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Abstract We investigate two training-set methods: support vector machines (SVMs) and
Kernel Regression (KR) for photometric redshift estimation with the data from the databases
of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe
the performances of SVMs and KR for different input patterns. Our experiments show that
with more parameters considered, the accuracy does not always increase, and only when
appropriate parameters are chosen, the accuracy can improve. For different approaches, the
best input pattern is different. With different parameters as input, the optimal bandwidth is
dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods
are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches
are summarized. Compared to other methods of estimating photometric redshifts, they show
their superiorities, especially KR, in terms of accuracy.
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1 INTRODUCTION

Photometric redshifts have been regarded as the most promising tool in the study of the formation and
evolution of galaxies and the large scale structure of the universe, considering that the spectra of faint
objects are difficult to obtain. The photometric redshift technique translates observable signals such as flux
and apparent color to the corresponding intrinsic properties of absolute luminosity and rest-frame color. One
purpose behind the photometric redshift technique is to measure the redshifts of galaxies and AGN based
on multi-wavelength photometry. The photometric redshift technique can be traced back to Baum (1962)
who used nine medium-wide filters to detect the 4000 Å in galaxies. For example, the predicted redshift
of the C10925 galaxies by this technique is z = 0.19, which agrees closely with the known spectroscopic
value of z = 0.192. Subsequent implementation has been made by Koo (1985) using four broad-band
photographic filters, by Loh & Spillar (1986) using CCDs along with six medium-band filters, and by Xia
et al. (2002) using CCD photometry of BATC 15 medium-band filters. In the last two decades, some well-
defined statistical techniques have become increasingly popular in predicting photometric redshifts.

There are two approaches to estimate photometric redshift in the literature: template fitting, with tem-
plates derived from synthetic (e.g. Bruzual & Charlot 1993) or empirical spectra (e.g. Coleman, Wu &
Weedman 1980), and empirical training set, which constructs a direct empirical correlation between color
and redshifts. For the template fitting, some templates are constructed in advance according to the known
redshifts and galaxy types. By minimizing the standard χ2 to fit the observed photometric data with a set
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of spectral templates, this method can be applied beyond the redshift limit. Although it is easy to carry out,
the accuracy of this approach strongly depends on the templates. The training set approach, on the other
hand, derives a functional relation between redshift and photometric data using a large and representative
training set of galaxies with known photometry and redshifts. Then the functional relation is applied to
estimate the redshifts of objects with unknown redshifts. In the last few years, a large number of training set
methods has been developed and implemented (Way & Srivastava 2006). For example, linear or non-linear
fitting (Brunner et al. 1997; Wang, Bahcall & Turner 1998; Budavari et al. 2005); support vector machines
(SVMs, Wadadekar 2005); artificial neural network (ANNs, Firth, Lahav & Somerville 2003; Ball et al.
2004; Collister & Lahav 2004; Vanzella et al. 2004; Li et al. 2006).

Another training-set approach is the instance-based learning technique for predicting the photometric
redshifts (e.g. Csabai et al. 2003; Ball et al. 2007), which needs no training, but implements the predictions
directly on the data that have been stored in the memory. In general, they store all the training data in the
memory during the learning phase, and defer all the essential computation until the prediction phase. Such
techniques include the k-nearest neighbor, kernel regression and locally weighted regression.

In this paper we further explore two approaches: support vector machines (SVMs) and kernel regres-
sion (KR), with a view of estimating the redshifts of galaxies with photometric data from the SDSS and
2MASS databases. The structure of this paper is as follows: Section 2 describes the data used. Section 3
describes the principles of SVMs and KR. Section 4 gives the results and a discussion. Finally conclusions
are summarized in Section 5.

2 DATA

The data used in this paper are from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky
Survey (2MASS). Some general information on these are as follows.

