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Abstract Newtonian core-shell systems, as limiting cases of relativistic core-shell models
under the two conditions of weak field and slow motion, could account for massive circum-
stellar dust shells and rings around certain types of star remnants. Because this kind of sys-
tems have Hamiltonians that can be split into a main part and a small perturbing part, a
good choice of the numerical tool is the pseudo 8th order symplectic integrator of Laskar &
Robutel, and, to match the symplectic calculations, a good choice of chaos indicator is the
fast Lyapunov indicator (FLI) with two nearby trajectories proposed by Wu, Huang & Zhang.
Numerical results show that the FLI is very powerful when describing not only the transition
from regular motion to chaos but also the global structure of the phase space of the system.
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1 INTRODUCTION

Chaos, or deterministic unpredictable behavior of nonlinear dynamical systems, has been of great interest in
dynamical astronomy (Contopoulos & Barbanis 1989; Wu & Zhang 2006; Wu et al. 2006b). There are two
factors that affect the reliability of the identification of chaos for a given system. One depends on numerical
algorithms. As is well-known, the traditional integrators with artificial dissipation in long-term numerical
integrations can cause a great bias from some invariant manifolds so that results of the calculations are
unreliable. However, the integrators combined with the manifold correction technique of Nacozy (1971) or
Baumgarte (1973) may remedy the defect. Note, as a crucial point, we should be very careful when using
this kind of manifold correction. Wu et al. (2006c) pointed out that it is very important to control both of the
two independent energy integrals rather than just the total energy for an autonomous Hamiltonian system
separable into two constant pieces. Further, this idea was extended to Hamiltonian systems involving many
constraints (Wu & He 2006), and an n-body problem with n−1 varying Kepler energies in the solar system
(Wu et al. 2007). Clearly, these numerical schemes with the manifold corrections do not maintain the sym-
plectic structure of Hamiltonian systems, but symplectic integrators do. In this sense, symplectic integrators
are regarded as an adaptive tool for the qualitative study of long-term evolution. The most popular method
is the second-order leapfrog symplectic integrator of Wisdom & Holman (1991), in which the Hamiltonian
is separated into a Keplerian part and an interaction one. It is said that the computation efficiency of the
symplectic scheme has been improved dramatically. Especially the merit of the pseudo-high-order sym-
plectic integrators (Chambers & Murison 2000; Laskar & Robutel 2001; Liu et al. 2005) has become more
manifest than that of the corresponding conventional symplectic integrators of Yoshida (1990). Thus, the
pseudo-order integrators are worth recommending when the Hamiltonian system is of a similar separable
form.

The other factor concerns chaos indicators. Each of the known chaos indicators has its advantages
and shortcomings. The Poincaré surfaces of section are the most common qualitative tool in the analysis of
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dynamical systems, but they are most useful only when the number of degrees of freedom minus the number
of constraints is not larger than two. For a system of many degrees of freedom, the Lyapunov characteristic
exponents (LCEs), which measure the average exponent diverge rate of the distance between two adjacent
orbits in the phase space, are perhaps a better choice. A compact system is ordered (i.e., stable periodic,
or quasiperiodic) if its maximal LCE is zero, and chaotic if the LCE is positive. There are two different
paths for calculating the LCE: the variational method and the two-particle method (Tancredi et al. 2001).
The former involves solving the variational equations together with the equations of motion, while the latter
needs only the integration of two nearby orbits that start very close to each other. In this case, it is necessary
to use an appropriate initial distance between the two nearby orbits and an appropriate interval between
successive renormalizations. It has been emphasized that the LCEs defined in the configuration space are
completely equivalent to ones given in the phase space (Wu & Huang 2003). The superiority of the use
of the two-particle method becomes rather explicit when the formulation and solution of the variational
equations are troublesome. A practical problem one usually encounters is that, in general, one has to follow
the orbit for quite a long time before obtaining a reliable LCE.

