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Abstract We applied a Monte Carlo method — simulated annealing algorithm — to carry
out the design of multilayer achromatic waveplate. We present solutions for three-, six-
and ten-layer achromatic waveplates. The optimized retardance settings are found to be
89◦51′39′′ ± 0◦33′37′′ and 89◦54′46′′ ± 0◦22′4′′ for the six- and ten-layer waveplates, re-
spectively, for a wavelength range from 1000 nm to 1800 nm. The polarimetric properties of
multilayer waveplates are investigated based on several numerical experiments. In contrast
to previously proposed three-layer achromatic waveplate, the fast axes of the new six- and
ten-layer achromatic waveplate remain at fixed angles, independent of the wavelength. Two
applications of multilayer achromatic waveplate are discussed, the general-purpose phase
shifter and the birefringent filter in the Infrared Imaging Magnetograph (IRIM) system of the
Big Bear Solar Observatory (BBSO). We also checked an experimental method to measure
the retardance of waveplates.

Key words: instrumentation: spectrographs — methods: numerical — methods: laboratory
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1 INTRODUCTION

Waveplate is a birefringent optical component that can produce a predefined phase retardance between
two orthogonal components (polarized components) of the amplitude vector of the light. Unfortunately,
for naturally available material, such as quartz or calcite, the retardance of a waveplate is a function of
both the wavelength of incoming light and its working temperature. The temperature can be controlled
in practice; however, this is not the case for the wavelength. Many instruments are designed to oper-
ate at different wavelengths, such as the near infrared tunable birefringent filter (NIRTF) designed for
the Advanced Technology Solar Telescope (ATST) (Keil et al. 2001, 2005; Rimmele et al. 2005), and the
Near Infrared Imaging Magnetograph (IRIM) (Denker et al. 2003a,b) for the New Solar Telescope (NST)
(Denker et al. 2006; Goode & NST Team 2006). As central optical components in many of these instru-
ments, waveplates which can only produce certain phase retardance at single wavelengths have become one
of the major issues to be solved.

2 METHODS OF DESIGN

There are basically two approaches to the optical design of an achromatic waveplate: crystalline and form-
birefringence waveplates. A crystalline waveplate (Fig. 1) is an optical train of slabs of birefringent mate-
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rials. Both the thicknesses dk and the azimuth θk are to be so specified as to reduce the wavelength depen-
dence of the retardance. This is the one used in our current study and we will refer to it as the “n-layer”
or multilayer waveplate. A form-birefringence waveplate is a single layer of material, not necessarily bire-
fringent, but with embedded periodic surface structures on micron- or nano-scales. Such small structures
produce the form birefringence (Born & Wolf 1999), which can be used to build achromatic waveplates
(Kikuta et al. 1997; Flanders 1983). This approach relies on semiconductor manufacturing technology that
is beyond the scope of this presentation.
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Fig. 1 Diagram of a six-layer waveplate. Dashed lines indicate the optical axes of the crystals, and are for
demonstration purpose only.

The idea of using three layers of birefringent material to achieve achromatic waveplate was initi-
ated by Pancharatnam (1955). The method was further developed by various authors. For example, an
analytical design of three-layer achromatic waveplates can be found in Title (1975) with specified retar-
dances of 115.5◦, 180◦ and 115.5◦and azimuths of 0◦, 70.6◦ and 0◦for a three-layer λ/4 waveplate. For
a three-layer half waveplate, the retardances are 180◦, 180◦, 180◦ and the azimuths are 0◦, 60◦, 0◦. A dif-
ferent computational approach of designing six- and ten-layer achromatic waveplates was presented by
McIntyre & Harris (1968), who presented both numerical and experimental results. In this unique design,
the waveplates all have the same thicknesses but different azimuths. The achromatic range considered was
400 to 800 nm. Various other designs exist using two different birefringent materials (e.g., Beckers 1971;
Beckers 1972; Hariharan 1995; Guimond & Elmore 2004) or prisms (Filinski & Skettrup 1984). One issue
in these designs is that the optical-axes of the assembled waveplates also vary with the wavelength. The
multilayer (more than three layers) waveplates investigated in this paper is a solution to this issue.

