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Abstract A method combining the support vector machine (SVM) the K-Nearest Neighbors
(KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model.
Based on a proven relationship between SVM and KNN, the SVM-KNN method improves
the SVM algorithm of classification by taking advantage of the KNN algorithm according to
the distribution of test samples in a feature space. In our flare forecast study, sunspots and
10 cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an
M class flare will occur for each active region within two days will be predicted. The SVM-
KNN method is compared with the SVM and Neural networks-based method. The test results
indicate that the rate of correct predictions from the SVM-KNN method is higher than that
from the other two methods. This method shows promise as a practicable future forecasting
model.
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1 INTRODUCTION

It is well known that the occurrence of solar X-ray flares is closely related to sunspots. So, a succession of
flare forecasting methods based on this relationship has been proposed. McIntosh (1990) revised sunspot
classification by categorizing sunspots group with modified Zurich class and two other parameters. Based
mainly on the McIntosh classification, a specially dedicated system called Theophrastus was developed and
adopted in 1987 as a tool in the daily operations of the Space Environment Services Center (McIntosh 1990).
Gallagher et al. (2002) at Big Bear Solar Observatory developed a flare prediction system which estimated
the probability for each active region to produce C-, M-, or X-class flares using historical averages of flare
numbers according to the McIntosh classifications. At Beijing Astronomical Observatory, Zhang & Wang
(1994) developed a multi-discrimination method for flare forecast by using observations of sunspots, 10 cm
radio flux and longitudinal magnetic fields. Zhu & Wang (2003) presented a verification for this method.
Recently, Wheatland (2004) suggested a Bayesian approach to flare prediction, in which the flaring record
of an active region together with phenomenological rules of flare statistics are used to refine an initial
prediction for the occurrence of a large flare during a subsequent period of time.

The methods mentioned above mainly rely on traditional statistical techniques. Neural networks (NN),
as an important branch of artificial intelligence, has been applied to some space weather forecasting, such
as geomagnetic storms forecasting (Lundstedt 1997) and proton event alert (Wang 2000; Gong et al. 2004).
Without enough statistical theory support, NN’s general ability is limited and a number of problems can
be caused including overfitting and local minima in the back-propagation network (Vapnik 1995). Learning
Vector Quantity (LVQ), as a new technique of NN, was evolved from the self organization feature map
network. Unlike the traditional NN methods which minimize the empirical training error, LVQ is a method
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based on reference points. It has the advantages, among others, of being easily fulfilled and a good general-
ization capability (Wu 2000). Meanwhile, support vector machine (SVM), proposed first by Vapnik (1995),
has become a widely used technique of machine learning due to its strong basis in statistical theory and
successful performance in various applications. Its algorithm has been applied to forecasting geomagnetic
substorm, which demonstrates a promising performance in comparison with NN (Gavrishchaka & Ganguli
2001).

Even though the classifying ability of SVM is better than that of other pattern recognition methods,
some problems still exist in its application, such as a low classifying accuracy in complicated applications
and difficulty in choosing the kernel function parameters. In an attempt to solve these problems, a sim-
ple and effective improved SVM classifying algorithm was proposed by Li et al. (2002), which combines
SVM with the K-nearest neighbor (KNN) classifier. This new algorithm has demonstrated to give excellent
performance in various applications, especially in complicated ones (Li et al. 2002).

In Sections 2 and 3 we give an introduction to the SVM-KNN classifier and apply it to flare forecasting.
In Section 4, a series of test results is presented and it is shown that SVM-KNN is better in performance
than SVM or NN-based method. Our conclusions and a discussion are given in Section 5.

2 SVM-KNN ALGORITHM

2.1 SVM Algorithm

As a successful implementation of the structural risk minimization principle and Vapnik-Chervonenkis(VC)
dimension theory, SVM aims at minimizing an upper bound of the generalization error through maximizing
the margin between the separating hyperplane and the data (Amari & Wu 1999). The optimal hyperplane can
be derived and represented in feature space by means of a kernel function which expresses the dot products
between mapped pairs of input points: K(x

