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Abstract An algorithm of the ensemble pulsar time based on the Wiener filtration method has
been constructed. This algorithm has allowed the separation of the contributions of an atomic
clock and a pulsar itself to the post-fit pulsar timing residuals. The method has been applied
to the timing data of the millisecond pulsars PSR B1855+09 and PSR B1937+21 and allowed
to filter out the atomic scale component from the pulsar phasevariations. Direct comparison
of the terrestrial time TT(BIPM96) and the ensemble pulsar time PTens has displayed that the
difference TT(BIPM96) – PTens is within ±0.4 µs range. A new limit of gravitational wave
background based on the difference TT(BIPM96) – PTens was established to beΩgh

2 ∼
10−10.
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1 INTRODUCTION

The discovery of pulsars in 1967 (Hewish et al. 1968) and millisecond pulsars in 1982 (Backer et al. 1982)
and consequent observations had shown clearly that their rotational stability allowed them to be used as
astronomical clocks.

In this paper the author presents a method of forming the ensemble pulsar time scale (PT). The method
is based on the optimal Wiener filter. In Section 2 principlesof pulsar timing are described with regard to
time scales. Section 3 contains a theoretical algorithm of the Wiener filter and construction of the ensemble
pulsar time scale. Secttion 4 presents results, Section 5 discusses an application of the algorithm to timing
data of pulsars PSR B1855+09 and PSR B1937+21 (Kaspi, Taylor& Ryba 1994).

2 PULSAR TIMING

An observer which is situated on the Earth rotating around its axis and moving around the Sun receives
with a radio telescope a pulsar signal during an integrationtime to obtain sufficient signal-to-noise ratio.
Time of arrival (TOA) of the integrated pulses are measured with the observatory frequency standard (e.g.
H-maser) by the maximum of the cross-correlation between the integrated pulse and the pulse template.
The obtained topocentric TOAsτN are in the scale of the local frequency standard and therefore required
to be converted to the barycentric time scale via the following expressions (Manchester & Taylor 1977;
Doroshenko & Kopeikin 1990):

UTC = τN + ∆τ1, TAI = UTC + k, TT = TAI + 32.184 s, (1)

where∆τ1 is the correction of the local scale to the universal coordinated time UTC. The international
atomic time (TAI) differs from UTC byk integer number of seconds introduced to reconcile the lengths of
day measured by an atomic clock and the Earth rotation. TAI isrelated with the terrestrial time TT by the
Equation (1), where the constant shift 32.184s prevents a jump between ephemeris and atomic time. Since
a second of TT has various lengths depending on the position and velocity of the Earth in its orbit then a
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transformation from TT to TB scale is required which is performed on the basis of the paper by Fairhead &
Bretagnon (1990). Once converted from TT to TB the topocentric TOAs need to be reduced to the barycentre
of the Solar system (SSB) according to the following transformation formula (Manchester & Taylor 1977;
Doroshenko & Kopeikin 1990):

T = t − t0 + ∆R(α, δ, µα, µδ, π) − ∆orb − D/f2 + ∆rel + ∆tclock, (2)

wheret0 is reference epoch,t is pulsar topocentric TOA in TB scale,T is TOA at the Solar system barycen-
ter in TB scale,∆R(α, δ, µα, µδ, π) is the Roemer delay along the Earth orbit,α, δ, µα, , µδ, π are the
pulsar right ascension and declination, proper motion in right ascension and declination, and parallax re-
spectively,∆orb is the Roemer delay along the pulsar orbit in the case of a binary pulsar,D/f2 is dispersive
delay for propagation at frequencyf (corrected for the Doppler shift) through the interstellarmedium,∆rel

is time corrections due to relativistic effects in the Solarsystem and the pulsar orbit, and∆tclock is the offset
between the observatory frequency standard and the terrestrial time.

Time of arrivals at the SSB are then used for calculation of the pulsar rotational phase (in cycles)

N(T ) = N0 + νT +
1

2
ν̇T 2 + ε(T ), (3)

whereN0 is the initial phase at epochT = 0, ν, ν̇ are the pulsar spin frequency and its derivative respec-
tively at epochT = 0, ε(T ) is phase variations (timing noise). The fitting procedure includes adjustment
of the parametersN0, ν, ν̇, α, δ and so on, to minimise the weighted sum of squared differences between
N(T ) and the nearest integer. Usually the pulsar rotational phase residuals are expressed in units of time
δt = δN/ν. In this paper we deal with the only part of the residuals thatincludes the variations of the clock
offset∆tclock(T ).

When comparing different realisations of atomic time scales between each other one can see that they
are dominated by flicker frequency noise on intervals of a fewmonths and random walk in frequency on
intervals of years (Guinot 1988), i.e. in the frequency domain the clock variations have power spectrum of
form 1/ωn, in the time domain clock variations can be expressed in the polynomial form

∆tclock(T ) = c0 + cT +
1

2
ċT 2 +

1

6
c̈T 3 + . . . . (4)

One can see that the appearance∆tclock in Equation (3) results in a coupling between pulsar and clock
parameters:

N(T ) = N ′

0 + (1 + c)fT +
1

2
(f ċ + (1 + c)2ḟ)T 2, (5)

whereT is the ideal time scale,f, ḟ are the pulsar frequency and its derivative not subjected tothe influence
of the clock parameters. For this reason one should use TOAs expressed in the best available time scale TT
(Guinot & Petit 1991).