2.1 Defining the Optimization Problem

Our definition of an achromatic waveplate is that a multilayer structure which has an almost constant Jones
matrix within a certain wavelength range. The definition implies equivalence between a Jones matrix and a
waveplate.

In Figure 1, Jawp = J1 ·J2 ·J3 · . . . ·Jn stands for the total Jones matrix of the multilayer waveplate
and Jperfect is the Jones matrix of an ideal waveplate with a predefined retardance. Each Jk depends on
a set of parameters θk and δk with k = 1, . . . , n, which are the azimuth and retardance of each layer,
respectively. The design criterion of an n-layer achromatic waveplate is to minimize the following merit
function,

E(θk, δk) =
∑
λ,i,j

ΔJij · ΔJ∗
ij , (1)

with δk = 2πμ(λ)dk/λ. (2)

The matrix ΔJ = Jawp − Jperfect represents the Jones matrix difference between an n-layer waveplate
and the ideal waveplate, which has four elements. One way to arrange the summation in Equation (1) is
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to sample a large number (> 100) of equally spaced points between 1000 to 1800 nm. This arrangement
implies that every sampled wavelength is equally important. If there are any spectral lines of particular
interest, then the merit function can be evaluated only at these locations such that the final design will be
particularly optimized in the vicinity of these spectral lines. The wavelength dispersion of the birefringence
μ can be found in Ghosh (1999), in which are listed the experimental data of the refractive indices for both
quartz and calcite at different wavelengths. For quartz, in the wavelength range from 1000 nm to 1800 nm,
a simple regression relation can be found:

μ(λ) = a+ bλ+ cλ2, (3)

where a = 0.009134, b= −2.65 × 10−7 and c = −1.04× 10−10.
The merit function defined in Equation (1) has n×2 free parameters and is highly non-linear. A cursory

investigation of this function shows that it possesses a large number of local minima. Many of the standard
minimization methods for global optimization problems will fail to locate and rank these local minima. In
this study, we attack the nonlinear optimization problem of minimizing Equation (1) using the simulated
annealing (SA) algorithm invented by Kirkpatrick et al. (1983).

2.2 The Simulated Annealing Algorithm

The SA algorithm is a generalized Monte Carlo algorithm invented by Kirkpatrick et al. (1983) and
has been successfully applied to many scientific and engineering problems (e.g., Habib et al. 2006;
Sun et al. 2005). For the details of the development of the SA algorithm, we refer to the original work
by Kirkpatrick et al. (1983), the monograph on Monte Carlo method by Newman & Barkema (1999) and a
series of papers by Ingber (1996). The basic principle of SA computing algorithm resembles a real physical
phenomena — in the annealing of melted materials, the system in equilibrium described by Gibbs statistics
approaches the ground state if the annealing temperature decreases to zero slowly enough.

At the starting point of an SA program, the system represented by the energy E (parameterized by a
set of free parameters) is put at a high temperature (“hypothetical temperature”), e.g., T0 = 5. Note that
this temperature is only a concept borrowed from statistical mechanics, and has nothing to do with real
temperature. It is a controlling factor of the randomness in state space. This temperature is slowly reduced
based on a predefined annealing schedule. At each temperature, the system is allowed to stay long enough to
achieve an equilibrium state while the state space (a non-convex hyperspace of free parameters) is sampled
according to a predefined sampling probability. Each state in the state space corresponds to an energy state.
The transition from one energy state E1 to another E2 is controlled by the Metropolis algorithm — if
E2 < E1, the shift in the state space will be accepted. Otherwise, it will be accepted with the probability
given by

P12 = exp
(
−E2 − E1

T

)
. (4)

It can be shown that any Monte Carlo simulation utilizing the Metropolis algorithm will statistically con-
verge to a steady state (as long as it exists), since the algorithm satisfies the condition of detailed balance.

