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Abstract The power spectrum of the two-degree Field Galaxy Redshift Survey (2dFGRS)
sample is estimated with the discrete wavelet transform (DWT) method. The DWT power
spectra within 0.035 < k < 2.2 hMpc−1 are measured for three volume-limited samples de-
fined in consecutive absolute magnitude bins −19 ∼ −18, −20 ∼ −19 and −21 ∼ −20. We
show that the DWT power spectrum can effectively distinguish ΛCDM models of σ 8 = 0.84
and σ8 = 0.74. We adopt maximum likelihood method to perform three-parameter fitting
of the bias parameter b, pairwise velocity dispersion σpv and redshift distortion parame-
ter β = Ω0.6

m /b to the measured DWT power spectrum. The fitting results state that in a
σ8 = 0.84 universe the best-fit values of Ωm given by the three samples are mutually consis-
tent within the range 0.28 ∼ 0.36, and the best fitted values of σpv are 398+35

−27, 475+37
−29 and

550 ± 20 km s−1 for the three samples, respectively. In the model of σ8 = 0.74, our three
samples give very different values of Ωm. We repeated the fitting using the empirical formula
of redshift distortion. The result of the model of low σ8 is still poor, especially, one of the
best-fit values of σpv is as large as 103 km s−1. We also repeated our fitting by incorporating
a scale-dependent galaxy bias. This gave a slightly lower value of Ωm. Differences between
the models of σ8 = 0.84 and σ8 = 0.74 still exist in the fitting results. The power spectrum
of 2dFGRS seems to disfavor models with low amplitude of density fluctuations if the bias
parameter is assumed to be scale independent. For the fitting value of Ωm to be consistent
with that given by WMAP3, strong scale dependence of the bias parameters is needed.

Key words: methods: data analysis — methods: statistical — (cosmology:) cosmological
parameters —(cosmology:) large-scale structure of universe

1 INTRODUCTION

The present clumpy structures indicated by galaxies on large scales are evolved from very small density
fluctuations in the early era of the universe. The amplitude of the fluctuation is fundamental to the un-
derstanding of structure formation. A remarkable success of modern cosmology is that the amplitude of
mass fluctuations detected by the anisotropy of cosmic microwave background radiation is in excellent
agreement with the analysis of the galaxy clustering at low redshifts. Recently, the released WMAP third
year data (WMAP3) refine most results of the cosmological parameters given by the WMAP 1st year data.
However, the fluctuation amplitude smoothed in a spherical top hat window of radius of 8h −1 Mpc is found
as small as σ8 = 0.74+0.05

−0.06 (Spergel et al. 2007), which is significantly lower than the σ8 = 0.84 ± 0.04 of
the WMAP 1st year data. The new result of σ8 is a challenge to the cosmological parameter determinations
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from samples of galaxies and galaxy clusters, most of which yield σ 8 � 0.9 − 1 if the matter content of
the universe Ωm ≤ 0.3 (e.g. Reiprich & Böhringer 2002; Hoekstra et al. 2002; Refregier et al. 2002; Van
Waerbeke et al. 2002; Bacon et al. 2003; Bahcall & Bode 2003; Seljak et al. 2005; Viel & Haehnelt 2006).

This problem motivated us to revisit the constraints on σ8 given by the power spectrum of the sam-
ple of two-degree Field Galaxy Redshift Survey (2dFGRS). The final released spectroscopic catalog of the
2dFGRS contains 221414 galaxies with good redshift qualityQ ≥ 3 and covers approximately 1800 square
degrees of the sky. It is a good sample for studying the fluctuations of cosmic mass field on large scales in
the linear regime as well as on scales in nonlinear range. Moreover, the 2dFGRS team has made detailed
analysis of the Fourier power spectrum, the two point correlation functions and the relevant cosmologi-
cal parameter fitting (Percival et al. 2001; Norberg et al. 2001; Peacock et al. 2001; Norberg et al. 2002;
Hawkins et al. 2003; Percival et al. 2004; Cole et al. 2005). They found that Ω m ∼ 0.3 or less (Peacock
et al. 2001; Cole et al. 2005), and the best fit value of σ8 is ∼ 0.95 if one takes Ωm ∼ 0.3 (Peacock et al.
2001), which is substantially different from WMAP3.

In the linear regime σ8 only controls the overall amplitude of the power spectrum, and it is degenerated
with the linear bias parameter b. Power spectrum on small scales is more effective to constrain σ 8 than
on large scales since the nonlinearity of the power spectrum is directly reflected by the value of σ 8. Most
measurements of the 2dFGRS power spectrum are on scales of k < 1h Mpc−1 while cosmological pa-
rameter estimation is performed on scale of k <∼ 0.2 hMpc−1 (Peacock et al. 2001; Percival et al. 2001;
Tegmark et al. 2002; Cole et al. 2005). With the estimator based on the discrete wavelet transformation
(DWT) (Yang et al. 2001a,b, 2002) we are to analyse the power spectrum of the 2dFGRS sample on scales
down to k � 2hMpc−1. In this scale range, the redshift distortion of DWT diagonal mode power spectrum
can be easily approximated and the aliasing effect is exactly eliminated by the DWT algorithm (Fang &
Feng 2000).

This paper is organized as follows. In Section 2, the DWT power spectrum estimator is introduced.
Section 3 describes the construction of samples. Section 4 deals with robustness and accuracy tests on the
DWT power spectrum estimator. Section 5 lists our fitting results. Our conclusions are stated in Section 6.
Throughout this paper, we take the Hubble constant to be h = 0.7.

2 DWT POWER SPECTRUM ESTIMATOR

The method of measuring galaxy power spectrum with multi-resolution analysis of discrete wavelet trans-
formation has been developed in the last decade (e.g. Pando & Fang 1995, 1996; Fang & Feng 2000; Yang
et al. 2001b, 2002; Zhan & Fang 2003). A brief summary of the method is given here, more details can be
found in the Appendix.

2.1 DWT Power Spectrum

The observed galaxy number density distribution is

ng(x) =
Ng∑

m=1

wmδ
D(x − xm) , (1)

where Ng is the total number of galaxies, x = (x1, x2, x3) is the 3-dimensional position vector, xm the
position of themth galaxy,wm its weight, and δD the 3-D Dirac δ function. For an observed sample, ng(x)
can be regarded as a realization of a Poisson point process of intensity n(x) = n̄ g(x)[1 + δ(x)], where
n̄g(x) is the selection function, and δ(x) is the density contrast.

In terms of DWT decomposition, the galaxy field is described equivalently by variables defined as

ε̃j, l =
∫
δg(x)ψj, l(x)dx , (2)

where δg(x) = [ng(x)/n̄g(x)] − 1, ψj, l(x) the basis of the DWT decomposition, where index j =
(j1, j2, j3) stands for the scale, and l = (l1, l2, l3) for the position (see Appendix A). Since the orthogonal-
normal bases ψj, l(x) are complete, all second order statistical behavior of the field can be described by

〈ε̃j, l ε̃j′, l′〉. The goal of power spectrum measurement is to estimate the power spectrum of the density
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fluctuations δ(x) = [n(x)/n̄(x)] − 1 from the observed realization δg(x) = [ng(x)/n̄g(x)] − 1. It has
been shown by Yang et al. (2001a) that the power of the fluctuations on modes with scale index j can be
estimated by

Pj = I2
j −Nj , (3)

in which

I2
j =

1
2j1+j2+j3

2j1−1∑
l1=0

2j2−1∑
l2=0

2j3−1∑
l3=0

[ε̃j, l]
2 , (4)

and

Nj =
1

2j1+j2+j3

2j1−1∑
l1=0

2j2−1∑
l2=0

2j3−1∑
l3=0

∫ ψ2
j, l(x)

n̄g(x)
dx . (5)

The term I2
j is the mean power of j modes measured from the observed realization n g(x), and Nj is the

power on j modes due to the Poisson noise. For a volume-limited survey, the mean galaxy density n̄ g is
independent of the redshift. The Poisson noise power is thus simply 1/n̄ g. Pj is usually referred to as the
DWT power spectrum.

