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Abstract We found another critical mass ratio value µ between µ4 and µ5 concerning the
genealogy of the long period family around the equilateral equilibrium point L 4 in the re-
stricted three-body problem. This value has not been pointed out before. We used numerical
computations to show how the long period family evolves around this critical value. The case
is similar to that of the critical values between µ2 and µ4, with slight difference in evolution
details.
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1 INTRODUCTION

As is well known, when the mass ratio µ is smaller than µ1 = 0.0385208965, there exist two families
of periodic orbits—the short period family and the long period family (Szebehely 1967). According to
Lyapunov’s theorem, there are exceptions to this conclusion when the frequencies of the short and long
period families are of commensurability k (k an integer). The mass ratios for commensurability to happen
are

µk = [1 − (k4 + 38k2/27 + 1)1/2/(k2 + 1)]/2 . (1)

There have been a few papers concerning the global evolution of these two families
(Deprit & Henrard 1968; Henrard 2002). From these studies, we know that the short period family termi-
nates continuously onto a Lyapunov planar orbit emanating from the collinear libration point L 3 for every µ
between 0 and µ1, but the evolution of the long period family depends on the parameter µ. Generally, when
µ is between µk and µk+1, the long period family terminates onto a short period orbit travelling (k + 1)
times. We can consider the long period family as a bridge connecting the equilibrium point L 4 and a short
period orbit travelling (k+1) times, so we can also denote the long period family as B(L 4, (k+1)S). From
this short period orbit emanates another bridge connecting another short period orbit travelling (k+2) times.
The process continues with more and more bridges B((k + l)S, (k + l + 1)S), (l ≥ 2) until it reaches a
homoclinic orbit emanating from L4 (Henrard 1983). Besides these bridges, there exists another double-
lane bridge B(kS, kS ′) connecting two different short period orbits travelling k times. When µ grows to
be between µk−1 and µk, the double-lane bridge B(kS, kS ′) breaks into B(L4, kS) and B(kS, (k + 1)S)
while annexing another double-lane bridge B((k − 1)S, (k − 1)S ′).

However, Henrard (1970) found that this scenario breaks down when k reaches 3. Between µ 3 and
µ4 there stands a special value µ∗. One lane of the bridge B(3S, 3S ′) breaks when µ is larger than µ∗,
but before it reaches µ3. The other lane of the bridge B(3S, 3S ′) survives until µ reaches µ3. A similar
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scenario happens to B(2S, 2S ′) with another special value µ∗∗ between µ2 and µ3. Henrard (1970) thought
that there might exist other critical values between µk and µk+1 for k > 3, but in his subsequent papers
(Henrard 2002) he did not give any other critical values. In our computation of these bridges, we found
that there exists another critical value between µ4 and µ5 whose role is very similar to that of µ∗ and µ∗∗.
Denoting this value as µ, we used numerical computations to show how the long family evolves around this
critical value.

2 METHODOLOGY

We used numerical methods to compute the evolution of the short and long period families, and the bridges
connecting them. Denote the equation of motion of the planar restricted three-body problem by

Ẋ = F (X), (2)

where X = (x, y, ẋ, ẏ) is a four-dimensional vector in a chosen coordinate representing the state vector of
the massless small body. In our computations, the coordinate chosen is not the usual synodic one for the
restricted three-body problem, rather, it is one with origin at L 4 and with a fixed rotation angle from the
synodic coordinate. The details can be found in the book of Szehebely (Szebehely 1967). Given the initial
state vector X0 at time t0, integration of Equation (2) gives an orbit of the system. Denoting the orbit as
X(X0, t0 + t), a periodic orbit with period T satisfies the following condition,

X(X0, t0 + T )− X0 = 0. (3)

Given initial guesses for X0 and T , Equation (3) can be solved by iteration. The iteration equation is