We modify the “energy of system” defined in Equation (1) by including a 2 × 2 constant weighting
matrix w in the definition,

E =
∑

λ

∑
ij

wijΔJij · ΔJ∗
ij , (5)

where the weighting factors are set to be w12 = w21 = 100 and w11 = w22 = 1. The two off diagonal
elements of the Jones matrix of an ideal waveplate are precisely zero. For a multilayer achromatic wave-
plate, any non-zero residuals in these two matrix elements will introduce significant (optical) errors in the
final achromatic waveplate. The weighting factors will guide the SA simulation to identify “energy states”
corresponding to Jones matrices having the off-diagonal elements smaller. The design results in Figure 2
are based on this strategy.

As shown by Kirkpatrick et al. (1983) and Munakata & Nakamura (2001), the annealing schedule is
critical to the performance of the algorithm. We took a simple approach to schedule the annealing process.
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Fig. 2 Retardance vs. wavelength (computational).

Table 1 Configurations of the n-Layer Achromatic Waveplates.

Waveplate Type Layer Indices θi(n = 3) δi(n = 3) θi(n = 6) δi(n = 6) θi(n = 10) δi(n = 10)

1 2.60597 1.67497 1.07182 2.04183 0.42316 3.14500
2 0.68614 2.60756 2.93447 2.62344 1.97316 2.31108
3 2.60616 1.67451 1.76245 0.09279 2.61497 2.96516
4 2.03863 3.46254 1.04133 4.27803

λ/4 waveplates 5 0.45159 1.04843 1.16881 1.31223
6 0.28911 3.49240 2.81640 3.19563
7 2.28689 3.75644
8 0.64636 2.34117
9 0.24218 0.47576

10 0.39315 1.28262

1 0.51334 2.60841 0.38862 2.41938 0.45642 1.94016
2 2.62775 2.60876 1.02418 2.40367 2.39951 2.71146
3 0.51278 2.60825 2.75162 6.27907 0.65613 4.17675
4 0.68827 0.87668 2.55021 5.39916

λ/2 waveplates 5 1.54634 1.14318 2.60234 0.03210
6 0.54589 3.00237 0.85728 2.48566
7 0.34136 3.53937
8 2.67365 0.75042
9 1.44123 0.60797

10 1.78125 1.37686

Whenever we find the system energy stalled at one temperature after 20000 function calls to the merit
function, we reduce the temperature by multiplying a factor, i.e.,

Tt+1 = cTt, (6)

where the subscription t records the occasions of decreasing the temperature. In our computing program,
we chose c = 0.95. Although this is not a rigorous treatment, it produces reasonably accurate results, see
Table 1.

2.3 Comments on the Computed Results

The analysis in Title (1975) showed that, using same uniaxial material, at least three layers are required
in order to form a multilayer waveplate. We reconfirmed this conclusion by observing that a two-layer
waveplate system will not reach a sufficiently low energy state, even if the effective temperature has been
reduced to zero. For a multilayer waveplate with more than two layers, the energy reduces uniformly as the
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Fig. 3 Measurement of retardance. Shown in the waveplate-stack is the six-layer achromatic λ/4-waveplate.

temperature decreases. The results of the SA algorithm are collected in Table 1, which includes three-, six-
and ten-layer achromatic waveplate designs.

Note that in the three-layer λ/4 waveplate configuration in Table 1, the first and third layers have very
similar parameters. Similarly, all layers of the three-layer λ/2 waveplate have roughly the same retardance.
These results agree with the results based on the analytical method in Title (1975). However, there exist
quantitative differences between the computed configurations and analytical counterparts. This is due to
the different definitions of the optimization. As defined by Equation (1) or Equation (5), the error of the
computed configurations are “globally” optimized from 1000 to 1800 nm. The analytical configurations
were optimized locally.

3 NUMERICAL EVALUATION OF THE OPTICAL PERFORMANCE OF THE N -LAYER
ACHROMATIC WAVEPLATES

Optical components used in polarimetry can be represented by 2×2 Jones matrices and 4×4 Mueller ma-
trices. A full introduction of the development and applications of these two formalisms used in polarization
optics can be found in a monograph (Shurcliff 1966).