Hence the computation of LCEs for thousands of orbits is very expensive. In this case, the fast Lyapunov
indicators (FLIs) of Froeschlé et al. (1997) are an ideal technique. The FLI means that the logarithm of the
length of a tangential vector, which grows exponentially for a chaotic orbit, grows only polynomially for
a regular motion. This allows one to quickly distinguish the two cases. Wu et al. (2006a) extended this
idea and proposed the FLI with two nearby trajectories. Unlike the original approach of FLI (Froeschlé
et al. 2000) with the tangential vector, the modification might fail to work without renormalization due
to saturation of the orbits in a bounded chaotic region. To work out this problem, they introduced the
renormalization technique to compute their FLI within a sufficiently long time span. It has proved successful
to use the FLI to explore the global dynamics of phase space for a complicated relativistic system. Of course,
there are other qualitative techniques for multidimensional systems, such as the power spectra, the frequency
map analysis (Laskar 1994; Xie & Huang 2006), the smaller alignment index (Skokos 2004), the 0–1 test
method (Gottwald & Melbourne 2004), and so on. For details, see a recent review in Wu & Huang (2005).

In a word, it is vital to choose a suitable numerical algorithm and chaos indicator as tools for the analysis
of orbital dynamical evolution. As is stated above, one main motivation of the FLI with two nearby orbits
presented by Wu et al. (2006a) is that it can be applied to complicated physical models. In the present paper,
we shall deal with the other application of the FLI, that is, our objective is to ensure that numerical methods
for the calculation of two nearby orbits are symplectic. As an illustration, in the computation of the LCE
and FLI with the tangential vector, symplectic integrators can be used to solve the equations of motion for
some Hamiltonian problems, while they are not a straightforward tool to treat the corresponding variational
equations in general. For the Newtonian core-shell Hamiltonian system (Vieira & Letelier 1999) split into
one important and one minor component, we consider the pseudo-order integrators to be one of the good
integrators.

This paper is organized as follows. In Section 2 we mainly use two different orbits to evaluate the
accuracy of one of the pseudo-order integrators (Laskar & Robutel 2001), which is applied to solve the
Newtonian core-shell Hamiltonian system (Vieira & Letelier 1999). Then, we report on some applications
of the FLI with two nearby orbits in Section 3. Finally, a summary follows in Section 4.

2 PHYSICAL MODELS AND NUMERICAL INTEGRATORS

First, we introduce the Newtonian core-shell model and the pseudo-8th-order symplectic integrator. Then,
we estimate the relative energy errors and position errors of two different orbits (one may be regular, and
the other, chaotic). As an in-depth exploration, we use LCEs, FLIs and Poincaré sections to independently
check the classification of the two orbits.

2.1 Physical Models

It is possible to use static, relativistic core-shell systems to model black holes or neutron stars surrounded
by axially symmetric massive additional matters such as shell and ring remnants in galaxies (Vieira &
Letelier 1999). When the two conditions of weak field and slow motion of test particles in the vacuum
between the core’s horizon and the shell are satisfied, limiting cases of the relativistic models turn out to
be the corresponding Newtonian counterparts, which could account for massive circumstellar dust shells
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and rings around certain types of star remnants. The Newtonian potentials of the exterior shell are made
up of multipoles from shell-like Legendre expansions. Because of the linear superposition of Newtonian
potentials, the Newtonian core-shell system is expressible in cylindrical coordinates as

H =
1
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Obviously, in Cartesian coordinates Equation (1) can be changed into the following form:
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Besides the energy integral in Equation (2), there is always the angular momentum integral,

L = xpy − ypx. (3)

In addition, we point out that the primary piece, H0, is a Kepler part caused by the black hole; and the
other, perturbing part,H1, originating from the shell, though rather smaller, can not be neglected. For such
systems, the pseudo-order symplectic integrators are very suitable.

