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Abstract A model for contact binary systems is presented, which incorporates the following
special features: a) The energy exchange between the components is based on the understand-
ing that the energy exchange is due to the release of potential, kinetic and thermal energies
of the exchanged mass. b) A special form of mass and angular momentum loss occurring in
contact binaries is losses via the outer Lagrangian point. c) The effects of spin, orbital rota-
tion and tidal action on the stellar structure as well as the effect of meridian circulation on the
mixing of the chemical elements are considered. d) The model is valid not only for low-mass
contact binaries but also for high-mass contact binaries. For illustration, we used the model
to trace the evolution of a massive binary system consisting of one 12M� and one 5M�
star. The result shows that the start and end of the contact stage fall within the semi-detached
phase during which the primary continually transfers mass to the secondary. The time span
of the contact stage is short and the mass transfer rate is very large. Therefore, the contact
stage can be regarded as a special part of the semi-detached phase with a large mass transfer
rate. Both mass loss through the outer Lagrangian point and oscillation between contact and
semi-contact states can occur during the contact phase, and the effective temperatures of the
primary and the secondary are almost equal.
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1 INTRODUCTION

Contact binaries are binaries in which both components have filled their Roche lobes. A number of com-
plicated physical processes may occur in the contact binary systems. Due to the short orbital distance, the
gravitational force from the primary or the secondary is strong enough to accrete matter from the surface
of the other. Thus, the system has a common envelope and the processes of mass and energy exchange
between the components occur in the common envelope. The mass and energy exchange between the com-
ponents can influence the masses, luminosities, and effective temperatures of the components. When the
common envelope spills over the outer Lagrangian point, a special form of mass and angular momentum
loss occurs through the outer Lagrangian point, which can influence the period of the system significantly.
For the components of contact binaries, there exist not only the spin of the components, but also the or-
bital rotation and the tidal action from the companion star. The spin and orbital rotation of the components,
and the tidal action from the companion star can change the structure of the components from spherical
symmetric to non-spherical symmetric. In addition, a special form of mass flow, the meridian circulation,
occurs in the components caused by the effects of rotation. The meridian circulation drives the transport
of chemical elements in the components. The structure and evolution of a contact binary system depend
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mainly on the initial masses, initial chemical composition of the components, and the initial orbital separa-
tion between the components, but they are also significantly affected by the physical processes listed above.
Among those processes the effects of mass and energy exchange between the components, the losses of
mass and angular momentum via the outer Lagrangian point, and the effects of rotation and tide are the
most important. Hence, the understanding and treatment of those processes are the important contents for
the model of contact binary systems.

There have been a large number of studies on the structure and evolution of low-mass contact binaries
(e.g., W UMa-type contact binaries) with different models for those processes (e.g., Halzhrust & Meyer-
Hofmeister 1973; Robertson & Eggleton 1977; Halzhrust & Refsdal 1980,1984; Eggleton 1983; Kähler
et al. 1986; Li et al. 2004, 2005). From these previous studies the following points emerge: 1) There are
different ways to approximate the energy exchange between the components. Some studies estimated the
energy exchange by using the mass-luminosity relation that is valid for the W UMa-type contact binaries
(e.g. Robertson & Eggleton 1977; Rahunen 1981; Li et al. 2004a,b, 2005). Another approach to treat the
energy exchange is based on the understanding that the energy exchange is related to the entropy difference
and the contact depth (e.g., Halzhrust & Meyer-Hofmeister 1973; Kähler et al. 1986). 2) The effect of
angular momentum loss due to magnetic braking on the evolution of W UMa-type contact binaries was
studied by Li et al. (2004a). 3) The effect of spin of the components on the stellar structure equations was
examined (e.g. Eggleton 1983; Li et al. 2004a,b, 2005).