The DWT power spectrum Pj is related to the Fourier spectrum P (n1, n2, n3) by

Pj =
1

2j1+j2+j3

∞∑
n1=−∞

∞∑
n2=−∞

∞∑
n3=−∞

|ψ̂(n1/2j1)ψ̂(n2/2j2)ψ̂(n3/2j3)|2P (n1, n2, n3) , (6)

where ψ̂(n) is the Fourier transform of the basic wavelet ψ(x). Since |ψ̂(n)|2 is a high pass filter in the
wavenumber space, Pj is banded Fourier power spectrum. If the cosmic density field is isotropic, the

Fourier power spectrum P (n1, n2, n3) depends only on n =
√
n2

1 + n2
2 + n2

3. Equation (6) is exact for
homogeneously random fields, either Gaussian or non-Gaussian.

2.2 DWT Algorithm of Redshift-distortion

The DWT power spectrum depends on the scale and shape of the DWT mode ψ j, l(x), which is sensitive
to distortion of the shape of the field. It is necessary to establish the mapping from the redshift space to
the real space. Details of the mapping are given in Appendix D. The mapping is attributed to bulk velocity
and pairwise peculiar velocity. In the linear treatment of bulk velocity, the redshift-distorted DWT power
spectrum, P S

j , is related to the real space power spectrum Pj by (Yang et al. 2002)

P S
j = b2(1 + βSj )2SPV

j Pj , (7)

in which β = Ω0.6
m /b, b is the linear bias parameter. In Equation (7) Sj is the linear redshift distortion

factor. For a cubic box of L1 = L2 = L3 = L,

Sj1,j2,j3 =
1

2j1+j2+j3

∞∑
n1,n2,n3=∞

n2
3

n2
1 + n2

2 + n2
3

· |ψ̂(n1/2j1)ψ̂(n2/2j2)ψ̂(n3/2j3)|2 . (8)

For diagonal modes j1 = j2 = j3 = j, Sj,j,j = 1
3 . The factor SPV

j in Equation (7) is the pairwise

velocity dispersion factor. In the plane-parallel approximation, if the direction j 3 is chosen to be the line of
sight, i.e., the redshift distortion is approximated only in the direction of j 3, we have SPV

j = [spv

j
]2, with

spv
j1,j2,j3

=
1

2j3

∞∑
n3=∞

|ψ̂(n3/2j3)|2 exp[−σ
2
pv

2
(
2πn3

L
)2] . (9)

We will always take the plane-parallel approximation form of Equation (7) for our fitting.
Correspondingly, for the 2dF volume-limited samples, we also take the plane parallel approximation and
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Table 1 Volume Limited Sub-samples of 2dFGRS

MbJ
− 5 log10 h zmin zmax dmin dmax NSGP

g /NNGP
g n̄(10−3h3 Mpc−3)

–19 ∼ –18 0.0205 0.087 61.2 255.7 9737/7811 8.393
–20 ∼ –19 0.0320 0.129 95.2 374.9 19122/14390 5.102
–21 ∼ –20 0.0495 0.186 146.6 532.9 14734/10202 1.330

always take j3 as the line of sight direction (or z direction in real space). Obviously, the factor (1 + βS j )2

corresponds to the linear redshift distortion, and S PV
j is the nonlinear redshift distortion caused by the

pairwise velocity dispersion. Although Equation (7) is given by the linear approximation of bulk velocity,
N-body simulations indicate that the mapping of Equation (7) works well till scale k � 2hMpc −1, also
because Pj is weakly affected by non-linear clumps of the density field. In general, for non-volume limited
samples, selection function shall be taken into account to model redshift distortion which brings in high
order correction to Equation (7) (Yang et al. 2002).

3 SAMPLE CONSTRUCTION

Samples used in our analysis are constructed basically in the same way as in Pan & Szapudi (2005). We
create volume limited samples from the 2dFGRS spectroscopic catalog of the final data release (Colless
et al. 2003), which contains 221414 galaxies with good redshift quality Q ≥ 3 (Colless et al. 2001). We
exclude the ancillary random fields, and use only the two major contiguous slices: one near the South
Galactic Pole (SGP) covering approximately −37◦.5 < δ < −22◦.5, 21h40m < α < 3h40m, one around
the North Galactic Pole (NGP) defined roughly by −7◦.5 < δ < 2◦.5, 9h50m < α < 14h50m. In order
to obtain maximum number of galaxies while keeping a uniform sampling rate to guarantee fairness of our
statistics, we tried different values of completeness f (f is defined as the ratio of the number of galaxies
with redshifts to the total number of galaxies contained in the parent catalog): fields with completeness less
than the chosen value are excluded, and fields with higher degrees of completeness are diluted to match
the sampling rate. We find f = 0.738 is the optimal value. The final parent samples are thus restricted
to completeness f > 0.738, and to apparent photometric bJ band magnitudes fainter than mbJ = 15 and
brighter than a median value of ∼ 19.3, with some small variation specified by the masks (Colless et al.
2003).

Volume limited sub-samples were built from the parent sample by selecting galaxies in specified abso-
lute magnitude ranges. The absolute magnitudes were calculated with the k+e corrections given in Norberg
et al. (2002). Our analysis focusses on the three sub-samples defined in absolute magnitude M bJ bins of
−19 ∼ −18, −20 ∼ −19 and −21 ∼ −20. The basic parameters of the three volume limited samples of
2dFGRS are summarized in Table 1 which lists, in turn, the redshift range, zmin-zmax, the range of comov-
ing distances dmin- dmax, numbers of SGP and NGP galaxies, and the mean densities n̄. The comoving
distances were calculated from the redshifts z in the ΛCDM universe with ΩΛ = 0.7 and Ωm = 0.3.

4 NUMERICAL TESTS OF THE DWT POWER SPECTRUM ESTIMATOR

In this section, we will test the DWT power spectrum estimator with Poisson samples and that from the
N-body simulation. Nine realizations of Poisson samples of 2563 particles each are produced in a box of
sides L = 239.5 h−1 Mpc. All the measured DWT power spectra of these samples are plotted in the left
panel of Figure 1. First, to test the stability of the DWT estimator we calculate the diagonal DWT power
spectrum, Pj,j,j , for each realization, and then compute their mean P j,j,j . Pj,j,j/P j,j,j , shown in the right
panel of Figure 1. We can see that at j ≤ 2 (i.e. scales larger than 119.75h−1 Mpc), there are as large as
50% variances in the diagonal DWT power spectrum. Thus we will not use data points with j ≤ 2. At small
scales, or large j, the DWT estimator gives reliable results. This is because the aliasing effect is effectively
suppressed in the DWT analysis Fang & Feng (2000).