′
, x) =

∑
i φi(x

′
)φi(x) (Cristianini et al. 1999), where φi(x) is

a nonlinear mapping from the input space to a higher-dimensional feature space.
Then supposing in the case where the data are linearly separable, for the training set (x 1, y1) · · · (xl, yl)

belonging to two different classes y ∈ (−1, +1), the problem of searching for the optimal hyperplane
amounts to finding the adjustable coefficients αi that maximize the Lagrangian function with constraints:

W (α) =
l∑

i=1

αi − 1
2

l∑
i,j=1

αiαjyiyjk(xi · xj), (1)

0 ≤ αi, i = 1, · · · , n and
l∑

i=1

αiyi = 0. (2)

Those sample points having αi > 0 are called support vector located near the hyperplane. The separat-
ing rule is the following discriminant function:

f(x) = sgn
( l∑

i=1

yiαik(xi · x)− b
)

. (3)

2.2 KNN Algorithm

The 1-Nearest Neighbor(1NN) classifier is an important pattern recognizing method based on representative
points (Bian et al. 2000). In the 1NN algorithm, whole train samples are taken as representative points and
the distances from the test samples to each representative point are computed. The test samples have the
same class label as the representative point nearest to them. The KNN is an extension of 1NN, which
determines the test samples through finding the k nearest neighbors.

2.3 SVM-KNN Algorithm

First, by analyzing the classifying process of SVM, a relationship between SVM and 1NN is found. This
relationship is the theoretical basis of SVM-KNN and will be expatiated in Theorem 1.

[Theorem 1] SVM classifier is equal to a 1NN classifier which chooses one representative point
for the support vectors in each class (a detailed proof can be found in Appendix A).
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We examined distributions of wrong samples of SVM and found that they are almost always near the
separating hyperplane. This prompts us that the information of hyperplane area should be used as much as
we can in order to improve the classifying accuracy. We know that samples lying near the separating hyper-
plane area are basically support vectors. Instead of using SVM algorithm in which only one representative
point is chosen for the support vector in each class and this representative point can not represent efficiently
the whole class, we use KNN to classify algorithm in this case, in which each support vector is taken as a
representative point. That means more useful information can be utilized.

Specifically, for samples far from the separating hyperplane (Region II in Fig. 1), the SVM classifying
algorithm is available, while for samples close to the hyperplane (Region I), the KNN classifying algorithm
is suitable. The main steps of the new classifying algorithm are as follows:

step1 if Ttest �= Φ, get x ∈ Ttest, if Ttest = Φ, stop;

step2 calculate g(x) =
∑

i

yiαik(xi, x)− b;

step3 if |g(x)| > ε, calculate directly f(x) = sgn(g(x)) as output;
if |g(x)| < ε, put it into KNN algorithm to classify;

step4 T ← T − x, go to step1.

0)( =xg
1)( −=xg 1)( =xg

)(xφ

−)(xφ +)(xφ

ε

Ι ΙΙΙΙ

Fig. 1 The distances from the test sample φ(x) to two representative points φ(x)+ and φ(x)− are calculated
in a high dimension feature space, and the threshold ε and classifying algorithm are then decided.

In the steps described above, Ttest refers to the test set and Φ represents the empty set. The distance
threshold ε should satisfy 0 < ε < 1. Note that distance used in this algorithm is calculated in a high
dimension feature space. The distance formula used here is based on the kernel function and takes the
following form:

‖φ(x)− φ(xi)‖2 = k(x, x)− 2k(x, xi) + k(xi, xi). (4)

3 APPLICATIONS

3.1 SVM-KNN Application Model

Applying the SVM-KNN algorithm to our problem of flare forecast is based on the understanding that this
problem can be formalized to be one of pattern recognition. The input of the model includes the current
daily data on solar active regions and the 10 cm radio flux data, which correspond to the feature vector
xi = (xi1, xi2, xi3, xi4) in Equation (3). The output refers to a classification of the importance class of
solar flares occurring within the coming two days, and there will be two outcomes: larger than or equal to
M if f(x) = +1 in Equation (3), or lower than M if f(x) = −1. In the training process for the SVM-
KNN classifier, the inputs and outputs of all the samples are taken into Equation (1) to determine the
coefficients αi.
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3.2 Data

The SEC solar active region data used in our forecast model span from 1996 January to 2004 December. The
data were downloaded from the SEC web site: http://sec.noaa.gov/ftpmenu/forecasts/SRS.html. We count
each observed active region on every day as one sample, and we have 19544 samples in total.