3.1 Normal Incidence

First, let us assume that the incoming monochromatic light incidents perpendicularly. In this experiment,
the waveplates are set up between two linear polarizers (see the experimental arrangement in Fig. 3). The
active angle of the first polarizer is set to 45◦with respect to the optical axes of the waveplates. The second
polarizer is rotated on its azimuth axis. If the waveplates are assumed to be perfect λ/4 waveplates, the
output intensity shall be constant as the second polarizer is rotated. However, the computational results
show that the ratio between the maximum intensity and the minimum intensities, i.e., the ellipticity of the
ellipse, is not necessarily unity — the output light after passing through the multilayer λ/4 waveplate is
elliptically polarized.

On the other hand, the larger deviation from unity of the ellipticity of the testing light beam
shown for the three-layer waveplate is expected from previous studies (Ma et al. 2004; Beckers 1971;
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Beckers et al. 1975), since the effective optical axis of a three-layer achromatic waveplate rotates to dif-
ferent angles at different wavelengths. The performance of the three-layer achromatic waveplate at the two
wavelengths He I 1083 nm and Fe I 1565 nm is better than any globally optimized solutions for the six-
and ten-layer cases. The application of such three-layer waveplate in IRIM of BBSO will be investigated in
Section 4.2, since IRIM is specifically designed for polarimetry observations at the two wavelengths.

Given the ellipticity of the testing light obtained in the above mentioned method, the retardance can be
derived by using the method shown in Appendix 5. The corresponding results are displayed in Figure 2,
which plots the retardance of the single-, three-, six-, and ten-layer quarter waveplates. Over the wavelength
range from 1000 nm to 1800 nm, the maximum error of the ten-layer achromatic λ/4 waveplate is approx-
imately 0.3% wave, or equivalently, 1◦. As will be discussed in later sections, the retardance error of this
magnitude is negligible in the application of a birefringent filer or a phase shifter.

The second experiment is concerned with the polarization transformation properties of n-layer achro-
matic waveplates. Let the incoming light be linearly polarized. Then it can be shown that the Stokes vector
of linear polarized light along direction α with respect to the x-axis is

S = [1, cos2 α− sin2 α, 2 sinα cosα, 0]T . (7)

Let Sin be the Stokes vector of the incoming light. Then, the output is Sout = M awp · Sin, where
Mawp is the Mueller matrix of the n-layer achromatic waveplate (see Fig. 4). All waveplates are rotated by
an arbitrary angle of 108◦ with respect to the x-axis, which simulates a snapshot of a rotating waveplate.
The simulation shows that, after passing through a λ/4 waveplate, the polarization energy is re-distributed
among Q,U, V -components and causes varying polarization errors, for instance, in the measurement of
the vector magnetic field of the Sun (Kuhn et al. 1994). In measuring solar magnetic fields, the Q- and
U -components are directly related to the transversal magnetic field. The V -component is related to the
longitudinal field. Therefore, crosstalk of the V -component due to the polarization error of the waveplate
can appear as spurious magnetic signal in theQ-component. This was observed before — in the calibration
of DVMG system at BBSO, the Stokes-V signals can be identified in the Stokes-Q image, when the optical
axis and retardance of the ferroelectric crystal (FLC) is not accurate (Spirock 2005).

In Figure 4, the crosstalk of the n-layer waveplate is roughly limited to 2% across the specified wave-
length range. Note that only the linearly polarized light has been considered in this numerical experiment.
In order to fully understand the polarimetric characteristics of the n-layer waveplate, the elements of the
Muller matrices need to be investigated for distinct wavelengths and for different azimuths. We will only
consider the elements M(i, j) with i, j = 2, 3, 4, which define the crosstalk among the linear and circular
polarizations. Let

ΔM = M10 −Mideal (8)

be the difference between the Muller matrices of a ten-layer quarter waveplate (M10) and an ideal quarter
waveplate (M ideal).

3.2 Orientation of the Optical Axes of n-Layer Waveplates

The optical axes of Pancharatnam-type achromatic waveplates (Pancharatnam 1955) rotate to distinct an-
gles at different wavelengths (Beckers et al. 1975). This issue would be minimized in the six- and ten-layer
achromatic waveplates. In the criterion of optimization defined by Equation (5), ΔJ is the difference be-
tween the n-layer waveplate and an ideal waveplate. Therefore, the minimization of ΔE corresponds to
finding an n-layer waveplate, whose Jones matrix is closest to that of an ideal waveplate. The optical axes
of the n-layer waveplate shall overlap with the optical axes of an ideal waveplate across the whole wave-
length range defined in the optimization, which is zero.