Second, in order to test the geometric effect of samples on estimation of the power spectrum, we cut
one of the Poisson samples into three sheet-like sub-samples of 60.0×239.5×239.5,20.0×239.5×239.5,
and 20.0 × 60.0 × 239.5(h−1 Mpc)3. Then, a fourth sub-sample is constructed from the 20.0 × 239.5 ×
239.5(h−1 Mpc)3 sub-sample by cutting off three parallel cylinders with radii 5.0, 10.0 and 20.0h −1 Mpc,
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Fig. 1 Left: Diagonal DWT power spectra of nine realizations of Poisson samples. Each sample is gen-
erated in a box of size 239.5 h−1 Mpc and 2563 particles. The relation between j and the physical scale
is l = 239.5/2jh−1 Mpc. Right: Ratios of diagonal DWT power spectra of nine realizations of Poisson
samples to their mean spectrum.

Fig. 2 Left: Ratios of DWT power spectra of cut Poisson sub-samples to the parent Poisson sample. The
parent Poisson sample is generated in a box of size 239.5 h−1 Mpc, with 2563 points. The sub-samples are
defined in boxes of 60.0×239.5×239.5 h−1 Mpc (dash-dot-dot line); 20.0×239.5×239.5 h−1 Mpc (dash
line); 20.0×60.0×239.5h−1 Mpc (dash-dot line); and 20.0×60.0×239.5 h−1 Mpc with three cylinders
chopped off (dot line). Right: DWT power spectrum of the Virgo simulation sample. The dash line on the
right is measured with the size 479.0 h−1 Mpc box. Shifting the right dash line by one unit along j-axis, we
get the dash line on the left. The dot line is the power spectrum measured in the size 239.5 h−1 Mpc box.
The solid line is the nonlinear power spectrum from the formula of Smith et al. (2003) with Ωm = 0.3,
ΩΛ = 0.7 and σ8 = 0.9.

respectively. In the left panel of Figure 2, we plot the ratios of the DWT power spectra of each sub-sample
to their parent random sample P c

j,j,j/Pj,j,j . For j = 2 and 3 (or on the scale of 239.5/2 h−1 Mpc and
239.5/22 h−1 Mpc), the scatters in those spectra can be larger than 50%, and the ratios are randomly dis-
tributed with variances of the order of unity. Actually, such significant scatters result from a small number of
modes on j ≤ 3. For j > 3, the differences between those spectra are negligible, the DWT power spectrum
estimator is well independent of sample geometry on small scales.

Third, to test the reliability of the DWT power spectrum estimator, we measured the DWT power spec-
trum of the Virgo simulation under a ΛCDM cosmology with 256 3 particles in box of size 239.5h−1 Mpc.
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The right panel of Figure 2 compares the theoretical DWT power spectrum with that estimated from the
simulation. The theoretical DWT power spectrum is calculated from Equation (6) with nonlinear power
spectrum from the accurate fitting formula of Smith et al. (2003). Clearly, the theoretical spectrum and the
measurements are in good agreement on scales smaller than 239.5/2 4 �15h−1 Mpc. The test shows that
the DWT power spectrum estimator can perfectly recover the original power spectrum on small scales.

For the fourth test, we measure the DWT spectrum of the Virgo sample in a cubic window of sides
479.0h−1 Mpc, which is twice the size of the simulation box. Theoretically the power at scale j in the box
of sides 479.0h−1 Mpc corresponds to that at scale j − 1 in the box of sides 239.5h−1 Mpc. It is clearly
seen in the right panel of Figure 2 that the spectrum measured in the 479.0h−1 Mpc box at j exactly equals
to that measured in the 239.5h−1 Mpc at j−1. The DWT estimator is independent of the size of the window
box. One can choose the size of box freely and put the sample in the box wherever one likes. Note that the
difference of spectra at j = 2, 3 is greater than at other data points. Therefore, in the following analysis of
the 2dFGRS catalogs, the first two data points in our spectra are discarded.

Finally, we test the DWT power spectrum estimator by mock galaxy catalogs. We created mock vol-
ume limited samples from the 22 mock galaxy catalogs which are extracted from the Hubble volume sim-
ulation1. Details of the mock catalogs are in Cole et al. (1998). The set of mock samples used here is the
LambdaCDM04. Real space galaxy positions are used. Therefore, no redshift distortion effect is expected.
The 22 mock samples are filtered with the same selection criteria and masks as the real galaxy volume
limited sub-samples. To achieve the largest possible volume, the NGP and the SGP regions are measured
together in a window box of size 1403.0h−1 Mpc. The size of the window is sufficient to cover all three
volume limited sub-samples. For each of the three sub-samples, we obtain its mean DWT power spectrum
of the mock galaxy samples by taking the average of 22 samples. Error bars are approximated by the 1-σ
scattering, assuming the 22 mocks to be independent.

Shot noise is not directly calculated with Equation (5). Instead, we produce a number of Poisson sam-
ples with the same geometry as our samples. These Poisson samples have the numbers of galaxies as in the
mock samples. The twenty-two Poisson samples for each sub-sample allow us to estimate the error bars for
the shot noise subtraction.

Figure 3 (upper panel) shows the three mock DWT power spectra compared with the expected power
spectrum. We can see that they agree very well, except at very large scales (j = 2, 3) or very small scales
(j = 8, 9), where there is small discrepancy.

5 DWT POWER SPECTRUM OF 2DFGRS SAMPLES

5.1 The Diagonal DWT Power Spectrum

For the measurement of DWT power spectrum for the real 2dF galaxy sub-samples, we generally followed
the same treatment as we did for the mock catalogues. We used a window box of size 1403.0h −1 Mpc,
combining the NGP and the SGP regions together. The filling factor of the sub-sample are 0.07%, 0.24%
and 0.68%, respectively.

Error bars of the DWT power spectra were approximated by the 1-σ scattering of the 22 mock samples
extracted from the Hubble volume simulation. Redshift space galaxy positions were used so as to be con-
sistent with the real 2dF data. Shot noise was subtracted in the same way as we did for the mock catalogues.

In the bottom panel of Figure 3 we present the measured diagonal DWT power spectra of the three vol-
ume limited samples, together with two theoretical nonlinear spectra of flat ΛCDM model with parameters
A) Ωm = 0.3, ΩΛ = 0.7 and σ8 = 0.84 (Model A), and B) Ωm = 0.24, ΩΛ = 0.76 and σ8 = 0.74 (Model
B). The scale range is 0.035 < k < 2.2 hMpc−1.