(∂X/∂X0 − I) · δX0 + ∂X/∂T · δT = 0, (4)

where M = ∂X/∂X0 is the monodromy matrix. For autonomous dynamical systems such as Equation (2),
if X0 is a solution of Equation (3), then X(X0, t0 + t), ∀t ∈ R is also a solution of Equation (3), and since
the periodic orbits are generally embedded inside a family, there exists different X 0 for different period T .
Moreover, only three of the four equations in Equation (3) are independent because of the existence of the
energy equation. So the solution of Equation (3) is not unique. Denoting {(X 0, T )|X(X0, t0+T )−X0 = 0}
as the solution space, it is a subset in R5. Equation (3) cannot be solved unless we fix the period T and one
component of X0 (for example, we could fix y ≡ 0 and leave x0, ẋ0, ẏ0 variable in the iteration).

If we know one periodic orbit in a family, we can use numerical continuation to compute the other
members of the family using Equation (4). The algorithm used is the so-called predictor-corrector algorithm.
For example, if we keep y ≡ 0, we have {(x0, ẋ0, ẏ0, T )|X(X0, t0 + T ) − X0 = 0} as the solution space.
First we denote the already known periodic orbit as (x ′

0, ẋ
′
0, ẏ

′
0, T

′), then we change the period from T ′ to
T ′ + δT , and then the other three variables x0, ẋ0, ẏ0 will change according to Equation (4). We denote
these changes as δx0, δẋ0, δẏ0. This step is called the predictor phase. Next, we use the changed values
(x′

0 +δx0, ẋ′
0 +δẋ0, ẏ′

0 +δẏ0, T
′+δT ) as the initial values for Equation (3) and keep the period fixed, then

we obtain a periodic orbit of period T ′ + δT after the iteration. This is the corrector phase. This predictor-
corrector algorithm is widely used in numerical analysis. The fixed parameter in the corrector phase is
called the parameter of the family. It can be any one of the four components of X 0 or the period T . In our
continuations, we used x0 as the parameter of the family. When it reaches an extreme value x 0, we change
the parameter from x0 to the period T .

Since Equation (2) describes an autonomous Hamiltonian system, the eigenvalues of the monodromy
matrix are of the form (1, 1, λ, 1/λ) (Arnold 1999). When |λ + 1/λ| is greater than 2, the periodic orbit
is unstable. When |λ + 1/λ| is smaller than 2, the periodic orbit is stable. When |λ + 1/λ| equals 2, we
have the critical case. The periodic orbit can be stable or unstable depending on the nonlinear effects. The
most special case appears when λ = 1. The eigenvector corresponding to eigenvalue ‘1’ is the direction
along which a displacement of the state vector preserves the periodicity. So if λ = 1, apart from the
original direction, there may exist one or two other directions along which a displacement of the state vector
preserves the periodicity. However, this is not necessarily always the case: it depends on the geometric
multiplicity of the monodromymatrix (Henrard 2002), and this only occurs when the geometric multiplicity
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is larger than 1. From the new direction other families of periodic orbits may be emanate. This phenomenon
is called bifurcation. A more general form of bifurcation is the so-called n-bifurcation (Henrard 2002). It
is the case when λ = exp(i · 2mπ/n) (m and n are incommensurable). When the orbit travels n times,
the eigenvalues of the n-time orbit are of the form (1,1,1,1), and then bifurcation occurs. This form of
bifurcation phenomenon is especially common in the periodic orbits around the equilateral equilibrium
point L4. Since the trace of the monodromy matrix is 2 + λ + 1/λ, it is convenient to use trace − 2 as the
stability parameter of the periodic orbit. If the periodic orbit is an n-bifurcation orbit, then trace − 2 will
equal to 2 cos(2mπ/n).

In this work, we followed the evolution of the long period family for a chosen set of different mass ratios
from µ5(=0.00550920. . . ) to µ4(=0.00827037. . . ). If the termination is on a short period family travelling
four times, then this is the critical value we expect to find (it is around 0.00814172). Then we chose mass
ratios around µ to check the details of the transition of bridges.