The purpose of the present paper is to present a model of contact binary systems with the following
emphases: a) The energy exchange between the components is studied based on the understanding that the
energy exchange is due to the release of the potential, kinetic and thermal energies of the exchanged mass. b)
As a special form of the mass and angular momentum loss occurring in contact binaries, the losses of mass
and angular momentum via the outer Lagrangian point are checked. c) The effects of spin, orbital rotation,
and tide on the stellar structure equations, as well as the effect of the meridian circulation on the mixing
of the chemical elements are considered. d) The model is valid not only for low-mass contact binaries but
also for the more massive contact binaries. In addition, to show the special features of contact binaries,
the evolution of a massive binary system consisting of a 12M� and a 5M� star is followed using of this
model. In Sections 2 and 3, the physical processes of mass and energy exchange are discussed respectively.
In Section 4 the mass and angular momentum loss via the outer Lagranging point is discussed. In Section 5
the effects of rotation and tide on the stellar structure equations, and the mixing of chemical elements due
to the meridian circulation are discussed. Section 6 analyzes the orbital evolution of binary systems with
consideration of theses processes. In the last section, the evolution of a binary system consisting of a 12M �
and a 5M� star is monitored from the zero age main sequence to the later stage after the contact phase.

2 MASS EXCHANGE BETWEEN THE COMPONENTS

2.1 The Condition for Mass Exchange

The potential at a point P for a synchronous rotating component in the Roche model is given by

ΨP = −GM1

r1
− 1

2
ω2r2

1 sin2 θ − 1
2
ω2(Xω − r1 sin θ)2 − GM2

r2
, (1)

where r1 and r2 are the distances between the point P and the centers of the primary and the secondary
respectively, M1 and M2 are the masses of the primary and the secondary, Xω is the distance between the
primary and the rotation axis of the system, ω is the orbital angular velocity of the system. The angle θ and
the coordinate system are shown in Figure 1. The first and second terms on the right side of Equation (1)
correspond to the respective contributions from the gravitation and spin of the primary. The third and fourth
terms respectively correspond to the contributions from the orbital rotation of the system and the gravi-
tation of the secondary. Using Equation (1), one obtains the average potentials at the surfaces of the two
components denoted by Ψ̄1 and Ψ̄2.

Mass flow occurs in the common envelope of a contact binary,when the average potential of the primary
Ψ̄1 differs from that of the secondary Ψ̄2, and the mass exchange will start off a process of changing the
inner state of the components (include transfer of mass and energy between the inner and outer layers and
the expansion or contraction of the components). As the result of the mass transfer in the common envelope



A Model for Contact Binary Systems 541

Fig. 1 Geometry for the calculation of the potential at the point P .

and the change of the inner state of the components, the average potential of the primary and the secondary
may be changed. If the changed average potentials of the components are not equal, then mass exchange
between the components will resume. Mass exchange between the primary and the secondary can take place
in two directions:

If Ψ̄1 > Ψ̄2, mass flows from the primary to the secondary;
If Ψ̄1 < Ψ̄2, mass flows from the secondary to the primary.
The condition to terminate the mass exchange can be expressed as:

Ψ̄1 = Ψ̄2. (2)

The time scale of the mass transfer process (i.e., from the beginning of mass transfer in the common enve-
lope to when the condition Ψ̄1 = Ψ̄2 is satisfied) is very short, however, compared to that of the contact
phase.

2.2 Rate of Mass Transfer

We approximate the rate of mass exchange by the requirement that the average potentials of the primary and
the secondary are equal after the mass exchange. Thus, the rate of mass transfer is related to the difference
between the average potentials of the two components before the mass transfer. Furthermore, the effect of
the total mass on the rate of mass exchange is also considered in the equation. So the mass transfer rate is
approximated as:

dM1c

dt
= −C · M1(Ψ̄1 − Ψ̄2), (3)

dM2c

dt
= −dM1c

dt
, (4)

where constant C is an adjustable parameter. If the value of C is chosen too small, then the condition of
Ψ̄1 > Ψ̄2 will exist both before and after the mass transfer, and it will need several transfers from the
primary to the secondary before the condition Ψ̄1 = Ψ̄2 is satisfied. On the other hand, if C is chosen too
large, then we may have Ψ̄1 > Ψ̄2 before the transfer and Ψ̄1 < Ψ̄2 after, and again it needs several transfers
back and forth before the condition Ψ̄1 = Ψ̄2 is satisfied. An extreme case occurs when the transferred mass
is so large that the potential of the donor component after the transfer becomes smaller than that of the inner
Lagrangian point, and the binary system changes from a contact system to a semi-contact one.