5.2 Fitting of Redshift Distorted Power Spectrum

The differences between the power spectra of model predictions and the real data shown in the bottom panel
of Figure 3 are mainly due to redshift distortion and bias. We adopted Equation (7) to fit the power spectrum
of 2dFGRS samples with the nonlinear real space DWT power spectrum from Equation (6) and the formula
of Smith et al. (2003). We first used the 22 mock samples to estimate the correlation between the powers of

1 http://star-www.dur.ac.uk/∼cole/mocks/hubble.html
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Fig. 3 Upper panel: Comparison of the expected DWT power spectrum and mock 2dF DWT power spectra.
Solid line is the DWT power spectrum with Ωm=0.3, ΩΛ=0.7 and σ8=0.9. The three panels are for the
samples with limiting absolute magnitudes −20 ∼ −21 (top); −19 ∼ −20 (middle) and −18 ∼ −19
(bottom). Bottom panel: DWT power spectrum of the 2dFGRS volume-limited samples and theoretical
spectra. The size of the cubic box is 1403.0 h−1 Mpc. The relation between j and physical scale is l =
1403.0/2j h−1 Mpc. The power at large scales is suppressed by random motion of galaxies. Due to cosmic
variance, the error bars at j = 3 are large. At j = 9, Poisson noise leads to the large error bars.

different DWT modes. We then constructed the covariance matrix

C̃jj′ =
1

Nsim

Nsim∑
I=1

∆dI
j∆d

I
j′ , (10)
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Fig. 4 DWT power spectra in redshift space of the ΛCDM model with σ8 = 0.84. The parameters b, β,
and σpv are given by our best fitting to the data points shown in the figure. The three panels are for sample
with limiting absolute magnitudes −20 ∼ −21 (top); −19 ∼ −20 (middle) and −18 ∼ −19 (bottom).

where Nsim = 22 and ∆dI
j = dI

j − 〈dj〉. The vector dI consists of elements dI
j = P I

j,j,j with j = 3, ..., 9,
P I

j,j,j is the power spectrum from the I-th simulation, and 〈d j〉 is the mean. We found that the off-diagonal
elements of the covariancematrices were always one order of magnitude smaller than the diagonal elements.
Actually this is a typical feature in DWT analysis. The correlations between different modes are highly
suppressed whether the field is Gaussian or non-Gaussian (Feng & Fang 2005). The quasi-diagonalizing
of the correlation matrix in the DWT decomposition has been extensively used for data compression. By
virtue of this property, we can compute χ2 with the diagonal elements only, and we used the Chi-Square as
our maximum likelihood estimator,

χ2 =
N∑

j=1

[Pj − P S
j (a1, a2, a3...)]2

σ2
j

, (11)

in which Pj is the observed data and P S
j (a1, a2, a3...) is the redshift-distorted power of the model with

parameters (a1, a2, a3...). We take the Reduced-Chi-Square, which is defined as χ2
d.o.f = χ2/(N −M)

where (N −M) is the degree of freedom, as our final results shown in the tables. For our fittings of DWT
power spectrum, the degree of freedom would be 7 − 3 = 4, unless otherwise specified.

We aim at detecting the influence of σ8 on the power spectrum. Two fiducial ΛCDM models are con-
sidered here: A) σ8 = 0.84, and B) σ8 = 0.74. We took the linear bias parameters b, redshift distortion
parameter β (or Ωm) and pairwise velocity variance σpv as the fitting parameters. The other parameters of
Models A and B are the same. The parameter space (b, β, σpv) is divided into a 20× 20× 20 grid. The first
run of fitting is performed on a very crude grid in broad parameter space to locate the region of best χ 2.
Then we decrease the volume of parameter space centered in this region with a finer grid to obtain the three
dimensional probability distribution functions (PDF) of (b, β, σpv). After integrating over two of the three
parameters, we have the marginal PDF for the third parameter.

5.3 Results of Fitting

The best fitting power spectra of both models are very close to each other, so only those of model A are
shown in Figure 4. The estimated parameters of models A and B are tabulated in Tables 2 and 3, respectively.
As an example, the marginal PDFs of the parameters b, β, σpv for the sub-sample−21 ∼ −20 are shown in
Figure5. Figure 6 gives the PDFs of Ωm for all the three sub-samples.

In Table 2 we can see that the three sub-samples offer about the same estimates, with Ω m � 0.3, and
b increasing from 0.75 to � 1 with the galaxy luminosity, in agreement with other researchers’ analysis
(Norberg et al. 2001; Pan & Szapudi 2005). The pairwise velocities obtained in the three samples are in
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Table 2 Parameters estimated by fitting the 2dFGRS DWT power spectra with Eq. (7)
to the ΛCDM model with σ8 = 0.84.

MbJ
− 5 log10 h β / Ωm b σpv (km s−1) χ2/d.o.f

–19 ∼ –18 0.66+0.06
−0.10 / 0.31+0.08

−0.12 0.75+0.05
−0.06 398+36

−27 8.87/4
–20 ∼ –19 0.62+0.07

−0.10 / 0.36+0.12
−0.14 0.86+0.08

−0.07 475+37
−29 16.19/4

–21 ∼ –20 0.43+0.02
−0.02 / 0.28+0.02

−0.02 1.07+0.01
−0.01 550+20

−20 4.06/4

Table 3 Parameters estimated by fitting the 2dFGRS DWT power spectra with Eq. (7)
to the ΛCDM model of σ8 = 0.74.

MbJ
− 5 log10 h β / Ωm b σpv (km s−1) χ2/d.o.f

–19 ∼ –18 0.76+0.07
−0.09 / 0.41+0.10

−0.12 0.77+0.05
−0.05 415+40

−26 12.24/4
–20 ∼ –19 0.73+0.12

−0.10 / 0.46+0.20
−0.16 0.86+0.09

−0.07 492+38
−40 17.99/4

–21 ∼ –20 0.35+0.02
−0.02 / 0.28+0.02

−0.02 1.19+0.01
−0.01 600+15

−15 4.83/4

Table 4 Parameters estimated by fitting 2dFGRS DWT power spectra with Eq. (7) to
the model of Ωm = 0.24 and ΩΛ = 0.76.

MbJ
− 5 log10 h σ8 b σpv km s−1 χ2/d.o.f

–19 ∼ –18 0.43+0.20
−0.06 0.99+0.20

−0.10 490+42
−40 10.74/4

–20 ∼ –19 0.97+0.09
−0.06 0.82+0.15

−0.13 445+45
−35 16.83/4

–21 ∼ –20 0.94+0.04
−0.04 0.99+0.09

−0.05 505+40
−35 4.77/4

a reasonable range, and also increase with the galaxy luminosity. It appears that our analysis of model A
(σ8 = 0.84) is basically in good agreement with the previous works, and more importantly, that the DWT
proves itself to be an effective tool for parameter estimation of galaxy samples.

The fitting to model B provides very different estimates of parameters. As seen in Table 3 and Figure 6,
the values of Ωm given by the three sub-samples are quite different from each other. The best values of
Ωm for the sub-samples of −19 ∼ −18 and −20 ∼ −19 are significantly larger than 0.3, which is in
disagreement with most of the current measurements, at least at 1-σ level (Peacock et al. 2001; Tegmark et
al. 2004). Only the sub-sample of −21 ∼ −20 yields Ωm ≈ 0.3.

In order to check the scale-dependence of our fitting results ay small scales, we repeated the above
fitting with data points at j = 8 exclided (j = 8 corresponds to a physical scale of 5.5h−1 Mpc). Therefore,
the smallest scale covered in the new fitting is 11.0h−1 Mpc. We find that the central values of the fitting
results are generally the same as before. For the value of Ωm, the biggest difference is from the sub-sample
−20 ∼ −21. The central value is Ωm = 0.26, which is still less than 10%. For other sub-samples, the
difference is normally less than 5%, or even negligible.