3.3 Predictors

In our study, the predictors including the area of the sunspot group, magnetic classification, McIntosh clas-
sification and 10 cm radio flux are divided into different groups, which were assigned numerical values (see
Table 1) according to the relevant flare productivity (Zhang & Wang 1994).

Table 1 Classification and Flare Productivity Rates of Predictors

Area classification Sp ≤ 200 200 < Sp ≤ 500 500 < Sp ≤ 1000 Sp > 1000 Non-spot
Flare productivity rate 0.03 0.09 0.20 0.38 0.00

Magnetic classification α β β, γ βγδ, βδ, δ(A) Non-spot
Flare productivity rate 0.05 0.20 0.34 0.47 0.00

McIntosh classification a (a) (b) (c) (d) (e)
Flare productivity rate 0.00 0.08 0.31 0.68 0.81

10 cm radio flux level b low med peak fast
Flare productivity rate 0.34 0.45 0.69 0.77
a (a):non-spot; (b) Sunspot groups excluded from the MacIntosh classification; (c) Fso, Fko, Fri, Eac, Eko, Eao, Dhc, Dko,
Dki, Dsc, Dac, Dho, Chi, Cko, Cki; (d) Fki, Fsi, Fai, Fhi, Fhc, Eki, Ehc, Ehi, Eai, Dkc; (e) Fkc, Ekc; b Low: Within 4 days
before and after the minimum of the flux during the period of 27 days; Med: The medium period between the peak and the
valley in the period of 27 days; Peak: Within 5 days before and after the maximum; Fast: The flux increases 15 sfu within 3
consecutive days.

4 TEST RESULTS

4.1 Test Methods and Parameter Setting

The data observed from 2001 January to 2004 December are grouped by year into four testing sets. Each
of testing sets has a training set that begins in 1966 January and ends in December of the year before its
beginning of the testing set .

Three methods are used and compared here: the SVM, the SVM-KNN, and the LVQ method. Our data
contain far more non-flaring samples than flaring samples. Now LVQ requires the number of the two kinds
of samples to be approximately equal, so we selected a random subset of the non flaring samples of the
same size as the set of flaring samples. In our test, the three different classifying algorithms were applied to
each of the testing sets.

For the LVQ algorithm, the number of initial reference points is set to be that of the flaring samples. For
the SVM-KNN algorithm modified from LIBSVM described by Chang & Lin (2001), the distance threshold
is set to be 0.8 and the number of nearest neighbors is set to be 1.0. The Gaussian Radial Basis function,

given by K(x, xi) = exp(− |x−xi|2
σ2 ), is used as the kernel function and its parameters were adjusted for

optimal result separately in the SVM and SVM-KNN models. Test results for the 4 years are shown in
Table 2.

4.2 Test Results

In Table 2, the first column, ‘Predic.’, gives the total number of predictions, the second column, ‘Observ.’,
the total number of observations. The third column, ‘Equal’, is the number of correct predictions. The next
two columns labeled ‘High’ and ‘Low’ are the number of false predictions: ‘High’ means that predicted
class is larger than or equal to M when the observed class is lower than M, and conversely ‘Low’. The
last three columns are ratios of ‘Equal’, ‘High’ and ‘Low’ to the total. As demonstrated in these tables, the
SVM-KNN method gives the highest ‘Equal’ predictions and the lowest ‘High’ predictions among the three
methods for all the four testing sets.
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Table 2 Test Results by Three Methods for the Years 2001–2004

Year Methods Predic. Observ. Equal High Low Equal(%) High(%) Low(%)
2001

LVQ 3461 3461 2925 432 104 84.52 12.48 3.00
SVM 3461 3461 3054 266 141 88.24 7.69 4.07

SVM-KNN 3461 3461 3110 144 207 89.86 4.16 5.98
2002

LVQ 3514 3514 2984 410 120 84.92 11.67 3.41
SVM 3514 3514 3062 307 145 87.14 8.74 4.12

SVM-KNN 3514 3514 3152 180 182 89.70 5.12 5.18
2003

LVQ 2139 2139 1861 213 65 87.00 9.96 3.04
SVM 2139 2139 1893 171 75 88.50 7.99 3.51

SVM-KNN 2139 2139 1953 85 101 91.30 3.98 4.72
2004

LVQ 1306 1306 1059 188 59 81.09 14.40 4.51
SVM 1306 1306 1086 153 67 83.15 11.72 5.13

SVM-KNN 1306 1306 1130 88 88 86.52 6.74 6.74

Fig. 2 Test result of 2004 obtained form LVQ, SVM and SVM-KNN method.