3 ENERGY EXCHANGE

A model to treat the energy exchange is presented based on the understanding that the energy exchange is
due to the release of potential, kinetic, and thermal energies of the exchanged mass.
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3.1 Release of the Potential Energy

It is assumed that the exchanged mass ∆M1c is distributed within a shell on the surface of the primary
before the transfer, and within a shell on the surface of the secondary after the transfer. The release of the
potential energy due to the flow of ∆M1c from the surface of the one to that of the other can be obtained as:

∆EP = ∆M1c · (Ψ̄1 − Ψ̄2), (5)

where Ψ̄1 and Ψ̄2 are the average potentials at the surfaces of the primary and the secondary, respectively.

3.2 Release in Kinetic Energy

As assumed above, the exchanged mass ∆M1c is distributed within a shell on the surface of the primary
before the transfer, and within a shell on the surface of the secondary after the transfer. If, as an approxima-
tion, the shells are regarded as rigid bodies, the release of the rotational kinetic energy due to the flow of
∆M1c can be obtained as

∆EK = ∆M1c{ 1
2 (2

3R2
1 + X2

ω) − 1
2 [23R2

2 + (A − Xω)2]}ω2, (6)

where Xω is the distance between the primary and the axis through the center of mass of the system, A is
the orbital separation between the two components, and ω is the angular velocity of the binary system. The
terms ( 2

3R2
1 + X2

ω) · ∆M1c and [ 23R2
2 + (A − Xω)2] · ∆M1c are the moments of inertia of the respective

shells involved.

3.3 Release of Thermal Energy

There are two physical processes that can affect the thermal condition of the outer layers of the components.
The first is the transfer of mass and energy in the common envelope. As the result of this process, the
effective temperatures of the components tend to be equalized. The second is the transfer of mass and
energy between the inner and outer layers of the components when there is mass exchange between the
components. As the result of this process, the thermal conditions of the outer layers of the components
are further changed and a new difference between the effective temperatures of the components comes
into being. The difference of the timescales between these two processes is important whether or not the
effective temperatures of the components are equal. As mentioned before, the exchanged mass ∆M 1c is
distributed within a shell on the surface of the primary before the transfer, and within a shell on the surface
of the secondary after, and the effective temperatures of the primary and the secondary are different. The
release of thermal energy in such case can be expressed as:

∆ET = ∆M1c

(3kTeff1

2µ1mp
− 3kTeff2

2µ2mp

)
, (7)

where Teff1 and Teff2 are the effective temperatures of the components, and µ 1 and µ2 are their mean
molecular weights, and mp is the mass of the proton. Equation (7) admits the case of no thermal energy
exchange (∆ET = 0), when the effective temperatures of the components are equal.

3.4 The Total Energy Exchange

The total energy exchange due to the release of different forms of energy is:

∆Ec = ∆EP + ∆EK + ∆ET . (8)

According to the virial theorem, half of the exchanged energy will be converted into a change of the
luminosity and the rest into an exchange of thermal energy of the components.

4 MASS AND ANGULAR MOMENTUM LOSS FROM THE OUTER LAGRANGIAN POINT

4.1 Potential at the Outer Lagrangian Point L2

Figure 2 shows the Roche equipotential surface, passing through the outer Lagrangian point L 2. From
Equation (1) the potential at the outer Lagrangin point L 2 is obtained as:

ΨL2 =

{ − GM1
XL2+Xω

− GM2
XL2+Xω−A − 1

2ω2 · X2
L2

, if M1 > M2,

− GM1
XL2−Xω

− GM2
XL2−Xω+A − 1

2ω2 · X2
L2

, if M1 < M2,
(9)
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where Xω is the distance between the primary and the the mass center of the system (Fig. 2), X ω =
M2A

(M1+M2)
), and XL2 is the distance between the outer Lagrangian point L2 and the mass center, which

is determined by condition that the sum of the gravitational forces and the centrifugal force at the point L 2

are zero:
GM1

(XL2 + Xω)2
− GM2

(XL2 + Xω − A)2
− ω2 · XL2 = 0, when M1 > M2, (10)

GM1

(XL2 − Xω)2
− GM2

(XL2 + A − Xω)2
− ω2 · XL2 = 0, when M1 < M2. (11)

Fig. 2 Geometry for the calculation of the potentials at various points.