In fact, Percival et al. (2007) have shown by an analysis of SDSS DR5 galaxy power spectrum that
there is discrepancy in the fitting results of Ωm with different scales. Fitting on the scales 0.01 < k <
0.06hMpc−1 gives Ωm = 0.22 ± 0.04, which is smaller than Ωm = 0.32 ± 0.01 for fitting on the scales
0.01 < k < 0.15hMpc−1. Our analysis seems to give much less discrepancy in the fitting results on
different scales. This smaller difference may be explained by the large error bars at j = 8, which make it
contribute little to the χ2 fitting. Moreover, note that our fittings with and without j = 8 corresponds to the
largest k value being ∼ 1 and ∼ 2, respectively, which is different from that given by Percival et al. (2007).
Finally, our fitting formula, Equation (7), reflects both linear and non-linear effects. Therefore, fitting for
linear and non-linear scales could have consistent results.

In order to place constraints from the 2dFGRS on σ8, we repeated the fitting procedure with σ8, b and
σpv as fitting parameters, and Ωm = 0.24 as a fixed prior. Results are shown in Table 4. It is very clear
that, the two sub-samples other than the −19 ∼ −18 sub-sample both give a σ 8 > 0.9. Thus, a universe of
σ8 = 0.74 is not preferred by the DWT power spectrum of the 2dFGRS.
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Fig. 5 Marginal distributions of the parameters b, β, and σpv in the fitting of DWT power spectrum to the
2dFGRS sample of MbJ ∈ (−20 ∼ −21) with Eq. (7).

Fig. 6 Marginal distribution of Ωm in the fitting of DWT power spectra with Eq. (7) to the 2dFGRS samples
with MbJ in −18 ∼ 19, −19 ∼ −20 and −20 ∼ −21.

Fig. 7 Marginal distributions of β, b, σpv for the −20 ∼ −21 sub-sample, with the empirical redshift
distortion mapping formula of Eq. (12). Fitting with σ8 = 0.74 gives a larger b and σpv than with σ8 =
0.84.

5.4 Fitting with an Alternative Formula of Redshift Distortion

Empirically, the Fourier power spectrum P S(k) in redshift space is related to that in real space by Peacock
& Dodds (1994)

P S(k) = b2P (k)G(y, β) , (12)
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Fig. 8 Marginal distribution of Ωm in the three-parameter fitting with Eq. (12). For all the sub-samples,
fitting with the lower σ8 gives a larger value of Ωm.

Table 5 Best parameters from fitting DWT power spectra to ΛCDM model with σ8 = 0.84 and Eq. (12).

MbJ
− 5 log10 h β /Ωm b σpv (km s−1) χ2/d.o.f

–19 ∼ –18 0.77+0.08
−0.17 / 0.34+0.15

−0.20 0.69+0.12
−0.09 315+68

−44 10.91/4
–20 ∼ –19 0.73+0.06

−0.12 / 0.56+0.14
−0.22 0.97+0.08

−0.07 578+50
−40 8.46/4

–21 ∼ –20 0.41+0.07
−0.03 / 0.28+0.10

−0.05 1.15+0.05
−0.03 548+68

−26 4.96/4

Table 6 Best parameters from fitting DWT power spectra to ΛCDM model with σ8 = 0.74 and Eq. (12).

MbJ
− 5 log10 h β /Ωm b σpv (km s−1) χ2/d.o.f

–19 ∼ –18 0.76+0.08
−0.17 / 0.38+0.15

−0.20 0.74+0.10
−0.07 336+57

−41 10.61/4
–20 ∼ –19 0.73+0.06

−0.12 / 0.73+0.19
−0.27 1.13+0.09

−0.07 682+43
−41 8.26/4

–21 ∼ –20 0.40+0.06
−0.03 / 0.39+0.11

−0.07 1.42+0.03
−0.06 1014+51

−113 4.89/4

Table 7 Best parameters σ8, b, σpv from fitting DWT power spectra to ΛCDM model
with Ωm = 0.24, ΩΛ = 0.76, and Eq. (12).

MbJ
− 5 log10 h σ8 b σpvkm s−1 χ2/d.o.f

–19 ∼ –18 0.80+0.14
−0.08 0.73+0.21

−0.12 325+66
−50 17.00/4

–20 ∼ –19 0.93+0.10
−0.07 0.91+0.15

−0.14 470+57
−51 15.62/4

–21 ∼ –20 0.98+0.04
−0.04 0.97+0.05

−0.04 412+50
−43 7.16/4

in which y2 = k2σ2
pv, and the functionG is

G(y, β) =
√
π

8
erf(y)
y5

[3β2 + 4βy2 + 4y4] − exp(−y2)
4y4

[β2(3 + 2y2) + 4βy2] . (13)

Substituting Equation (6) into Equation (12) yields

P S
j,j,j(b, β, σpv) = b2Pj,j,jG[y(j), β] , (14)

where y(j) = k2(j)σ2
pv and k(j) is given by Equation (B12).

Following the same procedure as in Section 5.2, we carried out a three-parameter (b, β, σ pv) fitting with
Equation (14). The fitting results of model A and model B are given in Tables 5 and 6, respectively. The
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Table 8 Parameters estimated by fitting 2dFGRS DWT power spectra with Eq. (17)
to ΛCDM model of σ8 = 0.84.

MbJ
− 5 log10 h Ωm bo σpv (km s−1) χ2/d.o.f

–19 ∼ –18 0.28+0.05
−0.06 0.41+0.02

−0.02 480+35
−25 16.37/4

–20 ∼ –19 0.31+0.06
−0.05 0.43+0.02

−0.02 520+40
−30 21.98/4

–21 ∼ –20 0.25+0.02
−0.02 0.52+0.01

−0.01 587+18
−18 6.77/4

Table 9 Parameters estimated by fitting 2dFGRS DWT power spectra with Eq. (17)
to ΛCDM model of σ8 = 0.74.

MbJ
− 5 log10 h Ωm bo σpv (km s−1) χ2/d.o.f

–19 ∼ –18 0.39+0.07
−0.08 0.44+0.02

−0.02 495+30
−25 14.98/4

–20 ∼ –19 0.38+0.10
−0.09 0.43+0.02

−0.02 525+45
−30 20.25/4

–21 ∼ –20 0.23+0.02
−0.02 0.58+0.02

−0.02 650+20
−20 8.92/4

Fig. 9 Marginal distribution of parameters Ωm, bo, σpv for the −20 ∼ −21 sub-sample, with the DWT
redshift distortion mapping formula of Eq. (17), incorporating the scale dependence bias model.

Fig. 10 Marginal distribution of Ωm in the three-parameter fitting with Eq. (17). For the two sub-samples
shown, fitting with the lower σ8 gives a larger value of Ωm.

PDFs of the three parameters b, β, σpv for the sub-sample of −21 ∼ −20 are plotted in Figure 7, and the
PDFs of Ωm for all the three sub-samples are in Figure 8. Figure 7 shows that the models A and B have
very different PDFs of σpv: the PDF in model B is highly skewed and very broad while the PDF in model
A is close to a Gaussian.

The result of model A shown in Table 5 is roughly the same as that in Table 2. The sub-sample of
−19 ∼ −20 gives a large Ωm but still agrees with others within the error bars. The results of model B
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shown in Table 6 are similar to those in Table 3. Here Ωm from all the sub-samples are larger than 0.3,
especially the one from the sub-sample of −19 ∼ −20 which is unusually large at 0.73+0.19

−0.27. Meanwhile,
the pairwise velocity variance estimated from the sub-sample of −21 ∼ −20 has an extraordinary value of
1014.28+51.42

−113.57 km s−1. These raise questions on the prior of σ8 = 0.74.
Finally, we take σ8, b and σpv as fitting parameters, while fixing Ωm = 0.24. The best fitting parameters

are given in Table 7. Again we have results similar to those listed in Table 4. All the values of σ 8 are always
≥ 0.8, which suggests that the low σ8 value is unlikely to match the 2dFGRS.