The Sloan Digital Sky Survey (SDSS, York et al. 2000) is an astronomical survey project, which covers
more than a quarter of the sky, to construct the first comprehensive digital map of the universe in 3D using
a dedicated 2.5-meter telescope located at Apache Point, New Mexico. In its first phase of operations, it
has imaged 8,000 square degrees in five bandpasses (u, g, r, i, z) and measured more than 675,000 galaxies,
90,000 quasars and 185,000 stars. In its second stage, SDSS will carry out three new surveys in different
research areas, such as the nature of the universe, the origin of galaxies and quasars, and the formation and
evolution of the Milky Way.

The Two Micron All Sky Survey (2MASS, Cutri et al. 2003) uses two highly-automated 1.3-m tele-
scopes, one at Mt. Hopkins, Arizona, the other at CTIO, Chile. Each telescope is equipped with a three-
channel camera, and each channel consists of a 256×256 array of HgCdTe detectors, capable of observing
the sky simultaneously at J (1.25µm), H (1.65µm), and Ks (2.17µm), to a 3σ limiting sensitivity of 17.1,
16.4 and 15.3mag in the three bands, respectively. Jarrett et al. (2000) had given more detailed information
in the extended source catalog.

We select all galaxies with known spectral redshifts from SDSS Data Release 5, and then cross-match
the data with 2MASS extended source catalog within a search radius of 3 times the SDSS positional errors.
The cross-matching generated about 150,000 galaxies. From these we select objects satisfying the following
criteria: 1) the spectroscopic redshift confidence must be equal to or greater than 0.95; 2) redshift warning
flag is 0; 3) r < 17.5. This resulted in a sample of 62,083 galaxies. Table 1 describes the broadband filters
and their wavelength range from SDSS and 2MASS catalogs.

3 MODEL SELECTION

3.1 Support Vector Machines

The primary conception of SVMs was developed by Vapnik (1995). SVMs were developed to solve the
classification problem, but recently they have been extended to the domain of regression. Regression of
SVMs is achieved by using an alternative loss function, which must be modified to include a distance
measure. The SVM task usually involves training and testing data which consist of some data instances.
Each instance in the training set contains one “target value” and several “attributes”. The goal of SVMs
is to produce a model which predicts the target value of data instances in the testing set when only the
attributes are given.
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Table 1 Survey Filters and Characteristics

Bandpass Survey λeff (Å) ∆λ (Å)

u SDSS 3551 600
g SDSS 4686 1400
r SDSS 6165 1400
i SDSS 7481 1500
z SDSS 8931 1200
J 2MASS 12500 1620
H 2MASS 16500 2510
Ks 2MASS 21700 2620

Given a training set of training pairs (x1, y1),..., (xl, yl), xi ∈ Rn, y ∈ R, with a linear function,

f(x) = 〈ω, x〉 + b. (1)

The optimal regression function is given by the minimum of the functional,
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1
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Using a quadratic loss function,
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and the resultant optimization is
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with constraint
l∑

i=1

βi = 0. (6)

To generalize to non-linear regression, we replace the dot product with a kernel function. More infor-
mation can be found in Steve’s tutorial (1998). In this work we adopt the Gaussian kernel function.

SVMs have been widely used in the area of machine learning because of its excellent generalization
performance, such as handwritten digit recognition and face detection. In astronomy, SVMs have been
applied to identifying red variables (Williams et al. 2004), clustering of astronomical objects (Zhang &
Zhao 2004), and classifying AGN from stars and normal galaxies (Zhang, Cui & Zhao 2002).

Several software implementations of the SVM algorithm are accessible on the web. Considering
the robustness, the ability of handling large amounts of data, and the regression time, we selected
for our study SVM Light, a fast optimized SVM algorithm, implemented in the C language. It
can deal with many thousands of support vectors, handle hundreds/thousands of training examples,
and can provide several standard kernel functions. The details about SVM Light can be found at
http://www.cs.cornell.edu/People/tj/svm light/.
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3.2 Kernel Regression