4.2 Mass Loss via the Outer Lagrangian Point

The condition for the occurrence of mass loss via the outer Lagrangian point is:

Ψ̄2 ≥ ΨL2 , when M1 > M2, (12)

Ψ̄1 ≥ ΨL2 , when M1 < M2. (13)

The rates of mass loss through the outer Lagrangian point can be written as:

∆ML

∆t
=

{ −CL
M1+M2

2 (Ψ̄2 − ΨL2), M1 ≥ M2,

−CL
M1+M2

2 (Ψ̄1 − ΨL2), M1 < M2,
(14)

where the constants CL is an adjustable parameter. The physical background of Equation (14) is that the
mass loss rate is changed by the requirement that the average potentials of the component should be changed
simultaneously with that of the outer Lagrangian point. Thus, the rate of mass loss is related to the difference
between the average potential of the component and the potential of the outer Lagrangian point before the
start of mass loss. Furthermore, the effect of the total mass of the components on the rate of mass loss
should also be considered in this equation. Two cases can occur when the mass loss rate is calculated with
Equation (14): If the chosen value of the parameter CL is very small, then the mass loss from the outer
Lagrangian point need to occur several times before the common envelope losses enough mass to stop the
mass loss process. On the other hand, if CL is chosen very large, then the potential of the component after
the mass transfer drops below that of the outer Lagrangian point, so terminating the mass loss.
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4.3 Angular Momentum Loss via the Outer Lagrangian Point

It is assumed that the components are in synchronous rotation and a part of the lost mass ∆M L was dis-
tributed within a shell on the surface of the secondary before the escape, while the other part of ∆M L was
distributed within a shell on the surface of the primary. If the shells are approximated as rigid bodies, the
angular momentum carried away by the escaped mass ∆ML can be written as:

∆JL = (2
3R2

1 + X2
ω)∆ML·M1

M1+M2
ω + [23R2

2 + (A − Xω)2]∆ML·M2
M1+M2

ω, (15)

where Xω is the distance between the primary and the mass center of the system, and ω is the angular
velocity of the binary system. The terms ( 2

3R2
1 + X2

ω)∆ML·M1
M1+M2

and [ 23R2
2 + (A − Xω)2]∆ML·M2

M1+M2
are the

moments of inertia of the shells concerned, and R1 and R2 are the radii of the primary and secondary.
The first and the second terms on the right side of Equation (15) correspond, respectively, to the angular
momentum carried away by the lost mass from the primary and the secondary.

5 EFFECTS OF ROTATION AND TIDE

5.1 The Equipotentials of the Components

From Equation (1), the equipotentials of the components defined by the function Ψ =constant are asym-
metric ellipsoids with two semi-major axes a1 and a2 (a1 > a2 ) and one semi-minor axis b (see fig. 1 and
Huang 2004).

5.2 The Stellar Structure Equations

Due to the effect of tide, the rotation of the individual component is synchronous with the orbital motion
of the system. Such synchronous rotation exists also in the interior of the components. Thus, the rotation of
the components is solid-body rotation and may be called “conservative rotation”. Kippenhahn & Thomas
(1970) introduced a method to simplify the two-dimensional model with conservative rotation to a one-
dimensional model and gave the structural equations as follows:

drΨ

dMΨ
=

1
4πr2

Ψρ
, (16)

dP

dMψ
= −GMΨ

4πr4
Ψ

fP , (17)

dL

dMΨ
= εN − εν + εg, (18)

d ln T

d ln P
=

{
∇RfT/fp

∇con
, (19)

where

fP =
4πr4

Ψ

GMΨSΨ

1
〈g−1

eff 〉 , (20)

fT =
(

4πr2
Ψ

SΨ

)2 1
〈geff〉〈g−1

eff 〉 , (21)

∇R =
3κLP

4acGMΨT 4
. (22)

Here, 〈geff〉, 〈g−1
eff 〉 are the mean values of the effective gravity and its inverse over the equipotential surface,

∇R the radiative temperature gradient.
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5.3 Rotational Mixing

The effect of rotation results in an outward mass-flow along the rotational axis and an inward mass flow
along the equatorial plane. Such outward and inward mass flows in a star are called meridian circulation
(Kippenhahn & Weigert 1990; Maeder & Meynet 2000). As a result of the meridian circulation and the
shear turbulence, a radial mass exchange occurs that can drive a transport of chemical elements in rotating
stars. For components with solid-body rotation there exists no differential rotation which can drive shear
turbulence. Hence, the rotational mixing in the components of a binary system can be driven only by the
meridian circulation. Since the transport of chemical elements is caused by the effect of rotation, and the
effect of rotation of a mass layer can be approximated by the ratio of the mean effective gravity 〈g eff〉 to the
gravity gi of this layer, so the change of the composition of the element α via a diffusion-advection process
can be approximated by:(