5.5 Fitting with Scale Dependent Bias

In the above fitting, we assumed scale-independent galaxy bias. Recently, there are pieces of evidence
showing that galaxy bias is scale dependant, and the dependence is different for red and blue galaxies (Cole
et al. 2005; Seo & Eisenstein 2005; Percival et al. 2007; Jeong & Komatsu 2006; Guzik et al. 2007; Smith
et al. 2007; Huff et al. 2007). The scale dependence of the bias parameter would change the shape of galaxy
DWT power spectrum, and could lead to misinterpretation of the matter content, Ω m, if it is not properly
taken into account. Therefore, we will show our fitting with a scale-dependent galaxy bias model.

We model the scale dependence bias from the estimation given by Cole et al. (2005) in figure 15 of
their paper, which could be approximated as

bk = b0[1 + (k/0.1)0.1] . (15)

Combining with Equation (B12), we can obtain

bj = b0[1 + ((2j+1πnp)/0.1L)0.1] . (16)

Hence, βj = Ω0.6
m /bj . We incorporate the scale dependence bias model with Equation (7) and obtain

P S
j = b2j(1 + βjSj)2SPV

j Pj . (17)

We then perform the fittings as in Section 5.2 with the above equation. The results are shown in Tables 8
and 9. The marginal PDFs are shown in Figures 9 and 10.

Lower values of Ωm are now found in the results. This is because the value bias parameter keeps on
increasing as j grows (or as the scale decreases). The scale dependent factor b j will alter the shape the DWT
power spectrum, making it decrease more slowly as j increases than when bwas assumed scale independent.

Generally, fitting with scale-dependent bias parameters shows less differences between models with
σ8 = 0.84 and σ8 = 0.74, but the differences are still there. For the value of Ωm, fitting with σ8 = 0.74
still gives central values as high as 0.38 and 0.39 for the two sub-samples, and these two values seem to
be inconsistent with that given by the sub-sample −20 ∼ −21 within 1 − σ error. While for the fitting
results of σ8 = 0.84, values of Ωm from all the three sub-samples are consistent within the 1σ errors. Note
also that the fitting results of −20 ∼ −21 with different value of σ8 are very close to each other, with
Ωm = 0.25+0.02

−0.02 for σ8 = 0.84 and Ωm = 0.23+0.02
−0.02. The fitting value of Ωm from this sub-sample is

consistent very well with that given by Cole et al. (2005).

6 CONCLUSIONS AND DISCUSSION

DWT power spectra of 2dFGRS samples are measured on scales equivalent to 0.035 < k < 2.2hMpc−1.
We show that these power spectra are efficient for testing ΛCDM models with high and low amplitudes of
mass density fluctuations. The model with σ8 = 0.84 finds good support from the 2dFGRS sample, all the
best fitting parameters, b, β, σpv, are consistent with the other works on 2dFGRS. Especially, three volume-
limited samples gave different b and β values, but approximately the same values of Ω m = (bβ)1/0.6 =
0.28 − 0.36. On the other hand, the model with σ8 = 0.74 does not give such consistent fitting results, the
best fitted Ωm from the three volume-limited samples are significantly different, with above 1σ discrepan-
cies, from ∼ 0.3 upward. Moreover, the fitting results of σpv are generically large, even reach 103 km s−1.
Even when the scale dependence of the galaxy bias parameter is taken into account, differences still ex-
ist between the fitting results of the two models. Fitting with σ8 = 0.74 still gives inconsistent values of
Ωm the for three sub-samples. Our studies suggest that the power spectrum of 2dFGRS disfavors models
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with low amplitude of mass fluctuations, σ8 = 0.74, if the other cosmological parameters are given by the
WMAP3. For the fitting value of Ωm to be consistent with that given by WMAP3, strong scale dependence
of bias parameters is needed.

It is found that σpv increases with luminosity, which is basically consistent with the observation of Jing
& Börner (2004) though our estimated values are lower than theirs.

Another parameter that will affect the shape of the DWT power spectrum is the slope of the primordial
fluctuation spectrum ns. We have been using the scale-invariant spectrum, or the Zeldovich spectrum with
ns = 1. However, we noticed that WMAP3 gives ns = 0.95+0.015

−0.019, which is 5% smaller. In order to
check the influence of a lower value of ns on our fitting results, we repeated our fitting for the sub-sample
−20 ∼ −21 with ns = 0.95. We then found b = 1.07+0.01

−0.01, β = 0.44+0.02
−0.02 (Ωm = 0.29+0.02

−0.02), and
σpv = 550+20

−20 km s−1. Clearly, the change of ns from 1 to 0.95 results in little modification to b and σpv,
and only slightly alters (by less than 5%) the value of β, or Ωm.

In this paper, we used only the diagonal modes in terms of j, Pj = 〈ε̃j, lε̃j, l〉 and j = (j, j, j).
Even in the second order statistics of the DWT, 〈ε̃j, l ε̃j, l′〉, we can have the power of the off-diagonal

modes Pj = 〈ε̃j, l ε̃j, l〉 and j = (j1, j2, j3). In addition, we have the correlation between modes (j, l) and

(j, l′) (l 
= l′). It has been shown that different parts of the second order statistics of DWT contain different
information of the random field (Yang et al. 2001a). Possible constraints on the parameters given by various
parts of the second order DWT statistics deserve further study.
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Appendix A: DWT DECOMPOSITION OF RANDOM FIELD

For the details of the mathematical properties of the DWT, please refer to Mallat (1989a,b), Meyer (1992),
Daubechies (1992), and for physical applications, refer to Fang & Thews (1998). For this application,
the most important properties are 1) orthogonality, 2) completeness, and 3) locality in both scale (r) and
physical position (x). Wavelets with compactly supported basis are an excellent means to analyze random
fields. Among the compactly supported orthogonal wavelets, the Daubechies family of wavelets is easy to
implement.

To simplify the notation, we consider a 1-D field ρ(x) on spatial rangeL. It is straightforward to gener-
alize to 3-D fields. In DWT analysis, the space L is chopped into 2 j segments labelled by l = 0, 1, ...2j −1.
Each of the segments has size L/2j . The index j is a positive integer which represents scale L/2j . The
index l gives position and corresponds to spatial range lL/2 j < x < (l + 1)L/2j.

DWT analysis uses two functions, the scaling functions φj,l(x) = (2j/L)1/2φ(2j/L− l), and wavelets
ψj,l(x) = (2j/L)1/2ψ(2j/L− l). The scaling functions and wavelets are given respectively by a translation
and dilation of the basic scaling function φ(η) and basic wavelet ψ(η) as

φj,l(x) =
(

2j

L

)1/2

φ(2jx/L− l), (A.1)

and

ψj,l(x) =
(

2j

L

)1/2

ψ(2jx/L− l). (A.2)
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The scaling functions play the role of window function. They are used to calculate the mean field in the
segment l. The wavelets ψj,l(x) capture the difference between the mean fields at space ranges lL/2 j <
x < (l + 1/2)L/2j and (l + 1/2)L/2j < x < (l + 1)L/2j.

