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Abstract We present the statistical results of a systematic, unbiased search for subpulse mod-
ulation of 187 pulsars performed with the Westerbork Synthesis Radio Telescope (WSRT) in
the Netherlands at an observing wavelength of 21 cm (Weltevrede et al. 2006). We have in-
creased the list of pulsars that show the drifting subpulse phenomenon by 42, indicating that
more than 55% of the pulsars that show this phenomenon. The large number of new drifters
we have found allows us, for the first time, to do meaningful statistics on the drifting phe-
nomenon. We find that the drifting phenomenon is correlated with the pulsar age such that
drifting is more likely to occur in older pulsars. Pulsars that drift more coherently seem to
be older and have a lower modulation index. Contrary claims from older studies, bothP3

(the repetition period of the drifting subpulse pattern) and the drift direction are found to be
uncorrelated with other pulsar parameters.
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1 INTRODUCTION

If one can detect single pulses one can see that in some pulsars they consist of subpulses and in some cases
these subpulses drift in successive pulses in an organized fashion through the pulse window. If one plots a
so-called “pulse-stack”, a plot in which successive pulsesare displayed on top of one another, the drifting
phenomenon causes the subpulses to form “drift bands”. In the left panel of Figure 1 one can see a sequence
of 100 pulses of one of the new drifters we have found which clearly shows the drifting phenomenon. The
pulse number is plotted vertically and the time within the pulses (i.e. the pulse longitude) horizontally. The
drift bands are characterized by two numbers: the horizontal separation between them in pulse longitude
(P2) and the vertical separation in pulse periods (P3). This complex, but highly regular intensity modulation
in time is known in great detail for only a small number of wellstudied pulsars. Because the properties of
the subpulses are most likely determined by the emission mechanism, we learn about the physics of the
emission mechanism by studying them. That drifting is linked to the emission mechanism is suggested
by the fact that drifting is affected by “nulls”, where nulling is the phenomenon whereby the emission
mechanism switches off for a number of successive pulses. The main goals of this unbiased search for
pulsar subpulse modulation is to determine what percentageof the pulsars show the drifting phenomenon
and to find out if these drifters share some physical properties. As a bonus of this observational program
new, individually interesting drifting, subpulse systemsare found (Weltevrede et al. 2006).

2 OBSERVATIONS AND DATA ANALYSIS

An important aspect when calculating the statistics of drifting is that one has to be as unbiased as possible,
so we have selected our sample of pulsars based only on the predicted signal-to-noise (S/N) ratio in a
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Fig. 1 Left: A pulse-stack of the new drifter PSR B1819−22. Top right: The fraction of pulsars we
observe to show the drifting phenomenon versus the measuredS/N ratio of the observation.Bottom right:
The age distribution of the non-drifting pulsars (solid line), all the drifters (dashed line) and the coherent
drifters (dotted line).

reasonable observing time. While this sample is obviously still luminosity biased, it is not biased towards
well-studied pulsars, pulse profile morphology or any particular pulsar characteristics as were previous
studies (e.g. Ashworth 1982; Backus 1981; Rankin 1986). Moreover, all the conclusions in this paper are
based on observations at a single frequency. All the analyzed observations were collected with the WSRT
in the Netherlands at an observation wavelength of 21 cm.

One basic method to find out if there is subpulse modulation isto calculate the modulation index,
which is a measure of the factor by which the intensity variesfrom pulse to pulse and could therefore be an
indication for the presence of subpulses. To determine if the subpulses are drifting, the Two-Dimensional
Fluctuation Spectrum (2DFS; Edwards & Stappers 2002) is calculated. By analyzing the 2DFS it can be
determined if this modulation is disordered or (quasi-)periodic and if there exists a systematic drift. The
calculation of the 2DFS is an averaging process and this makes it a powerful tool to detect drifting subulses,
even when the S/N is too low to detect single pulses. The drifting is classified ascoherent when the drift has
a well definedP3 value. For more details about the observations and data analysis we refer to Weltevrede
et al. (2006).

3 STATISTICS

3.1 The Numbers

Our sample of pulsar is not biased on pulsar type or any particular pulsar characteristics. This allows us,
first of all, to address the very basic question: what fraction of the pulsars show the drifting phenomenon?
Of the 187 analyzed pulsars 68 pulsars show the drifting phenomenon, indicating that at least one in three
pulsars drift. This is a lower limit for a number of reasons. First of all, not all the observations have the
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expected S/N. This could be because of radio interference, interstellar scintillation, digitization effects, or
because the flux or pulse width for some pulsars was wrong in the database used.