∂Xα

∂t

)
r

=
(

∂

∂r

)
t

[
−Dadv

〈geff〉i
gi

− Ddiff

(
∂Xα

∂r

)
t

]
+

(
dXα

dt

)
nuc

, (23)

where Dadv and Ddiff are the relevant coefficients (Dadv = K1
τadv

, Ddiff = K2
τth

), K1 and K2 being two
dimensionless parameters. The thermal and the advection time-scales can be given as (see Maeder & Meynet
2000; Huang & Yu 1998): τth = 1

2qGM
2

RL , q = 0.5 and τadv = τth
GM
R3ω2 . The last term of Equation (23) is

the change of the composition due to nuclear reactions.
At the inner and outer boundary the reflecting conditions are used:(

∂Xα

∂r

)
t

|r=0= 0 =
(

∂Xα

∂r

)
t

|r=R . (24)

5.4 Mass and Angular Momentum Loss due to Stellar Winds

Among the numerous observational and theoretical investigations on the mass loss rate via stellar winds (see
Chiosi & Maeder 1986) we adopt the observational formula for the mass loss rate introduced by Waldron
(1984), according to which, the rate of mass loss (in M� yr−1) is dependent upon both the stellar luminosity
and the stellar radius, and is given by

log(Ṁ) = 1.07 log(L/L�) + 1.77 log(R/R�) − 14.3. (25)

The rate of mass loss from a rotating component star in a binary system may be different from a rotating
single star of the same spectral type and luminosity class, due to the effects of tide, and the centrifugal
forces caused by the rotation. From Friend & Castor (1982), the mass loss rate is related to the gravitational
potential. Therefore, the rate of mass loss for a component star is enhanced by a factor ζ, given by

ζ =
g

〈geff〉 , (26)

where g is the gravitational acceleration for a single star with the same mass.
It is assumed that the mass (∆M1w ) lost by the winds from the primary was originally distributed in

a shell on the surface of the primary, and similarly the mass loss of ∆M 2w by the secondary. If the shells
are approximated as rigid bodies, then the angular momentum carried away by the escaped masses can be
written as:

∆J = (2
3R2

1 + X2
ω)∆M1wω + [23R2

2 + (A − Xω)2]∆M2wω, (27)

where Xω is the distance between the primary and the center of mass of the system, ω is the angular velocity
of the binary system. The terms ( 2

3R2
1 + X2

ω)∆M1w and [ 23R2
2 + (A − Xω)2]∆M2w are the moments of

inertia of the shells, and R1 and R2 are the radii of the primary and the secondary. The first and the second
terms on the right side of Equation (27) correspond to the angular momentum carried away by the lost mass
from the primary and the secondary, respectively.
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6 THE ORBITAL EVOLUTION

The angular velocity of the system and the orbital separation between the two components vary due to a
number of physical processes as the binary system evolves, including the loss of mass and angular mo-
mentum via stellar winds, the exchange of mass between the components, the loss of mass and angular
momentum via the outer Lagrangian point and the changes in the moments of inertia of the components.
According to Huang & Taam (1990), the changes in the angular velocity of the system and the orbital
separation between the two components can be obtained as:

∆ω

ω
=

1
2

∆M1 + ∆M2

M1 + M2
− 3

2
∆A

A
, (28)

∆A
A = 1

1
2−2β

[∆JJ − ∆M1
M1

(1 − β) − ∆M2
M2

(1 − β)

−∆M1+∆M2
M1+M2

(β − 1
2 ) − ∆I1+∆I2

I1+I2
β],

(29)

where M1, M2 and I1, I2 are the masses and moments of inertia of the primary and the secondary, respec-
tively.

The changes in the masses of the primary and secondary can be written as:

∆M1 = ∆M1c + ∆M1ω + ∆M1L, (30)

∆M2 = ∆M2c + ∆M2ω + ∆M2L. (31)

The several terms on the right hand side of Equations (30) and (31) correspond to the exchange of mass be-
tween the components (include the Roche lobe overflow in the semi-detached phase and the mass exchange
in the contact phase), the mass losses via stellar winds, and the mass losses via the outer Lagrangian point,
respectively.