4.3 Results Analysis

Figure 2 demonstrates that SVM-KNN method offers certain advantages over other two methods. Since the
test results for all four years are similar, Figure 2 only plots the test results of 2004. It can be seen that SVM-
KNN method has the highest rate of ‘Equal’ and lowest rate of ‘High’. On the other hand, the rate of ‘Low’
is slightly greater in SVM-KNN than in the other two. This fact can be explained as follows. The value range
of non-flaring samples is larger than that of flaring samples, which means the non-flaring samples are more
spread out in the feature space than the flaring samples. According to the SVM-KNN algorithm, samples
near the separating hyperplane take part in the classification, the more spread-out distribution makes the
non-flaring samples in the training set slightly more attractive to the samples in the testing set, which results
in a slightly increase of ‘Low’ predictions.

5 CONCLUSIONS AND DISCUSSION

The SVM-KNN method is firstly applied to solar flare forecasting. Based on a proven relationship between
SVM and KNN, this new method improves the SVM algorithm for classification by taking advantage of the
KNN algorithm according to the distribution of test samples in a feature space and gives a higher prediction
accuracy than the SVM or an NN-based method alone. At the same time, however, it also gives an increased
rate of ‘Low’ predications, which is not always desirable. The present forecasting model is constructed on
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data from active regions, which means the number of non-flaring samples is larger than the number of
flaring samples. The existence of a large number of non-flaring samples is also a contributing factor for the
high prediction accuracy in our tests.

Our study involves only a two-class forecasting: whether the flare importance is or is not smaller than
M. Experiments on multi-class flare forecast will be considered in our future research. Furthermore, some
new predictors will be extracted from observational data of solar photospheric vector magnetic field (Cui et
al. 2006).
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Appendix A: PROOF OF THEOREM 1

Defining positive and negative support vectors as two representative points: φ(x)+ = 1
C

∑l
yi=1,i=1 αiφ(xi)

and φ(x)− = 1
C

∑l
yi=−1,i=1 αiφ(xi), where

∑
yi=1 αi =

∑
yi=−1 αi = C (from

∑l
i=1 αiyi = 0).

For optimal solution w, we have

w =
l∑

i=1

αiφ(xi) = C[φ(x)+ − φ(x)−]. (A.1)

For each positive sample, from Kuhn-Tucker condition:

αi{yi[(w, xi)− b]− 1} = 0, i = 1, · · · , l, (A.2)

we have αi{[w, φ(xi)]− b− 1} = 0, accordingly,

0 =
∑
yi=1

αi{[w, φ(xi)]− b− 1}

= [w,
∑
yi=1

αiφ(xi)]− C · b− C

= C[φ(x)+ − φ(x)−, Cφ(x)+]− C · b− C

= C{C[φ(x)+ − φ(x)−, φ(x)+]− b− 1}. (A.3)

Thus
b = C[φ(x)+ − φ(x)−, φ(x)+]− 1. (A.4)

For each negative sample, similarly from Equation (A.1), the following equal can be acquired:

b = C[φ(x)+ − φ(x)−, φ(x)+] + 1. (A.5)

Using [(A.3)+(A.4)]/2 yields:

b =
C

2
[φ(x)+ − φ(x)−, φ(x)+ + φ(x)−] =

C

2
[k(x+, x+)− k(x−, x−)]. (A.6)

Putting the 1NN classified formula into the classified process of SVM we obtain the follow formula:

g(x) = ‖φ(x) − φ(x)−‖2 − ‖φ(x) − φ(x)+‖2
= 2k(x, x+)− 2k(x, x−) + k(x−, x−)− k(x+, x+)

=
2
C

{ ∑
i

αiyik(x, xi) +
C

2
[k(x−, x−)− k(x+, x+)]

}

=
2
C

[ ∑
i

αiyik(x, xi)− b
]
. (A.7)
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