KR belongs to the family of instance-based learning algorithms (Watson 1964; Nadaraya 1964), which
simply stores some or all of the training examples and does not perform any generalization of the given
samples, and “delays the learning” till the prediction time. Given a query point x q, a prediction is obtained
using the training samples that is “most similar” to xq. Subsequently, similarity is measured by means of
a distance metric defined in the hyper-space of V predictor variables. KR gives the prediction for a query
point xq, by a weighted average of the y values of its neighbors. The weight of each neighbor is calculated
according to a function of its distance to xq (the kernel function). These kernel functions give more weight
to neighbors that are nearer to xq. The notion of neighborhood (or bandwidth) is defined in terms of the
distance from xq. The prediction for query point xq is obtained by

yq =

N∑
i=1

K(D(xi,xq)
h ) × yi

N∑
i=1

K(D(xi,xq)
h )

, (7)

where D(.) is the distance function between two instances, K(.) is a kernel function, h the bandwidth value,
and (xi, yi) the training samples. In this paper, we use Euclidian distance and Gaussian kernel function.
Here xi is the feature for each training sample, y i the spectroscopic redshift for each training set sample,
and yq the redshift of each query sample.

When using KR an important design decision is to select the bandwidth h. A larger h would result in
a flatter weight function curve, indicating that many points of the training set contribute quite evenly to the
regression. As the h tends to infinity, the predictions would approach the global average of all the points
in the database. If h is very small, only the closely neighboring data points make a significant contribu-
tion. If the data are relatively noisy, we expect to obtain smaller prediction errors with a relatively larger
h. If the data are noise-free, then a small h will avoid smoothing out the finer details. There exist well-
tested algorithms for choosing the bandwidth for the KR which minimizes the differences between the true
underlying distribution and the estimated distribution. Usually the selection of the bandwidth is done by
cross-validation.

In cross-validation, we first divide the given sample into subsets, then perform a preliminary analysis
on one such subset, and use the other subsets for confirming and validating the initial analysis. In an M -fold
cross-validation, the data are first divided into m subsets of approximately equal size. Then each of the m
subsets is used in turn as the test set and the other m− 1 subsets are put together to form a training set for a
given bandwidth. Then, the average error across all the m trials is computed (Zhang & Zhao 2007). Here we
adopt 10-fold cross-validation for the bandwidth choice, dividing the samples into ten subsets. The optical
bandwidth is indicated by the bandwidth with the minimum average errors. In Table 2 we apply KR with
seven-color (u− g, g − r, r − i, i− z, z − J , J −H and H −Ks) and spectra redshifts as an input pattern,
taking it as an example to illustrate the relationship between bandwidth (h) and cross-validated value (CV).
It is found that the optimal bandwidth h is 0.045 when cross-validated value arrives at the minimum value
4.33.

Table 2 The Relationship between Bandwidth (h) and Cross-Validated Value (CV)

h 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

CV(×10−5) 4.77 5.03 4.86 4.64 4.45 4.35 4.33 4.35 4.41 4.77

4 RESULT AND DISCUSSION

One advantage of the empirical training set approach to photometric redshift estimation is that additional
parameters can be easily incorporated. Additional parameters (e.g. petro50 r, petro90 r, and fracDeV r,
etc.) may be added to the input. We exmained different input patterns in order to study which parameter
influences the accuracy of the predicted photometric redshifts. We randomly divide the sample into two
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parts: 41,388 for the training and 20,695 for the testing, and applied KR and SVM for various sets of input
parameters. The resulting rms deviations are listed in Table 3.

Using SVMs to estimate the photometric redshifts, best performance is achieved with input sets of
colors. The 4-color input (u− g, g − r, r − i and i− z) gives the same best accuracy (σ rms=0.0273) as that
based on the 7-color input (u−g, g− r, r− i, i−z, z−J, J −H and H−Ks). The set of seven colors plus
the r magnitude is better than the set of four colors plus r magnitude, which is better than the set of seven
magnitudes. The performance taking five magnitudes as input is not as good as taking seven magnitudes.
Since the accuracy with four colors is best, we considered adding more parameters to see whether the
performance improves even more. As shown in Table 3, the accuracy decreases when adding fracDev r
or petro50 r and petro90 r. Thus, adding more parameters does not always improve the performance,
sometimes even makes it worse. The results have shown that there is no significant improvement when we
take more parametric data from the SDSS and 2MASS catalogs, i.e., it increases the number of attributes
markedly but does not decrease the rms error. So this course is not recommended.