In Equation (29), J is the total angular momentum of the system, which can be written as

J = J0 + (I1 + I2)ω, (32)

where

J0 =
G1/2A1/2M1M2

(M1 + M2)
1/2

. (33)

Here, J0 is the orbital angular momentum of the system, (I1 + I2)ω is the rotational angular momentum,
β = (I1+I2)ω

J is the ratio of rotational angular momentum to the total angular momentum of the system.
The loss of angular momentum is given by

∆J = ∆Jω + ∆JL, (34)

where ∆Jw and ∆JL are the angular momentum losses due to stellar winds and via the outer Lagrangian
point.

7 COMPUTATIONS AND RESULTS

As an example, the evolution of a massive binary system consisting of a 12 M� and a 5 M� stars was
computed with a modified stellar evolution code for the evolution of rotating binaries developed by Huang
(2004). The code was updated to include mass and energy exchange between the components and loss of
mass and angular momentum through the outer Lagrangian point during the contact phase. Both compo-
nents of the system were treated simultaneously including the effect of mass loss due to stellar winds, the
effect of convective overshooting, and the effects of rotation and mass transfer between the components.
The evolution was followed from the zero age main sequence to the later stage after the contact phase. An
initial chemical composition of X = 0.70, Z = 0.02 was adopted for both stars. The initial orbital separa-
tion between the components was taken to be 17.013R�, so that both stars filled their Roche lobes during
the central hydrogen-burning phase of the primary. Owing to the short timescale of the contact phase, the
losses of mass and angular momentum due to stellar winds can be neglected in this phase.
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Fig. 3 Evolutionary tracks in the HR diagram of the 12 M� primary (solid curve) and
the 5M� secondary (dashed).

The evolutionary tracks of the primary and the secondary in the HR diagram are displayed in Figure 3,
by the solid and dashed curves, respectively. The points a, b, c, d, e, f and g on the tracks represent, in
order, the zero age main sequence, the beginning of the Roche lobe overflow, the beginning of the contact
phase, the starting of the mass loss from the outer Lagrangian point, the end of the contact phase, the
end of the central hydrogen-burning phase and the end of the calculations. Table 1 lists the ages, orbital
periods, masses, luminosities, and effective temperatures of the primary and secondary, as well as the central
hydrogen and helium content and the surface hydrogen content of the primary at different evolutionary
points. From Table 1 it can be found that the binary system evolves first into a semi-detached system and
begins the Roche lobe overflow (point b). After 1.55 × 105 yr, the system evolves into a contact binary
and begins the mass transfer in the common envelope (point c). From point b to c, the primary transfers an
amount of mass of 1.219M� to the secondary, hence an average mass transfer rate of 7.87×10−6M� yr−1.
The contact phase (from point c to e) lasts 1.34 × 104 yr, during which the primary transfers continuously
to the secondary a mass of 4.358M�. Hence, for the contact phase, we have an average mass transfer rate
of 3.25 × 10−4M� yr−1, which is from one to two orders of magnitude greater than in the semi-detached
phase. At the end of the contact phase (point e), the binary changes back to a semi-detached system. Owing
to the fact that the start and end of the contact stage fall within the semi-detached phase and the primary
transfers continuously mass to the secondary, the contact stage can be regarded as a special part of the semi-
detached phase characterized by a short time span, a large transfer of mass at a rate much greater than that
through the Roche lobe overflow. Table 1 shows that the total mass of the system (M 1 + M2) is decreased
by 0.005M� during the contact phase (from point c to e). This decrease is due to the loss of mass via the
outer Lagrangian point. From the ratio of the mass loss and the time interval of the contact phase, an average
mass loss rate via the outer Lagrangian point of 3.73 × 10−7M� yr−1 can be found, which of via the outer
Lagrangian point is comparable with that of a red giant star due to stellar wind.