2.2 Pseudo Eighth Order Symplectic Integrator

For convenience, Equation (2) is marked asH = H0 + εH1 with ε a small perturbation parameter. The Lie
derivative with respect to H is denoted by LH = {H, } ({ , } being the Poisson bracket). We write A =
LH0 andB = LH1 . Clearly, the local truncation error in the Kernel of an nth-order symplectic integrator of
Yoshida (1990) with a fixed time step τ is of O(ετ n+1). Whereas a pseudo nth-order symplectic integrator
of Chambers & Murison (2000) corresponds to its error in the form max{O(ε 2τ3),O(ετn+1)}. From the
power of τ , the pseudo nth-order symplectic integrator seems to be a second-order standard symplectic
integration scheme. However, it can achieve the accuracy of a nth-order symplectic integrator if O(ε 2τ3)
is sufficiently small. Otherwise, the error of the pseudo-order integrator still becomes much smaller than
that of the conventional second-order symplectic integrator. Especially, a dramatic advantage the pseudo-
order integrator has is that it contains only a combination of n + 1 Lie operators. Consequently, it has a
greatly diminished roundoff errors and involves small computational cost, compared to the corresponding
symplectic integrator.

Seen from the formal expression of error, the pseudo-order integrators do not necessary have a good
accuracy when n becomes very large. In fact, Laskar & Robutel (2001) found that a pseudo sixth- or eighth-
order symplectic integrator has the best numerical precision. Here we list the pseudo eighth-order integrator
of the form

PS8 = ec1τAed1τεBec2τAed2τεBec3τAed2τεBec2τAed1τεBec1τA , (4)

with the relevant coefficients,
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Next, we shall apply the integrator in Equation (4) to Equation (2).

For simplicity, we consider only the case of a monopolar core plus shell octopoles. LetD = 0, Q = 0,
energy E = −3.147× 10−2, L = 3.8 and O = 7.0129 × 10−7. As far as initial conditions are concerned,
z = 0 is always fixed, and pz is a positive square root given by Equation (1). First, we take the starting
point S (15.0, –0.015) (labeled as orbit S) in the r-p r plane. Giving the transformation from the cylindrical
coordinates to Cartesian coordinates, we work out Equation (2) by use of the method of Equation (4) with
a fixed step-size of 1.0 (that is, the integration is always carried out in Cartesian coordinates). Figure 1A
displays the relative energy error, which appears to consist of periodic changes instead of a secular growth
with time. This shows that the integrator does preserve energy, which is an important property of symplectic
integrators. For a different orbit with the initial point T (12.0, 0.040) (labeled as orbit T), we see an energy
accuracy of the order of 10−8 (see Fig. 1B). However, the position errors |∆r| 1 of the two orbits are
completely different. The error of orbit S (Fig. 1C) grows linearly with time and reaches the order of 10 −3

at time 105, while the error of orbit T (Fig. 1D) apparently begins to grow exponentially at time 1.1 × 10 4.
Why this difference? Answer: the two orbits may have different dynamical features.

Fig. 1 Errors of the pseudo 8th symplectic integrator. Panels A and C represent the relative energy error
and position error of orbit S, Panels B and D, those of orbit T.

1 The related reference orbits are obtained from a 12th-order Cowell integrator.
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2.3 Identifying the Classification of the Two Orbits

Now we use several methods to analyze the two orbits, the methods of LCEs, of FLI with two nearby orbits
and of the Poincaré sections.

2.3.1 Lyapunov Characteristic Exponents

There are two methods for the calculation of the maximum LCE in published references. One is the so-
called variational method with the expression

λ = lim
t→∞ �(t), (5)

�(t) =
1
t

ln
|ξ(t)|
|ξ(0)| ,

where ξ(0) and ξ(t) stand for the tangential vectors in the phase space at the initial time and time t. The
other is the two-particle method (Benettin et al. 1976) of the form,

Λ = lim
t→∞χ(t), (6)
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1
t

ln
d(t)
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.

In this equation, d(t) is the distance in the phase space between two nearby trajectories with the initial
separation d(0). Tancredi et al. (2001) pointed out that it is best to choose d(0) on the order of about 10 −8.