In Figure 4, it is also shown indirectly that the azimuth of optical axes of the six- and ten-layer achro-
matic waveplates can not change greatly within the specified wavelength range. Direct evaluation of the
azimuth of optical axis involves the decomposition of complex Jones matrices and other complicated alge-
bra operations, which we did not venture to do in the present paper.

4 CASE STUDIES

In this section, we apply the achromatic waveplates listed in Table 1 to various applications. Some of these
examples are general enough to be used in fields besides solar physics.
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Fig. 4 Simulated polarization crosstalk of n-layer λ/4 waveplates (see Table 1 for parameters of each layer).
The two vertical straight lines indicate the locations of wavelengths 1083 nm and 1565 nm. The effective
optical axis of the overall stack of the achromatic waveplates is rotated by 108◦ (an arbitrarily chosen
angle) to the x-axis. The incident light is linearly polarized and the angle between its polarization axis and
the x-axis is π/5. The corresponding Stokes vector of the light is [1, cos2 π
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4.1 Phase Shifting Unit

Phase shifting unit is an instrument that produces a continuous fractional phase difference between two
perpendicularly polarized light. Several theoretical approaches are discussed in Evans (1949) to realize
phase shifters. One of these consists of a combination of one λ/2 waveplate sandwiched in between two
λ/4 waveplates, which is particularly interesting due to its flexibility. We will check this approach by
substituting the normal birefringent crystals with six-layer achromatic waveplates arranged in a fashion of
(λ/4 ↔ λ/2 ↔ λ/4) with properly aligned optical axes.

The optical axes of both the first waveplate unit (λ/4) and the third waveplate unit (λ/4) are set to 45◦
with respect to the polarization direction of the incident light, which, without loss of generality, we chose
to be the x-axis. The second waveplate (λ/2) sits on a rotary stage driven by a motor and its azimuthal
angle θ is measured with respect to the x-axis. In Figure 5, the elements of the Jones matrices of the phase
shifters are examined. The retardance of a phase shifter is derived from the two diagonal elements of the
Jones matrix, see Figure 5a. In Figure 5b, the amplitude of one off-diagonal element (complex number) is
plotted. The solid curve represents the phase shifter made of six-layer achromatic waveplates, which are
almost zero. As a comparison, we also plot the Jones matrix off-diagonal element of a phase shifter made
of three single-crystal waveplates (dashed curves). The corresponding Jones matrix has comparatively large
off-diagonal elements. Large off-diagonal elements of the Jones matrix usually imply that the optical axis
of the retarder is rotated by an undetermined angle.

Figure 5a also shows that the retardance of the phase shifter made of achromatic waveplates is lin-
early related to the azimuth of the middle waveplate (λ/2). This relation has been theoretically derived in
Evans (1949) (see equation VI.10 in that paper). The dashed curve shows the case of a phase shifter consist-
ing of single-layer waveplates designed at 1523.1 nm, which is not linear at all. Although, it can be shown
that a linear relation exists, if the wavelength of the incident light is exactly 1523.1 nm.

In some applications, the phase shifting rate is a matter of concern. The Newport RGV100 Series
Motorized Rotation Stage has a rotation speed of 720◦ s−1 . This rotation speed results in a phase shifting
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Fig. 5 Evens’ three-waveplate phase shifter (Evans 1949) (see Sect. 4.1) using achromatic waveplates
(solid curves). (a) Retardance vs. θ (azimuth of the half waveplate in the middle) and (b) the magnitudes
of the off-diagonal elements of the Jones matrices of the two phase shifters. The dashed curves refer to the
corresponding phase shifter composed of a set of three waveplates made from single-layer uniaxial crystals,
designed to be λ/4 or λ/2 waveplates at 1523.1 nm. The solid curves correspond to a phase shifter made
of three six-layer achromatic waveplates. The wavelength of the incident light is λ = 1083.3 nm.