Figure 4 illustrates the time variation of the parameter IOVER. IOVER= 1, 2, 3 according as the binary
is semi-detached (Ψ̄1 > ΨL1 and Ψ̄2 < ΨL1), in contact (Ψ̄1 > ΨL1 and Ψ̄2 > ΨL1), or starting to lose
mass via the outer Lagrangian point (Ψ̄1 > ΨL1 and Ψ̄2 > ΨL2). Figure 4 shows that IOVER takes the
value 3 several times during the middle part of the contact phase, and oscillates between 2 and 1 frequently
during the later part. This shows that both the process of mass loss via the outer Lagrangian point and
oscillation between contact and semi-contact states can occur in contact binaries.

Figure 5 displays the time variation of the total mass change of the primary during the contact phase.
The total mass change ∆M1 of the primary consists of the mass loss due to stellar winds ∆M1w, the
mass exchange between the components ∆M1c, and the mass loss via the outer Lagrangian point. ∆M1 is
positive or negative according as mass flows from the primary to the secondary, or from the secondary to
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Table 1 Model Parameter Values at the Different Evolutionary Points a, b, c, d, e, f and g, Marked in Fig. 3

Seq. t(107yr) P (d) M1 M2 log L1/L� log L2/L� log T1eff log T2eff X1(c) Y1(c) X1

a
MOD 0.000000 1.870 12.000 5.000 3.981 2.679 4.435 4.218 0.70 0.28 0.7

b
MOD 1.4292167 1.979 11.879 4.999 4.255 2.725 4.386 4.221 0.2606 0.7194 0.6999

c
MOD 1.4447047 1.804 10.660 6.216 4.053 3.823 4.371 4.362 0.2524 0.7276 0.7000

d
MOD 1.4449207 1.782 9.943 6.933 3.856 4.054 4.307 4.372 0.2524 0.7276 0.70

e
MOD 1.4460467 2.042 6.302 10.569 3.236 4.369 4.198 4.461 0.2521 0.7279 0.6998

f
MOD 2.3088047 1.982 4.341 12.530 3.807 4.219 4.389 4.453 0.00 0.98 0.4570

g
MOD 2.34176 8.887 1.723 15.147 3.55 4.509 4.6100 4.578 0.00 0.98 0.1511

Fig. 4 Time variation of the parameter IOVER during the contact phase. The values of 1, 2 and 3 of the
parameter IOVER correspond to the semi-detached state, the contact state and the start of mass loss via the
outer Lagrangian point, respectively.

the primary. Figure 5 shows that ∆M1 is negative (or mass flows from the secondary to the primary) on two
occasions in the time interval from t = 1.4446× 107 to t = 1.4450 × 107 yr.

Figure 6 illustrates the time variation of the total energy exchange during the contact phase. The total
energy exchange ∆E includes the release in potential energy ∆EP , in kinetic energy ∆EK and in thermal
energy ∆ET . ∆E is positive or negative according as the energy goes from the primary to the secondary,
or from the secondary to the primary. Figure 6 shows that ∆E is negative (energy goes from the secondary
to the primary) on two occasions in the time interval between t = 1.4446 × 10 7 and t = 1.4450 × 107 yr.
The figure also shows that the total energy transfer mainly consists of release of potential energy ∆E P

and kinetic energy ∆EK , while the release of thermal energy ∆ET is close to zero. This means that the
effective temperatures of the primary and the secondary are almost equal.
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Fig. 5 Time variation of the mass flow during the contact phase.

Fig. 6 Time variation of energy exchange during the contact phase. The solid, dotted, dashed and dotted-
dashed curves correspond to the exchanges in the total, potential, kinetic and thermal energies, respectively.

8 SHORT CONCLUSIONS

For a massive contact binary system consisting of a 12 M� and a 5 M� star, the following results are found:
1) Owing to the fact that the start and end of the contact stage fall within the semi-detached phase and the
primary transfers continuously mass to the secondary, the contact stage can be regarded as a special part of
the semi-detached phase characterized by a short time interval, a large total amount of mass transfer and a
rate of mass transfer much greater than that via the Roche lobe overflow. 2) A special feature of the contact
system is the occurrence of mass and angular momentum loss via the outer Lagrangian point. It can occur
intermittently and can affect the orbital period of the system significantly. Thus, it was found that some short
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variations could occur in the slow time variation of the period. The average rate of mass loss via the outer
Lagrangian point is comparable with that of a red giant star due to stellar wind. 3) There exists vibration
between contact and semi-contact states in the contact phase. 4) The effective temperatures of the primary
and the secondary are almost equal.
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