As mentioned above, the pseudo-order symplectic integrator of Equation (4) is very suitable for com-
puting Equation (6). Figure 2 (left) plots the LCEs of the two orbits, S and T. As an illustration, we deal with
the two orbits in the 3-dimensional system of Equation (2) for the calculation of the LCEs. In particular, the
values of the LCEs are also checked with Equation (5) with an 8–9 order Runge-Kutta-Fehlberg algorithm
of variable time-step (The same procedure was followed in the demonstrations below). In Figure 2, Curve A
(for orbit S) decreases linearly with time towards zero. This seems to imply the regularity of orbit S. Curve
B (for orbit T) does not seem to tend to a stable value even when the integration was carried to time 10 7.
These facts show that the LCE is not very sensitive or quick to distinguish the dynamics of the two orbits.
We now consider a more sensitive tool.

Fig. 2 Left panel: Curves A and B sketch the maximum Lyapunov characteristic exponents of orbits S and
T, respectively. Right panel: Curves C and D correspond to the fast Lyapunov indictors of the two orbits.
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2.3.2 The Fast Lyapunov Indictor based on two nearby orbits

Froeschlé & Lega (2000) used the tangential vector to construct the FLI as

ψ(t) = log10 |ξ(t)| (7)

(the adopted logarithmic symbol is for the logarithm function in their article). Given a threshold, the indi-
cator ψ tends to the value with completely different time rates for ordered and chaotic orbits: it varies more
and more slowly for the former, while it does quickly for the latter, and it tends to different values for the
two kinds of orbit in the same time interval. More specifically, it increases linearly with time (log 10 t) in the
regular case, and exponentially in the chaotic case. This allows one to distinguish between the two cases.

In order to avoid using tangential vectors for complicated systems and consider the applicability of
symplectic schemes, Wu et al. (2006a) developed the above idea and proposed the following form of FLI
with two nearby orbits:

FLI(t) = log10

d(t)
d(0)

. (8)

Unlike Equation (7), Equation (8) has some difficulties in the computation if done without renormalisation.
This is because the distance between the two orbits may expand so fast that it could reach the chaotic
boundary and cause saturation. As a tentative solution to this problem, they gave a detailed algorithm of the
FLI. Let d(0) = 10−9. Saturation occurs when d(t) = 1, therefore d(t) = 0.1 can be chosen as a critical
value for carrying out renormalization. Obviously, the number of renormalization for computing the FLI is
less than that for the LCE. An advantage is to guarantee the speed of computation. Let k (k = 0, 1, 2, · · ·) be
the sequential number of renormalization. The computation of the FLI satisfies the following requirement,

FLIk(t) = −k · [1 + log10 d(0)] + log10

d(t)
d(0)

, (9)

where d(0) ≤ d(t) ≤ 0.1. Using this algorithm, we obtain the time variations of the FLIs of orbits S and T
in the right panel of Figure 2. We find that the FLI for orbit S (Curve C) remain below 3.0 for integration
time up to 105, while that of orbit T (Curve D) reaches 16.0 or so. Thus, Equation (8) provides a very
sensitive tool to distinguish the regular orbit S from the highly chaotic orbit T. Also it may be noted that, in
this chaotic case, the number of renormalizations is only two. By a comparison with the computed LCE in
the left panel of Figure 2, we see that the FLI has a great merit in the identification of the orbital dynamical
behavior. These results are again proved by the Poincaré sections (Fig. 3A). Here it is necessary to change
the numerical solutions in Cartesian coordinate system to ones in the cylindrical coordinate system.

In short, now we can understand the contents of Figure 1. We note, further, that the indicator of
Equation (8) is quick and sensitive to distinguish between chaos and ordered motion.

3 APPLICATIONS OF THE FLI WITH TWO NEARBY ORBITS

This section presents further applications of the FLI of Equation (8). Specifically, we shall know the be-
havior of the orbit by the variations of the FLI with a selected coordinate for fixed initial conditions and
dynamical parameters. On the other hand, we try to find a relationship between the critical values of two
parameters by tracing an orbit with the maximal radius rmax on the equatorial plane while the other initial
conditions and dynamical parameters are fixed. Finally the global dynamical structure based on different
values of the FLI is described.

