
a much higher angular resolution than the intrinsic resolution of the instrument. Therefore, the DDM may
achieve a better angular resolution than arctan(sd/d) in case of coded mask systems. Because the pixel size
of the image F in Equation (5) is arctan(sd/d), we have to use smaller image pixel to represent the flux
distribution of the region of interest with better angular resolution. However, this brings on the following
problem: the shift-invariant property is broken and Equation (5) does not make sense any more. As a result,
ADD is no longer applicable here. The rest of this section presents a technique to solve this problem.

First, every pixel of F in Equation (4) is split into n sub-pixels. In Figure 1, n = 4. These sub-pixels
form a new image E. A corresponding response matrix Q exists. Then the modulation equation is:

Q · V(E) = D. (12)

Let Ea1 stand for the matrix formed by sub-pixels labelled by a1, and Qa1 is formed by the columns
of Q corresponding to Ea1. Change the order of the elements in V(E) and the order of the columns in Q,
we obtain

Q · V(E) = [Qa1,Qa2,Qb1,Qb2] · [V(Ea1), V(Ea2), V(Eb1), V(Eb2)]T (13)

= Qa1 · V(Ea1) + Qa2 · V(Ea2) + Qb1 · V(Eb1) + Qb2 · V(Eb2).
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Because the distance between two neighboring pixels of Ei (i=a1, a2, b1, b2) is identical to the distance
between two neighboring pixels of D, Qi · V(Ei) (i=a1, a2, b1, b2) can represent a shift-invariant sub-
system. We can find an Mi which makes Qi · V(Ei) = Mi ∗ Ei. Then

Q · V(E) = Ma1 ∗ Ea1 + Ma2 ∗ Ea2 + Mb1 ∗ Eb1 + Mb2 ∗ Eb2 = D, (14)

where Mi (i=a1, a2, b1, b2) is equal to the shadowgram of a point source at the central pixel of Ei.
Subsequently, Equations (6) to (11) of ADD can be transformed as (here a pixel of F is split into n

sub-pixels):

Si = Wi ∗ ones, i = 1, 2, · · · , n. (15)

where Wi is generated by rotating Mi by 180◦, ones is a matrix with all elements ones and have the same
size as D, and

D(r) =
n∑

i=1

Mi ∗ E(r)
i , (16)

T(r) = D./D(r) , (17)

U(r)
i = Wi ∗ T(r), i = 1, 2, · · · , n , (18)

E(r+1)
i = E(r)

i . × U(r)./Si, i = 1, 2, · · · , n. (19)

By using the above procedure, the angular resolution of DDM will no longer be restricted by the pixel
size.

4 APPLICATION TO THE INTEGRAL/ISGRI DATA

The IBIS telescope (Imager on Board of the INTEGRAL Satellite) (Ubertini et al. 2003) onboard the
ESA INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) (Winkler et al. 2003), which was
launched on 2002 October 17, is a hard-X ray/soft γ-ray telescope based on a coded aperture imaging sys-
tem (Goldwurm et al. 2001). The coded mask of IBIS is a replicated MURA mask, below which, there are
two detector arrays: ISGRI (Lebrun et al. 2003) for low energy band (15 keV – 1 MeV) and PICsIT (Di
Cocco et al. 2003) for high energy band (175 keV – 10MeV).

The size of a detector element is 4.6mm × 4.6mm (sd = 4.6mm), and the mask element size is
11.2mm × 11.2mm (sm = 11.2mm). Thus the angular resolution corresponding to the pixel size of D
is arctan(sd/d) = 4.94′. Consequently, the intrinsic angular resolution of INTEGRAL/ISGRI is approxi-
mately arctan(

√
s2
m + s2

d/d) = 13′ (Gros et al. 2003).
We use the algorithm introduced in Sections 2 and 3 to some simulated as well as real data of

INTEGRAL/ISGRI. In the simulated case, the source image is composed of a flat background and a point
source as strong as the Crab, located in the fully coded field of view. In the real data case, the data were re-
trieved from an observation on the Crab, with the science window 010200210010. The results of the image
reconstructions are shown in Figure 2.

This is a typical example showing that DDM can greatly improve the angular resolution, even to
much higher than the intrinsic angular resolution of the instrument. The intrinsic angular resolution of
INTEGRAL/ISGRI is about 13′. In contrast, by using the DDM the angular resolution is first improved
to about 5′ (see Fig. 2(c2)) and then to about 2′ (see Fig. 2(d3)), which is about six times better than the
intrinsic one. However, in Figure 2(d3), the intensity of the pixel between the two sources is about 1/10
of the intensity of the sources. This means that these two sources are not completely separated. When the
two sources are very close together, it is very hard to distinguish them even by splitting the pixel into more
sub-pixels. Thus we infer that the angular resolution of INTEGRAL/ISGRI cannot be much better than 2′.
Namely, the ultimate angular resolution of INTEGRAL/ISGRI is about 2′.
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Fig. 2 Images reconstructed by cross-correlation (col. 1), normal procedure of accelerated DDM (col. 2)
and improved procedure of accelerated DDM, in which each pixel is divided into 5 × 5 sub-pixels (col. 3).
Images denoted by (a*) are reconstructed from simulation data of one point source. Images denoted by
(b*) are reconstructed from real observation of Crab, and (b1) is provided by OSA — the offline scientific
analysis software for Integral. Images denoted by (c*) are derived from simulation data of two sources
which are 9.88′ (two detector pixel) away each other. (d*) are images of simulation data of two sources
which are 1.98′ (0.4 detector pixel) away each other.

5 DISCUSSION

Cross-correlation image reconstruction is a linear approach. Its resolution can be simply represented by
the FWHM (Full Width at Half Maximum) of a point source. In contrast, DDM is a non-linear method.
The FWHM of a point source in the DDM image is much smaller than the smallest distance between two
DDM-separable sources. It is therefore reasonable to use the latter as the angular resolution of DDM.

The approach presented in this paper is applicable not only to MURA coded-mask systems like the one
onboard INTEGRAL, but also to coded-mask systems with other forms of mask patterns, even patterns to
which cross-correlation is not applicable. More generally, it is applicable to shift-invariant systems to obtain
images with higher resolution from observational data of lower sampling rate.

It seems that DDM can obtain images which contain more information than the observational data do,
but actually this is not true. In the simulation study in Section 4, we only extract the positions and intensities
of the sources, plus a smooth background, but not all details of the sky in the field of view. However, it dose
extract more information from the data than that by the cross-correlation method, this is why it can separate
two 2′-apart point sources for INTEGRAL/ISGRI data, while the cross-correlation method cannot.

As two sources get close to each other, the difference between their synthetic shadowgram and the
shadowgram of one source with their combined intensity becomes smaller. To have distinguishable images,
the sources should be so strong that the difference is not submerged in the fluctuations. The sources in the
simulations in the former two sections are all strong. At present, due to the limited sensitivity, it is hard to
find two sources with separations less than 13′ in one Science Window of the INTEGRAL data. In the next
step, we will further modify the procedure introduced in this paper, so that it will process multi Science
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Window data, and both the angular resolution and sensitivity of the images will be improved. We can then
reprocess the INTEGRAL Galactic Plane Survey data to find more compact and fainter X-ray sources.
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