rate of 8 waves s−1, i.e., 125 ms wave−1. Phase shifters can also be made from liquid crystal, i.e., then
they are known as Liquid Crystal Variable Retarders (LCVR). For the Meadowlark LCVR, the response
time to a half wave voltage is, according to the commercial documentations, 10 ms, which is much faster
than mechanical rotation. The drawback of LCVRs is that the LC molecules on the surface switch faster
than the molecules in the center of the LC cell by amounts depending on the thickness of the specific LC
cell (usually a thin LC cell is sandwiched by two pieces of glass), and the phase change is not linearly
controllable. The advantage of using an achromatic waveplate-based phase shifter other than an LCVR is it
being a linear phase shifter, and more stable to hazardous environment, e.g., UV radiation (Ye 2004).

4.2 Waveplates for IRIM

Another example that applies broadband achromatic waveplates is the Near Infrared Imaging Magnetograph
(IRIM) at Big Bear Solar Observatory (Denker et al. 2003a,b). The IRIM system utilizes a Fabry-Pérot
interferometer, two birefringent filters, and a set of wide band interference filters. The two birefringent
filters are designed for He I 1083 nm and Fe I 1565 nm respectively due to the chromatism of such optical
components as waveplates, polarizers and coating. The optical components of the 1083 nm birefringent
filter were designed to be removable, and therefore normal waveplates can be easily replaced by achromatic
waveplates. The achromatic design of IRIM is challenging because the two lines are far apart. To solve this
problem for the IRIM, we need to redefine the merit function as

E(φk, θk) =
∑
Δλ1

∑
ij

wijΔJij · ΔJ∗
ij +

∑
Δλ2

∑
ij

wijΔJij · ΔJ∗
ij , (9)

where, Δλ1 = 1083±2 nm and Δλ2 = 1560±2 nm define the two achromatic regions, and k = 3, 6, 10 or
any other desirable number of layers. J = Jk is the Jones matrix of the k-layer waveplate. As we have seen
in previous sections, three-layer achromatic waveplates usually possess two local minima. This property
can be tested here. Moreover, using the same crystal material, three is the minimum number of layers that is
required to form a waveplate, and it will be a timesaving job to polish only three slices of crystal material.
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We ran the simulated annealing program for this newly defined merit function, and found the following
solution (in radians):

θ1 = 0.53429, δ1 = 1.69690,
θ2 = 2.45617, δ2 = 2.63967,
θ3 = 0.53423, δ3 = 1.69677.

We have carried out a numerical simulation for the third stage of the Lyot filter used in the IRIM with
the same design parameters of the filter calculated by Wang et al. (2001). In this simulation, we tried the
substitution of normal single-layer waveplates (half and quarter) by both the three-layer waveplates de-
signed above and the six-layer waveplates in Table 1. The transmission profiles were calculated specifically
in the vicinities of 1083 nm and 1565 nm, and the rotating half-waveplate is adopted as the bandpass tun-
ing mechanism. We take two snapshots when the azimuth of the rotating waveplate are 0 and 2

7π. The
corresponding transmission profiles of a single stage Lyot filter are presented in Figure 6.
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Fig. 6 Tuning of a single stage of a Lyot filter - single stage. Solid curves when the azimuth of the rotating
λ/2 waveplate is set at 0; dotted curves, when set to 2

7
π. A cartoon of the single stage is shown on the left.

On the right, the top row: transmission of the Lyot stage using single crystal waveplates; the middle row:
using three-layer achromatic waveplates; the bottom: using six-layer achromatic waveplates.

There are two improvements to the bandpass profile of a birefringent filter by using n-layer achromatic
waveplate — the bandpass symmetry and the off-band scattered light level (Fig. 6). To summarize,

(a) When single-crystal waveplates are used, the bandpass profile are symmetric only at the wavelength the
waveplates are designed for, in this case, 1083 nm. Far away from this wavelength the bandpass profile
turns to be asymmetric, while still possessing certain periodicity. In the middle panel on the right in
Figure 6, the bandpass is shown with one period.