3.1 Distribution of Regular and Chaotic Regions on a Straight Line

Similar to Wu et al. (2006a), we can find a distribution of regular and chaotic regions on the line r = 13.5 in
Figure 3A. The detailed operation is as follow. Let the initial pr range from –0.0763 to 0.0769 at intervals
of 0.001, and all the dynamical parameters and the other initial conditions be fixed. Each of the initial orbits
is numerically integrated up to time 105. Figure 3B plots the maximal value of FLI as a function of the
initial action pr. By a series of numerical experiments, we find that 7.5 is the critical value of FLIs between
ordered and chaotic regions, that is, the orbit is regular when FLImax ≤ 7.5, and is chaotic if FLImax > 7.5.
Thus, three chaotic regions, [0.02869, 0.02969], [0.03969, 0.06769] and [0.07469, 0.07669], trapped in the
straight line r = 13.5 are identified. Clearly, these results coincide with the results on the Poincaré sections.
This shows the validity of the indictor of Equation (8).
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Fig. 3 Panel A: Poincáre section on the plane z = 0 with pz > 0. Panel B: FLImax as a function of the
initial value of pr with fixed initial value of r = 13.5. Here regular and chaotic regions are identified on the
basis of the differing values of FLIs.

3.2 The Transition from Regular Motion to Chaos

First we estimate effects on the dynamics of orbits of varying one dynamical parameter. For example, we fix
the same parametersE andO (as in the above), and the same initial conditions z = 0 and p r = 0, while vary
L from 3.357 to 3.971. The initial value of r is the maximal root rmax of the equation 2Er2 +2r−L2 = 0.
In practice, the chosen test orbit with rmax corresponds to the zero-velocity curve, called the critical line.
Because of the effect of various perturbations, the dynamical characteristics (for example, stability and
instability, regularity and chaos) in the critical line can easily vary, that is, the dynamical characteristics
in the critical line are sensitively dependent on the variation of the dynamical parameters. Making use
of these factors, Caranicolas & Papadopoulos (2003) used the critical line to discuss the transition from
regular motion to chaos in elliptical galaxies. Here, we follow this method and establish a functional relation
between the FLImax and L. This is shown in Figure 4A. The larger L gets, the weaker chaos becomes. This
is because a large angular momentum means a large region of motion and hence a decreased gravity of the
core on the test particle.

Similarly, we can draw two other diagrams: FLImax—E (Fig. 4B), FLImax—O (Fig. 4C). These plots
show that the chaos emerges with increasing E or O. In fact, Figure 4C can be viewed as displaying the
dynamical variation of the orbit with O when initial orbits vary over the parameters in Figures 4A and 4B.

Now let us survey some of the dynamical features yielded by the variation of two of the parameters at a
time, the relationship between the two critical parameters. First consider that the parameterL = 3.8 is fixed,
then we have 0 > E ≥ −1/(2L2) ≈ −0.03462 in the plane z = 0. Now letE run from –0.0334 to –0.0292,
and letO range over interval [10−7, 10−6]. It should be noted that ifE+1/R−O/2·[2z3−3z(x2+y2)] < 0
then as soon as O exceeds a certain value, we should stop the computing, give E the other value and begin
the next part of integration.

Figure 5A displays the relationship between the critical values of O and E for the FLI, and clearly
identifies the regular region and chaotic region. In addition, it clearly shows that larger energies (or octopolar
parameter) correspond to stronger chaos. This result is physically quite reasonable. Similarly, Figure 5B
plots the relationship between the critical Os and Ls. Here, we see that an increasing angular momentum
corresponds to a weaker chaos. Unlike Caranicolas & Papadopoulos (2003), we cannot quite see a linear
relationships between these two critical parameters. Without doubt, our method using the FLI is more
convenient for finding the relationship than theirs, the method of Poincaré sections.
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Fig. 4 Panels A, B and C: FLImax as a function of L, E, O, respectively. For each panel, two of three
parameters E = −0.03147, L = 3.8 and O = 7.0129×10−7 are fixed. The initial variables are z = pr =
0. The starting value of r is the rmax at the equatorial plane, and the initial value of pz is given by Eq. (1).