In the top right panel of Figure 1 the fraction of pulsars thatshow the drifting phenomenon is plotted
versus the S/N ratio of the observation. One can see that the probability of detecting drifting is higher for
observations with a higher S/N. To make the statistics more independent of the S/N ratio of the observations,
the statistics are done with the 106 pulsars with a S/N≥ 100. Of these pulsars 54% is detected to be drifters
and from the top right panel of Figure 1 it is clear that the real drift percentage could even be higher. There
are many reasons why drifting is not expected to be detected for all pulsars. For instance for some pulsars
the line of sight cuts the magnetic pole centrally and therefore longitude stationary subpulse modulation
is expected. Also, refractive distortion in the pulsar magnetosphere or nulling will disrupt the drift bands,
making it difficult or even impossible to detect drifting. Some pulsars are known to show organized drifting
subpulses in bursts. In that case (or whenP3 is very large) some of our observations could be too short to
detect the drifting.

With a lower limit of one in two it is clear that drifting is at the very least a common phenomenon
for radio pulsars. This is consistent with the conclusion that the drifting phenomenon is only weakly cor-
related with (or even independent of) magnetic field strength (Weltevrede et al. 2006), because the drifting
phenomenon is too common to require very special physical conditions. It could well be that the drifting
phenomenon is an intrinsic property of the emission mechanism although for some pulsars it is difficult or
even impossible to detect.

3.2 The Age Dependence Of The Drifting Phenomenon

Two directly measurable and therefore important physical parameters of the pulsar are the pulse period and
its time derivative (spin-down parameter). From the pulsarage histograms (bottom right panel of Figure 1)
it can be seen that the population of pulsars that show the drifting phenomenon is on average older than the
population of pulsars that do not show drifting. Moreover itseems that drifting is more coherent for older
pulsars. It turns out that the drifters and nondrifters havesignificantly different age distributions and that
the pulsars which drift coherently are likely to have a separate age distribution (Weltevrede et al. 2006). It is
intriguing to think that drifting becomes more and more coherent for pulsars with a higher age. A possible
mechanism to distort the drift bands is nulling. However it has been found that the nulling fraction is on
average higher for older pulsars, showing that nulling cannot explain this correlation.

Another possible scenario is that the alignment of the magnetic dipole axis with the rotation axis has
something to do with the observed trend. Observations seem to show that the angleα between the magnetic
axis and the rotation axis is on average smaller for older pulsars and this angle is likely to be an important
physical parameter in the mechanism that drives the drifting phenomenon. In this scenario as the pulsar gets
older, the rotation axis and the magnetic axis grows more aligned, which makes the drifting mechanism
more effective or regular. Also the pulse profile morphologyseems to evolve when the pulsar ages what
could make drifting subpulses more likely to be detected in older pulsars. In the non-radial pulsations
model this trend can also be explained, because the appearance of narrow drifting subpulses is favored in
pulsars with an aligned magnetic axis (Clemens & Rosen 2004).

3.3 The Drifting Phenomenon And The Modulation Index

The drifting phenomenon is a form of subpulse modulation, sothe modulation index is an obvious parameter
to try to correlate with the drifting phenomenon. Modulation index distributions are shown in the left panel
of Figure 2. Readily apparent is the trend that pulsars that show the drifting phenomenon more coherently
have on average a lower modulation index (not shown to be statistically significant).

To explain the trend, pulsars that drift coherently must either have on average more subpulses per
pulse or the subpulse intensity distribution must be more narrow. The latter could be understood because
coherent drifting could indicate that the electrodynamical conditions in the sparking gap are stable. Also
the presence of subpulse phase steps results in a lower modulation index and could be explained as the
result of interference between two superposed drifting subpulse signals that are out of phase (e.g. Edwards
& Stappers 2003). It is not unlikely that this interference can only occur if the drifting is coherent, which
could explained the trend. It is also found that many pulsarsmust have a non-varying component in their
emission, consistent with the presence of superposed out ofphase subpulse signals. Another explanation
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Fig. 2 Left: The modulation index distribution of the pulsars that do notshow the drifting phenomenon
(solid line), that do show the drifting phenomenon (dashed line) and of the pulsars that drift coherently
(dotted line).Right: The measured value of the vertical drift band separationP3 versus the pulsar age. The
coherent drifters are the filled circles.

for this trend would be that for some pulsars the organized drifting subpulses are more refractively distorted
than for others, causing the subpulses to appear more disordered in the pulse window. Moreover it could be
expected that the intensities of the individual subpulses varies more because of lensing (e.g. Petrova 2000)
and possible focusing of the radio emission (Weltevrede et al. 2003), causing the modulation index to be
higher in those pulsars.