(b) The symmetry was improved on the bottom row in the case of using three-layer achromatic wave-
plates. However, it is obvious the scattered light level at both wavelength ranges are higher than in the
single-crystal case. This proves that the three-layer waveplates are no longer functioning as waveplates.
Although it was demonstrated in Figure 2 that the retardance of such three-layer waveplates could be
perfect around two wavelengths, their roles of functioning as waveplates are broken if the azimuth of
optical axes are taken into consideration. In other words, the three-layer waveplates designed in Table 1
or listed above are valid only when their optical axes are set at certain azimuth angles. This has nothing
to do with the wavelength. Even when the setup is fixed at one single wavelength, such as in 1564 nm,
three-layer waveplates, the waveplates are still very sensitive to the azimuth of their own optical axes.

(c) In the case of using six-layer achromatic waveplates, both the symmetry and the scattering light are
improved. The bandpass profiles are close to the case of using the ideal achromatic waveplates.
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From this simulation, we can draw our conclusions regarding the application of n-layer achromatic
waveplates in Lyot filter. The three-layer waveplates can not be used in Lyot filter due to very high off-band
scattered light level. The off-band light is out of the control of the filter design, and therefore will impair
the performance of Lyot filter and the IRIM system in an unpredictable way. The six-layer achromatic
waveplates can be an ideal choice for application in Lyot filters. We did not considering number of layers
less than six, but the simulated annealing procedure is general enough that it can handle any number of
layers in the design of n-layer achromatic waveplates.

After the substitution of the waveplates in Lyot filter with six-layer achromatic waveplates and the
elimination of the chromatism in the other optical components, the working range of the 1083 nm-Lyot
filter at BBSO can be expanded to the whole wavelength range from 1000 nm to 1800 nm. Using the
solutions of multilayer waveplates provided in the present paper, the filter design can be greatly simplified.

5 EXPERIMENT ON WAVEPLATES

The scheme shown in Figure 3 is one of the methods that can be used in measuring the retardance of a
waveplate, assuming its optical axis is known beforehand. Since the light after passing through the polarizer
and a λ/4 is elliptically polarizer due to imperfections in the waveplate, the output intensity varies with the
azimuth of the analyzer periodically. The maximum and minimum of the intensity can be selected, they are
proportional to a2 and b2 shown in Figure 3. The ratio a/b is the ellipticity. Note that another commonly
used measure of the elliptical shape is the eccentricity ε, defined by ε =

√
1 − b2/a2. The retardance δ of

the waveplate can be derived from the ellipticity and the incline angle ψ.
The following relations between the angles in Figure 3 can be easily obtained (see, for example,

Born & Wolf 1999):

sin 2χ = sin 2α sin δ, (10)

tan 2ψ = tan2α cos δ, (11)

from which we can derive

sin 2α =
√(

sin2 2χ+ tan2 2ψ
)
/

(
1 + tan2 2ψ

)
, (12)

where 0 ≤ α ≤ π/2 by definition. In this relation, ψ is the azimuth of the analyzer where the output
intensity is maximum and can be measured experimentally. Also,

tanχ = ∓b/a, (13)

which is related directly to the measurable ellipticity. Therefore, the angle α can be found, and hence the
retardance δ. Moreover, the following complications should be noted:

0 < ψ < π/2, if 0 < δ < π/2; (14)

π/2 < ψ < π, if π/2 < δ < π. (15)

When using Equation (10) to derive δ, we take

δ = sin−1

(
sin 2χ
sin 2α

)
, if 0 < ψ < π/2, (16)

δ = π − sin−1

(
sin 2χ
sin 2α

)
, if π/2 < ψ < π. (17)

These two relations were implemented in deriving Figure 2.
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Table 2 Achromatic Three-Layer Waveplates

Half AWP Azimuth Thickness (mm)

1 (thick) 60◦ 9′59′′ 0.5755 (0.595)
1 (thin) 150◦ 9′59′′ 0.5000 (0.519)
2 (thick) 118◦20′53′′ 0.5755 (0.595)
2 (thin) 28◦20′53′′ 0.5000 (0.519)
3 (thick) 60◦ 9′59′′ 0.5755 (0.595)
3 (thin) 150◦ 9′59′′ 0.5000 (0.519)