The scaling functions and wavelets ψj,l(x) satisfy the orthogonal relations,∫
φj,l(x)φj,l′ (x)dx = δl,l′ , (A.3)

∫
ψj,l(x)ψj′,l′(x)dx = δj,j′δl,l′ , (A.4)

∫
φj,l(x)ψj′ ,l′(x)dx = 0, if j′ ≥ j. (A.5)

With these properties, a 1-D random field ρ(x) can be decomposed into

ρ(x) = ρj(x) +
∞∑

j′=j

2j′−1∑
l=0

ε̃j′,lψj′,l(x), (A.6)

where

ρj(x) =
2j−1∑
l=0

εj,lφj,l(x). (A.7)

The scaling function coefficient (SFC) εj,l and the wavelet function coefficient (WFC), ε̃j,l, are given by

εj,l =
∫
ρ(x)φj,l(x)dx, (A.8)

and

ε̃j,l =
∫
ρ(x)ψj,l(x)dx, (A.9)

respectively. The SFC εj,l measure the mean of ρ(x) in the segment l, while the WFC ε̃j,l measures the
fluctuations (or difference) of field ρ(x) at l on scale j.

The first term on the r.h.s. of Equation (A6), ρ j(x), is the field ρ(x) smoothed on the scale j, while
the second term contains all information on scales ≥ j. Because of the orthogonality, the decomposition
between the scales of < j (first term) and ≥ j (second term) in Equation (A6) is unambiguous.

Appendix B: 1-D DWT POWER SPECTRUM

The contrast (or perturbation) of the field ρ(x) is defined by

δ(x) =
ρ(x) − ρ̄

ρ̄
, (B.1)

where ρ̄ is the mean density of the field. The Fourier expansion of ε is

δ(x) =
∞∑

n=−∞
εne

i2πnx/L, (B.2)

with the coefficients given by

εn =
1
L

∫ L

0

δ(x)e−i2πnx/Ldx. (B.3)

Parseval’s theorem relates the power for a distribution to the coefficients of the Fourier expansion. This
yields

1
L

∫ L

0

|ε(x)|2dx
∞∑

n=−∞
|εn|2, (B.4)
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which shows that the perturbations can be decomposed into domains, n, by the orthonormal Fourier basis
functions. The power spectrum of perturbations on scale L/n is then defined as

P (n) = |εn|2. (B.5)

This is the power spectrum with respect to the Fourier decomposition.
Similarly Parseval’s theorem for the DWT is

1
L

∫ L

0

|ε(x)|2dx =
∞∑

j=0

1
L

2j−1∑
l=0

|ε̃j,l|2. (B.6)

Thus, the second order statistical behavior of ε(x) can be described by the |ε̃ j,l|2 and one can call |ε̃j,l|2 the
DWT power spectrum.

Comparing Equations (B4) and (B6), it is clear that 1
L

∑2j−1
l=0 |ε̃j,l|2 is a measure of the power of the

perturbation on scales from L/2j to L/2j+1. Therefore, the power spectrum with respect to the wavelet
basis can be defined as

Pj =
1
2j

2j−1∑
l=0

|ε̃j,l|2. (B.7)

Since the DWT bases ψj,l(x) measure the differences between the local mean densities at adjoining scales,
the mean density on length scales larger than the sample size is not needed in calculating ε̃ j,l. The spectrum
Equation (B7) will not be affected by the infrared (long-wavelength) uncertainty of the mean density.

With Equations (B2), (B6), (A2) and (A4) we can find the relation between the power spectra of DWT
Pj and Fourier P (n). It is

Pj =
1
2j

∞∑
n=−∞

|ψ̂(n/2j)|2P (n), (B.8)

where ψ̂(n) is the Fourier transform of the basic wavelet given by

ψ̂(n) =
∫ L

0

ψ(η)e−i2πnηdη. (B.9)

Since wavelet is admissible, i.e.
∫
ψ(η)dη = 0, we have ψ̂(0) = 0. |ψ̂(n)|2 is localized in n-space. |ψ̂(n)|2

has symmetrically distributed peaks with respect to n = 0. The first highest peaks are non-zero in two
narrow ranges centered at n = ±np with width ∆np. Besides the first peak, there are “side lobes” in
|ψ̂(n)|2. However, the “side lobes” are small, for instance, for the Daubechies 4 wavelet, the area under the
“side lobes” is not more than 2% of the first peak. Therefore, P j is a good estimation of the band-averaged
Fourier power spectrum centered at wavenumber

nj = np2j. (B.10)

The band width is

∆n = 2j∆np. (B.11)

In other words, the relation between k and j is

log k = (log 2)j − log(L/2π) + lognp. (B.12)

For the D4 wavelet, lognp = 0.270.
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Appendix C: 3-D DWT POWER SPECTRUM

For 3-D random field, the DWT decomposition is based on the orthogonal and complete set of 3-D wavelet
basis, {ψj, l(x)}, which can be constructed by a direct product of 1-D wavelet basis as

ψj, l(x) = ψj1,l1(x1)ψj2,l2(x2)ψj3,l3(x3), (C.1)

where ji = 0, 1, 2.. (i = 1, 2, 3) and li = 0...2ji−1. Obviously, the basis ψj, l(x) is non-zero mainly in

a volume L1/2j1 × L2/2j2 × L3/2j3 , and around the position (x1 = l1L1/2j1 , x2 = l2L2/2j2 , x3 =
l3L3/2j3) (Fang & Thews 1998). Similar to Equation (B7), the power spectrum on scale j = (j 1, j2, j3) is

P 2
j =

1
2j1+j2+j3

2j1−1∑
l1=0

2j2−1∑
l2=0

2j3−1∑
l3=0

[ε̃j, l]
2. (C.2)

For 3-D samples, Equation (B8) is generalized as

Pj =
1

2j1+j2+j3

∞∑
n1=−∞

∞∑
n2=−∞

∞∑
n3=−∞

|ψ̂(n1/2j1)ψ̂(n2/2j2)ψ̂(n3/2j3)|2P (n1, n2, n3). (C.3)

Because the cosmic density field is isotropic, the Fourier power spectrum P (n 1, n2, n3) is dependent only
on

n =
√
n2

1 + n2
2 + n2

3. (C.4)

Obviously, the DWT power spectrum is invariant with respect to the cyclic permutation of index as

Pj1,j2,j3 = Pj3,j1,j2 = Pj2,j3,j1 . (C.5)

Considering Equations (C3) and (C4), we can formally define a band center wavenumber n j corre-
sponding to the 3-D mode j as

nj = np

√
(2j1)2 + (2j2)2 + (2j3)2. (C.6)

For an isotropic random field, the Fourier modes with the same n are statistically equivalent. However, the
DWT modes with the same nj [Eq. (C6)] are not statistically equivalent, because the DWT modes are not
rotationally invariant. A Fourier mode e−i(2π/L)(n1x1+n2x2+n3x3) can be obtained by a rotation of mode
e−i(2π/L)(n′

1x1+n′
2x2+n′

3x3) as long as n′2
1 + n′2

2 + n′2
3 = n2

1 + n2
2 + n2

3. However, the DWT modes do not
have the same property. Generally, one cannot transform a mode (j 1, j2, j3) to (j′1, j

′
2, j

′
3) by a rotation,

even when nj � nj′ . Because of different configurations between them, the condition n jnj′ generally does
not imply

Pj = Pj ′ . (C.7)

This invariance holds only when (j1, j2, j3) is a cyclic permutation of (j ′1, j
′
2, j

′
3).