3.3 The Global Structure of Phase Space

The many experiments above have shown that the indictor defined by Equation (8) is a perfect detector of
chaos. Now we use it to draw the global structure of phase space of the core-shell system. We adopt the
same dynamical parameters as Figure 3A. The chosen initial orbits for Equation (1) are as follows. We fix
z = 0, and let r go from 11.1 to 20.3 in steps of 0.1. For every r, we have two roots +p r (> 0) and −pr

(< 0) of the equation p2
r = 2E − L2/r2 + 2/r. Then we set pr to run from −pr to +pr at steps of 0.001.

Certainly, pz (> 0) should satisfy Equation (1). Figure 6A plots all the starting points in the r − p r plane,
where ordered and chaotic regions are distinguished according to the differing values of FLIs. As a result,
Figure 6A resembles Figure 3A, apart from some details regarding the regular orbits. In addition, some
black points in the regular regions mean onset of chaos. We also learn that the fraction of the chaotic region
is 18.18%: this value was obtained by counting the number of chaotic points.

It should be emphasized that the FLI can be also used to study the global structure of phase space of the
3-dimensional system of Equation (2), while Poincaré sections cannot. For instance, we could fix y = z = 0
initially, and let the initial value of x (hence that of px) vary in a certain range. Note that the other initial
conditions should satisfy the two integrals, Equations (2) and (3). Then we can easily construct Figure 6B,
showing the regular and chaotic regions with a large number of initial points in the x-p x plane.
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Fig. 5 Relationship between two selected critical parameters. Panel A: between E and O for fixed angular
momentum L = 3.8. An orbit is chaotic or regular according as FLImax is greater or less than 7.5. As is
shown, the larger the energy (or the octopolar parameter) is, the stronger chaos becomes. Panel B: Similar
to panel A but for L and O with the fixed energy E = −0.03147.

Fig. 6 Panel A: Initial points on the r−pr plane for the 2-dimensional system (1) define the regular regions
(colored light gray) when FLImax ≤ 7.5, and the chaotic ones (colored black) with FLImax > 7.5. Panel
B: A set of initial points on the x − px plane for the 3-dimensional system (2).

4 SUMMARY

We have used the pseudo 8th symplectic integrator to investigate the dynamics of orbits in the Newtonian
core-shell system. This integrator is eminently suitable for calculating the two indictors of chaos: Lyapunov
characteristic exponents and fast Lyapunov indictors with two nearby trajectories. One important point is to
discuss some applications of the FLI in the analysis of chaos in the system. We can apply the FLI to obtain
the regular and chaotic regions as one of the initial coordinate varies arbitrarily, and one is fixed by the
energy integral, while the other initial variables and all the dynamical parameters are kept fixed. In addition,
we are able to use it to explore the transition from regular motion to chaos. Specifically, it is interesting to
use this indicator to estimate effects of varying one of the dynamical parameters on the dynamical behavior
of the orbit. Further, we have explored relationships between two critical dynamical parameters, and find
ordered and chaotic regions in two sides of the critical line relating the two parameters. Finally, the global
structure of phase space of the 2-dimensional or 3-dimensional system is successfully characterized.
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In sum, the fast Lyapunov indictor with two nearby trajectories is a simple, quick and sensitive tool
to detect chaos from the regularity. A great merit of the indictor is that it can be conveniently used to
treat complicated dynamical systems with many degrees of freedom. We plan to use it together with an
appropriate numerical scheme to study relativistic gravitational systems or Newtonian n-body Hamiltonian
problems in planetary dynamics in future work.
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