Quarter AWP
1 (thick) 62◦55′ 4′′ 0.5617 (0.561)
1 (thin) 152◦55′ 4′′ 0.5000 (0.499)
2 (thick) 135◦25′22′′ 0.5924 (0.610)
2 (thin) 45◦25′22′′ 0.5000 (0.519)
3 (thick) 62◦55′ 4′′ 0.5617 (0.561)
3 (thin) 152◦55′ 4′′ 0.5000 (0.499)

6 TESTING RESULTS

A set of multi-layer waveplates were manufactured by the Nanjing Institute of Astronomical
Instrumentation of China, according to the parameters shown in Table 2. The parameters of the achro-
matic waveplates here belong to an earlier version of design, in which some details, such as the reference
wavelength, are missing. However, the experimental data have been used for the present paper.

Two calibrated near infrared linear polarizers are used in two combinations: crossed and parallel. The
sample of waveplates is inserted in between with an angle 45◦ to the active axis of the first polarizer. Note
that a half waveplate can rotate linear polarized light by 90◦ if the relative angle between the light and the
optical axis of the waveplate is 45◦. Suppose we have inserted a perfect half waveplate, then the output
intensity should be maximum if the polarizers are crossed, and minimum if the polarizers are parallel. The
three-layer quarter waveplate was not tested as a quarter waveplate. Instead, two such quarter waveplates
were combined together and tested as a half waveplate. Therefore, this test can only prove that the three-
layer waveplate is a half waveplate or quarter waveplate, but the retardance is not measured.
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Fig. 7 Properties of near infrared linear polarizers in crossed and parallel configurations. Also, the profile
of the light source involved in these profiles.
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The testing results of a set of three-layer waveplates are plotted in Figures 7, 8 and 9. The wavelength
dependence of the waveplate in Figure 9 was shown to be reduced compared to traditional single layer wave-
plates. The test proves that the three-layer waveplates do approach the achromatic waveplate. Increasing the
number of layers is a promising direction to achieve achromatism in waveplates.

Single−Layer HWP Inserted Between Polarizers
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Fig. 8 Testing results for a normal single-layer
half waveplate using the polarizers and light
source shown in Fig. 7.
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Fig. 9 Testing result of the three-layer half wave-
plate with the parameters listed in Table 2.

7 CONCLUSIONS

We presented a procedure based on Monte Carlo simulated, annealing algorithm to design crystalline mul-
tilayer achromatic waveplates. We applied the procedure to three examples of multilayer waveplate, three-,
six- and ten-layer waveplates, and obtained the parameters listed in Table 1. Either the six- or ten-layer
structures can produce high quality λ/4 and λ/2 achromatic waveplates over wide wavelength regions.
Specifically, the issue of optical-axis in the three-layer waveplate is minimized in the six- and ten-layer
waveplates (see Fig. 2). The performance of such n-layer achromatic waveplates was numerically evalu-
ated in terms of the residual errors in the Jones/Mueller matrix elements and the polarization errors in the
Stokes vectors. Using these six- or ten-layer achromatic waveplates, an achromatic phase shifter can be
constructed based on a simple structure proposed by Evans (1949). This phase shifter produces continuous
fractional phase change from 0 to 2π within the spectral range considered, thus providing a reliable solution
for many tuning instruments, particularly in our case of the tunable birefringent filters.

It might turn out that thin material wafers with stress birefringence (photo-elastic effect
(Born & Wolf 1999)) is an alternative to quartz or calcite. Wafers of stress birefringent materials are tradi-
tionally polymers, such as poly-methyl-methacrylate (PMMA), polyvinyl chloride (PVC) or polycarbonate
(PC) (Delplancke et al.1995). These polymer materials have different transmission properties in different
spectral ranges. Therefore, the transmission might not be as high as uniaxial crystals. Moreover, care should
be taken using these non-crystalline materials. The reason is that the parameters shown in Table 1 are de-
signed based on the assumption that the “retardance vs. wavelength” relation is as shown in Equation (2),
which would need to be re-evaluated for non-crystalline materials. In this case, we have to know the exact
δ − λ function. However, the SA algorithm is sufficiently flexible to allow the implementation of different
δ − λ functions.
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