With this property, one can define two types of the DWT power spectra: 1) The diagonal power spectrum
given by Pj on diagonal modes j1 = j2 = j3 = j, and 2) Off-diagonal power spectrum given by other
modes.

From Equation (C3), the diagonal power spectrum P j ≡ Pj,j,j is related to the Fourier power spectrum
by

Pj =
∞∑

n1=−∞

∞∑
n2=−∞

∞∑
n3=−∞

Wj(n1, n2, n3)P (n1, n2, n3), (C.8)

where the window functionWj is

Wj(n1, n2, n3)
1

23j
|ψ̂(n1/2j)ψ̂(n2/2j)ψ̂(n3/2j)|2, (C.9)
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with the normalization ∫ ∞

−∞
Wj(n1, n2, n3)dn1dn2dn3 = 1. (C.10)

The window function Wj is localized around n1 = n2 = n3 = np2j . Therefore, the diagonal power
spectrum Pj is a band-average of the isotropic Fourier power spectrum P (n) with the central frequency
n =

√
3ng2j .

There are two types of modes: diagonal mode with j1 = j2 = j3; off-diagonal mode for which the
three numbers (j1, j2, j3) are not the same. The DWT estimator can provide two types of power spectra: 1)
Diagonal power spectrum given by the powers on diagonal modes, 2) Off-diagonal power spectrum given
by the powers on off-diagonal modes. Because the two types of modes have different spatial invariance, the
diagonal and off-diagonal DWT power spectra are very flexible to deal with configuration-related problems
in the power spectrum detection. For off-diagonal modes, one can also calculate the linear non-diagonal
DWT power spectrum Pj1,j2,j3 via Equation (C2). However, in this case, Pj1,j2,j3 cannot simply be identi-
fied as a band average of the isotropic Fourier power spectrum P (n) centered at n = n j . Nevertheless, nj

is useful to calibrate the physical scale of a given j.

Appendix D: REDSHIFT SPACE DWT POWER SPECTRUM

Unlike FFT power spectrum algorithm for redshift distortion, which is empirical, DWT power spectrum
estimator has more strict algorithm which was introduced by (Yang et al. 2002).

The position of galaxy i in redshift space is given by s i = xi + r̂vr(xi)/H0, where vr is the radial
component of v(x) and v(x) the mean galaxy velocity at x. The number density distribution in redshift
space is then

nS(s) =
Ng∑
i=1

wiδD[s − xi − r̂vr(xi)/H0] = n̄S(s)[1 + δS(s)], (D.1)

where n̄S(s) is the selection function in redshift space. The power spectrum in redshift space can be given
as

P S
j =

1
2j1+j2+j3

2j1−1∑
l1=0

2j2−1∑
l2=0

2j3−1∑
l3=0

[ε̃Sj, l]
2 − 1

2j1+j2+j3

2j1−1∑
l1=0

2j2−1∑
l2=0

2j3−1∑
l3=0

∫ ψ2
j, l(x)

n̄S(x)
dx, (D.2)

where

ε̃Sj, l =
∫
nS(s)
n̄S(s)

ψj, l(s)ds. (D.3)

Using an auxiliary vector J , and taking ensemble average of velocity, we can obtain from Equations (D1)
and (D3),

〈ε̃Sj, l〉v =
Ng∑
i=1

wi

∫
dsδD(s − xi + i∇J) · eiJ ·r̂Vr(xi)/H0−(1/2)σ2

pv(xi)(J ·r̂)2H2
0ψj, l(s)|J=0, (D.4)

where the the velocity field is assumed to be Gaussian, σ 2
pv(x) = 〈[vi(x) − Vi(x)]2〉v is the rms deviation

of velocity v(x). If we consider only linear effect of the bulk velocity, we have

δ(x) = − 1
H0β

∇ · V (x), (D.5)

where β � Ω0.6
m /b is the redshift distortion parameter. Then, Equation (D4) can be written as

〈ε̃Sj, l〉v =
Ng∑
i=1

wi

∫
dsψj, l(s)e−(1/2)σ2

pv(s)(r̂·∇)2δD(s − xi)−

1
H0

Ng∑
i=1

wi

∫
dsr̂ · [∇sVr(s + i∇J)δD(s − xi + i∇J )]e−(1/2)σ2

pv(xi)(J ·r̂)2ψj, l(s)|J=0.

(D.6)
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Neglecting terms of the order Vr(x)δ(x), and using the linear relation Equation (D5), Equation (D6) gives

〈ε̃Sj, l〉v =
∫
dsψj, l(s)e(1/2)σ2

pv(s)(r̂·∇)2ng(s) + β

∫
dsψj, l(s)(r̂ · ∇s)2∇−2e−(1/2)σ2

pv(s)(r̂·∇)2ng(s).

(D.7)
Because all operators in the integrand of Equation (D7) are nearly diagonal in the DWT representation
(Farge et al. 1996), Equation (D7) can be rewritten as

ε̃Sj, l = (1 + βSj)spv

j
ε̃j, l, (D.8)

where

Sj =
∫
ψj, l(x)(r̂ · ∇)2∇−2ψj, l(x)dx, (D.9)

and

spv

j
=

∫
ψj, l(x)e(1/2)σ2

pv(x)(r̂·∇)2ψj, l(x)dx. (D.10)

Substituting equation Equation (D8) into Equation (D2), we have the redshift distorted power spectrum as

P S
j = (1 + βSj)2SPV

j Pj , (D.11)

where SPV
j = [spv

j
]2 (1 + βSj )2 is the linear redshift distortion factor, and SPV

j the non-linear redshift

distortion factor due to pairwise velocity dispersion.
For plane-parallel approximation, if we take coordinate x 3 as the line-of-sight direction, the linear

redshift distortion Sj is

Sj =
∫
ψj, l(x)

∂2

∂x2
3

∇−2ψj, l(x)dx. (D.12)

The Fourier transform of ψj,l is

ψj,l =
1
L

∞∑
n=−∞

ψ̂j,l(n)e−i2πnx/L, (D.13)

and

ψ̂j,l(n) =
(
L

2j

)1/2

ψ̂(n/2j)e−i2πnl/2j

, (D.14)

where ψ̂(n) is the Fourier transform of the basic wavelet,

ψ̂(n) =
∫ ∞

−∞
ψ(η)e−i2πnηdη. (D.15)

Equation (D12) can now be written as

Sj1,j2,j3 =
1

2j1+j2+j3

∞∑
n1,n2,n3=∞

(n3/L3)2

(n1/L1)2 + (n2/L2)2 + (n3/L3)2
|ψ̂(n1/2j1)ψ̂(n2/2j2)ψ̂(n3/2j3)|2.

(D.16)
For σv(x), we assume that it is independent of x, then we have

spv
j1,j2,j3

=
1

2j1+j2+j3

∞∑
n1,n2,n3=∞

|ψ̂(n1/2j1)ψ̂(n2/2j2)ψ̂(n3/2j3)|2 exp[−(1/2)σ2
pv(r̂ · n)2], (D.17)

where n = 2π(n1/L1, n2/L2, n3/L3). If we further assume plane-parallel approximation, we have

spv
j1,j2,j3

=
1

2j3

∞∑
n3=∞

|ψ̂(n3/2j3)|2 exp[−(1/2)σ2
pv(2πn3/L3)2]. (D.18)
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