The modulation index of core type emission is observed to be in general lower than that of conal type
of emission. This is also a consequence of the Gil & Sendyk (2000) model. In the sparking gap model,
the drifting phenomenon is associated with conal emission and therefore expected to be seen in pulsars
with an on average higher modulation index. If well organized coherent drifting is an exclusively conal
phenomenon, it is expected that coherent drifters have an onaverage a higher modulation index, exactly
opposite to the observed trend. No drifting is expected for pulsars classified as “core single stars”. Although
this may be true for many cases there are some exceptions, stressing the importance of being unbiased on
pulsar type when studying the drifting phenomenon.

In the framework of the sparking gap model the subpulses are generated (indirectly) by discharges in
the polar gap (i.e. sparks). The number of sparks that fits on the polar cap is quantified by the complexity
parameter (Gil & Sendyk 2000), which is expected to be anti-correlated with the modulation index (Jenet
& Gil 2003). The complexity parameter is a function of the pulse period and its derivative and its precise
form depends on the model one assumes for the pulsar emission. By correlating the modulation index of a
sample of pulsars with various complexity parameters as predicted by different emission models one could
try to distinguish which model best fits the data. We have correlated the modulation indices in our sample of
pulsars with the complexity parameter of four different emission models as derived by Jenet & Gil (2003).
Unfortunately none of the models can be ruled out based on these observations.

3.4 Properties Of The Drift Behavior

A significant correlation betweenP3 and the pulsar age has been reported in the past (e.g. Rankin 1986). As
one can see in the right panel of Figure 2 there is no clear correlation found in our data, which is confirmed
byχ2-fitting. There is no correlation found betweenP3 and the magnetic field strength or the pulse period as
well as between the drift direction and the pulsar spin-downas reported in the past (Ritchings & Lyne 1975).
The evidence for a pulsar subpopulation located close to theP3 = 2P0 Nyquist limit also seems to be weak.

In a sparking gap model one would expect that the spark-associated plasma columns drift because of
anE × B drift, which depends on both the pulse period and its derivative. The absence of any correlation
betweenP3 and a physical pulsar parameter is difficult to explain in this model, unless many pulsars in
our sample are aliased. Because the emission entities are only sampled once per rotation period of the star,
it is very difficult to determine if the subpulses in one driftband correspond to the same emission entity
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for successive pulses. For instance for PSR B1819−22 (see left panel of Figure 1) we do not know if the
emission entities drift slowly toward the leading part of the pulse profile (not aliased) or faster toward the
trailing part of the pulse profile (aliased). If a pulsar is aliased a higherE ×B drift can result in a lowerP3

value and visa versa, makingP3 not a direct measure of theE ×B drift. Also if P2 is highly variable from
pulsars to pulsar, any correlation withP3 is expected to be weaker.

4 CONCLUSIONS

The number of pulsars that are known to show the drifting phenomenon is significantly expanded by 42
and the fraction of pulsars that show the drifting phenomenon is likely to be larger than 55%. This implies
that the physical conditions required for the drifting mechanism to work cannot be very different than the
required physical conditions for the emission mechanism ofradio pulsars. It could well be that the drifting
phenomenon is an intrinsic property of the emission mechanism, although drifting could in some cases be
very difficult to detect.

Our results seem to suggest that drifting is not exclusivelyrelated to conal emission. Our sample of
pulsars is not biased on pulsar type or any particular pulsarcharacteristics, which allows us to do meaningful
statistics on the drifting phenomenon. Although significant correlations betweenP3 and the pulsar age, the
magnetic field strength and the pulse period have been reported, we find no such correlations in our enlarged
sample. The absence of a correlation betweenP3 and any physical pulsar parameter is difficult to explain,
unless many pulsars in our sample are aliased or ifP2 is highly variable from pulsar to pulsar.

The population of pulsars that show the drifting phenomenonare on average older than the population
of pulsars that do not show drifting and it seems that drifting is more coherent for older pulsars. The
evolutionary trend found seems to suggest that the mechanism that generates the drifting subpulses gets
more and more stable as the pulsar ages.

If subpulse phase steps are exclusively (or at least more likely) to occur in pulsars with coherently
drifting subpulses, their modulation index is expected to be on average lower. This is indeed the trend
the we observe. Another possible scenario to explain this trend is that coherent drifting indicates that the
electrodynamical conditions in the sparking gap are stableor that refraction in the magnetosphere is stronger
for pulsars that do not show the drifting phenomenon coherently.
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