Table 3 Dispersions of Photometric Redshift Prediction Using KR and SVMs

Method KR SVMs

Input Parameters σrms(optimal bandwidth) σrms

u, g, r, i, z 0.0208 (h = 0.025) 0.0291
u, g, r, i, z, J, H, Ks 0.0254 (h = 0.015) 0.0278
u − g, g − r, r − i, i − z 0.0193 (h = 0.020) 0.0273
u − g, g − r, r − i, i − z, r 0.0196 (h = 0.025) 0.0284
u − g, g − r, r − i, i − z, z − J, J − H, H − Ks 0.0210 (h = 0.045) 0.0273
u − g, g − r, r − i, i − z, z − J, J − H, H − Ks, r 0.0235 (h = 0.055) 0.0275
u − g, g − r, r − i, i − z, fracDev r 0.0192 (h = 0.020) 0.0306
u − g, g − r, r − i, i − z, petro50 r, petro90 r 0.0218 (h = 0.040) 0.0330

Note — petro50 r is the Petrosian 50% radius in r band, petro90 r the Petrosian 90% radius in
r band, and fracDeV r is fracDeV in r band.

For KR, the best input pattern is the four colors (u − g, g − r, r − i and i − z) plus fracDev r
when the rms error amounts to 0.0192. The next best patterns are the four colors by themselves or four
colors plus the r magnitude, when rms error is 0.0193 or 0.0196, respectively. Then comes the input set
of the five magnitudes when the rms scatter is 0.0208. The result with just seven colors is better than that
with seven colors plus with the r magnitude, but worse than that of five magnitudes. For four colors as
inputs, the performance of KR is made worse when adding petro50 r and petro90 r, except fracDev r.
Thus, when using KR to predict photometric redshifts, we find the parameters other than the magnitudes
and color indices, such as petro50 r and petro90 r, are ineffective; however, fracDev r is important
and effective, possibly because fracDev r is closely related to galaxy type. When implementing KR, an
increasing bandwidth may cause a small loss of estimation. In our experiments, the fraction of loss is less
than 1%. Table 3 also indicates that the optimal bandwidth is different for different input patterns.

Figure 1 (2) plots the photometric redshifts calculated with KR (SVMs) against the known spectro-
scopic redshifts. The left (right) panels correspond to the best (worst) input set. It is clear that the SVM-
estimated photometric redshifts are too high for low redshifts, but the KR-estimated photometric redshifts
are rather satisfactory.

To compare the performance of different methods for photometric redshift estimation, we list the rms
scatters of photometric redshifts from the different studies in Table 4. Because the accuracy strongly de-
pends on the data, the comparison is approximate. As shown in Table 4, the kernel regression (KR) is
comparable to the artificial neural networks (ANNs), which is better than the SVMs (Wadadekar 2005), the
Kd-tree (Csabai et al. 2003), the polynomial (Connolly et al. 1995), and superior to CWW and Bruzual-
Charlot (Csabai et al. 2003). Nevertheless, each method has its strong and weak points. KR belongs to
instance-based learning family. It is a form of memory-based method, only learning at the prediction phase,
therefore, it takes a large memory of the computer, even though it is of high accuracy. With the ANNs, one
should be familiar with the network architecture and require judicious decision as to the number of input
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Fig. 1 KR-calculated photometric redshifts for 62,083 galaxies from the SDSS DR5 and 2MASS plotted
against the known spectroscopic redshifts. Left: with the best input set (u − g, g − r, r − i, i − z and
fracDev r). Right: with the worst input set (u, g, r, i, z, J, H and Ks).