3 RESULTS

We found the critical mass ratio value µ to be around 0.00814172. We chose three values around it: 0.008,
0.00812 and 0.0082. For each value, we computed the 4-bifurcation short periodic orbit and computed the
bridges connecting the long and short period families. The break-up and recombination of bridges were
similar to those found by Henrard (1970), with only slight differences.

For the mass ratio 0.008, the double-lane bridge B(4S, 4S ′) still exists and the long period family ends
on a short period orbit travelling five times (i.e. the bridge B(L 4, 5S) exists). In the left panel of Figure 1,
we show the variation of period with the Jacobi constant. The dashed lines indicate the two lanes of bridge
B(4S, 4S′). For the short period family, we multiply the period four times in the figure. In the right panel
we show the variation of the stability parameter with the Jacobi constant. The dashed line indicates one lane
of the bridge B(4S, 4S ′) which is the upper lane shown in the left panel, while the black line indicates the
long period family. We can see from the figure that the long period family and the lane do not meet. In the
right panel, A denotes the periodic orbit in the lane with stability parameter 2, and B indicates the hump in
the stability curve of the long family. In the following figures, we will see how the point B rises to merge
with the point A to form a new bridge between L4 and 4S.

For the mass ratio 0.00812 which is closer to, but still smaller than µ, we did the same task as with the
mass ratio 0.008. The results are shown in Figure 2. Again, the two lanes of the bridge B(4S, 4S ′) exist
different from Figure 1, the long period family and the lane do intersect here. This is different from the
figures in Henrard (1970). The long period family grows sharp humps and does not intersect the lane until
the mass ratio reaches the critical one. Comparing the right panels of Figures 1 and 2, we find that hump B
in the parameter curve of the long family is raised and become closer to the point A. It seems that when µ
approaches µ, the stability parameter of the point B approaches 2. In order to show this tendency, we plot
the stability parameter of the long period family for mass ratio 0.0081417, which is just short of µ. The
stability parameter of the hump B can reach 1.99816, as shown in Figure 3.

Fig. 1 Periodic families for the mass ratio 0.008.
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Fig. 2 Periodic families for the mass ratio 0.00812.

Fig. 3 Stability parameter for the mass ratio 0.0081417.

Fig. 4 Periodic families for the mass ration 0.0082.

From these results, it is reasonable to speculate that when µ reaches µ, the stability parameter of the
hump B reaches 2 and it becomes a bifurcation point. It merges with the point A to indicate a singular
periodic orbit. This singular periodic orbit belongs to four branches of periodic orbits which terminate on
L4, 4S, 4S′ and 5S, respectively.
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When µ is larger than µ (µ=0.0082, say), the singular periodic orbit disappears. One lane of the original
bridge B(4S, 4S ′) is broken. One part of the broken bridge merges with part of the original long period
family to form the new long period family. The other part of the broken lane merges with the other part of
the original long family to form a new bridge B(4S, 5S), but the other lane of the original bridge B(4S, 4S ′)
still exists, as shown in the left panel of Figure 4. The right panel shows a similar phenomenon. The dashed
line is the stability parameter curve of the new bridge B(4S, 5S), and the black line is the one for the new
long period family. Comparing the right panels of Figures 1, 2 and 4, we can see that the stability curves
start to get close, merge, recombine and separate again. In this process points A and B play crucial roles.

4 CONCLUSIONS

We found a critical value µ between µ4 and µ5, which enriches the genealogy of long period family for
mass ratios smaller than µ1 (Henrard (1970)). We gave numerical examples to show how the breakup and
recombination of bridges happen for mass ratios around µ. We tried to find other critical values between
µk+1 and µk for k ≥ 5 without success. It seems that the existence of these critical values is correlated with
the hump in the stability curve of the long period family, and µ is the last critical value. We will discuss this
later more fully in another paper.
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