Fig. 2 SVM-calculated photometric redshifts for 62,083 galaxies from the SDSS DR5 and 2MASS plotted
against the known spectroscopic redshifts. Left: with the best input set (u− g, g− r, r− i and i− z). Right:
with the worst input set (u − g, g − r, r − i, i − z, petro50 r and petro90 r).

nodes and hidden layers: the more complex the networks, the more accurate the result is. However, SVMs
may use different kernel functions instead of different architectures like ANNs. As soon as one chooses
an appropriate kernel function and parameters, the rms scatter will decrease significantly. Moreover, such
classical problems as multi-local minima, curse of dimensionality and overfitting in ANNs, seldom occur
in SVMs. Nevertheless, SVMs need prior knowledge to adjust the parameters. Degeneration among the
parameters complicates the process of regulation. Even though linear or non-linear polynomial regression
is easy to implement and is well-known to astronomers, it involves large systematic deviations (Brunner
et al. 1997; Wang et al. 1998; Budavári et al. 2005; Hsieh et al. 2005; Connolly et al. 1995). Csabai et al.
(2000) have presented a hybrid model that is a combination of a template-based and an empirical training
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set. The hybrid model can reconstruct the continuum spectra of galaxies directly from a set of multicolor
photometric observations and spectroscopic redshifts. Although using this hybrid model the dispersion of
the photometric redshifts is significantly improved, it is still not as good as the empirical dispersion.

Table 4 Accuracy of Photometric Redshifts Derived from Various Approaches

Method Name σrms Data set Input parameters

CWW1 0.0666 SDSS-EDR ugriz
Bruzual-Charlot1 0.0552 SDSS-EDR ugriz
Interpolated1 0.0451 SDSS-EDR ugriz
Polynomial1 0.0318 SDSS-EDR ugriz
Kd-tree1 0.0254 SDSS-EDR ugriz
ClassX2 0.0340 SDSS-DR2 ugriz
SVMs3 0.0270 SDSS-DR2 ugriz
ANNs4 0.0229 SDSS-DR1 ugriz
Polynomial5 0.0250 SDSS-DR1,GALEX ugriz + nuv
KR 0.0208 SDSS-DR5,2MASS ugriz

0.0193 SDSS-DR5,2MASS color∗
SVMs 0.0273 SDSS-DR5,2MASS color∗

Note — SDSS-EDR = Early Data Release (Stoughton et al. 2002),
SDSS-DR1 = Data Release 1 (Abazajian et al. 2003),
SDSS-DR2 = Data Release 2 (Abazajian et al. 2004),
SDSS-DR5 = Data Release 5 (Adelman-McCarthy et al. 2007).
color∗ is the color indexes, i.e. u − g, g − r, r − i and i − z.
(1) Csabai et al. (2003); (2) Suchkov, Hanisch & Margonet (2005);
(3) Wadadekar (2005); (4) Collister & Lahav (2004); (5) Budavári et al. (2005).

5 CONCLUSIONS

We use two novel methods, SVMs and KR, to estimate the photometric redshifts of objects common to
SDSS DR5 and 2MASS. We compare their performance for various input sets. Our results show that only
by choosing an appropriate input set of parameters can the accuracy be improved. Additional bandpasses
from the infrared (2MASS) contributes little information due to the small size of data set, and there is no
significant improvement by adding the morphological parameters (petro50 r, petro90 r and fracDev r).

The accuracy of SVM-derived photometric redshifts is slightly less than that using ANNs, as good as
using linear or quadratic regression, and clearly much better than using template fitting. In certain situations,
SVMs will be a highly competitive tool for determining photometric redshifts with regard of speed and
application. However, it does require a large and representative training sample. As an empirical estimator,
it is impossible to extrapolate SVMs to regions not well sampled by the training set. Moreover, a potential
way to increase the accuracy of the photometric redshifts is to choose a more appropriate kernel function,
and to consider the methods of feature selection/extraction in the process of the input parameter selection.

The dispersion of photometric redshift estimation by KR is fairly satisfactory. Compared to other
training-set methods, KR does not need any extra effort on the training. In addition, KR improves the
empirical training-set methods. Even when the sample contains a few high-redshift galaxies, KR can ap-
propriately adjust the bandwidth to obtain much more accurate redshifts. Thus, KR can be extrapolated to
regions where the input parameters are not well represented by the training set. As larger and deeper pho-
tometric surveys are carried out, it seems that the KR will show its superiority. We plan to explore adaptive
bandwidth or other kinds of distance metric for KR in a future study.
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