3 FILTERING TECHNIQUE

Let us considern measurements of a random valuer = (r1, r2, . . . , rn) are given.r is a sum of two uncor-
related valuesr = s + ε, wheres is a random signal to be estimated and associated with the clock contri-
bution,ε is random errors associated with the fluctuations of pulsar rotation. Both valuess andε should be
related to theideal time scale since a pulsar on the sky “does not know” about the time scales used for their
timing. The problem of the Wiener filtration is concluded in estimation of the signals if the measurements
r and the covariances〈si, sj〉 and〈εi, εj〉 , (i, j = 1, 2, . . . , n) are given (Gubanov 1997; Vaseghi 2000).
The optimal estimation of the signalŝ is expressed by the formula (Gubanov 1997; Vaseghi 2000)

ŝ = QsrQ
−1

rr r = QssQ
−1

rr r = Qss(Qss + Qεε)
−1r, (6)

whereQrr, Qss are the covariance matrices of the noise datar and signals respectively,Qsr, Qrs are the
cross-covariance matrices betweenr ands. The covariance matrixQss is calculated as cross-covariances
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Fig. 1 The barycentric timing residuals of pulsars PSR B1855+09 (dots)
and PSR B1937+21 (continuous line).
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= 〈si, sj〉 , (k, l = 1, 2, . . . , M ; i, j = 1, 2, . . . , n), M is a total number of pulsars. In the for-
mula (6) the matrixQ−1

rr serves as the whitening filter. The matrixQss forms the signal from the whitened
data.

The ensemble signal (time scale) is expressed as following

ŝens =
2

M(M − 1)

M(M−1)
2

∑

k=1

kQss ·

M
∑

i=1

wi
iQ−1

rr · ir, (7)

wherewi is the relative weight of theith pulsar,wi ∝ 1/σi, σi is the root-mean-square of the expression
iQ−1

rr · ir.

4 RESULTS

The method described in the previous section has been applied to the pulsar timing data of PSR B1855+09
and B1937+21 (Kaspi, Taylor & Ryba 1994). Though these data are regular they are unevenly spaced, there-
fore a cubic spline approximation has been applied to make them uniform with sampling interval 10 days.
Such a procedure perturbs a high-frequency component of thedata and leaves unchanged a low-frequency
component which is of interest.

The common part of the residuals for both pulsars (251 TOAs) has been taken within the interval
MJD= 46450 ÷ 48950. Since the residuals after the procedure of dropping their ends have the different
mean and the slope they have been quadratically refitted for consistency with the classical timing fit. The
residuals after all treatments described above are shown inFigure 1.

According to (Kaspi, Taylor & Ryba 1994) the timing data of PSRs B1855+09 and B1937+21 are in
UTC time scale, hence the signal to be estimated is the difference UTC – PT. Figure 2 shows the signal
estimates based on the residual TOAs of pulsars PSR B1855+09and PSR B1937+21. The ensemble signal
and the difference UTC – TT display similar behaviour.

5 DISCUSSION

For calculation of the fractional instability of a pulsar asa clock a statisticσz has been proposed
(Taylor 1991). A detailed numerical algorithm for calculation of σz has been described in the paper
(Matsakis, Taylor & Eubanks 1997).

Figure 3 presents the fractional instability of PSR B1855+09, PSR B1937+21 and TT – PTens. The
theoretical lines ofσz (Kaspi, Taylor & Ryba 1994) in the case when the timing residuals are dominated by
the gravitational wave background withΩgh

2 = 10−9 and10−10 are plotted in the lower right hand corner.
One can see thatσz of TT – PTens crosses lineΩgh

2 = 10−9 and approachesΩgh
2 = 10−10.
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Fig. 2 Combined clock variations of UTC – PT in interval MJD= 46450 ÷ 48950 estimated using the
optimal filtering method based on the timing residuals of pulsars PSR B1855+09 (thin line), PSR B1937+21
(dashed line), ensemble UTC – PTens (dot-dashed line) and UTC – TT (solid line).

Fig. 3 The fractional instabilityσz for pulsars PSR B1855+09 (solid line), PSR B1937+21 (dashedline)
and TT – PTens (dot-dashed line).
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The fractional instability of the TT relative to PTens is at level of10−15 at 7 years interval and al-
most one order better than the fractional instability of thepulsars PSR B1855+09 and PSR B1937+21. It is
expected that reliability of TT – PTens estimation will grow up by increasing the number of pulsars partici-
pating in PTens asM(M − 1)/2 (the number of cross-correlations). Currently the accuracy of the filtering
method described above without contribution of the uncertainty of TT algorithm is estimated at level 170 ns.
This uncertainty is obtained as root mean square value of thedata points taken within the smoothing interval
of spanm. The spanm was calculated from the equivalent bandwidth of the low-pass filter applied to the
ensemble data for more easy comparison with UTC – TT line. Theuncertainty of PTens may, in principle,
reach the nanosecond level if to use all the observed highly-stable millisecond pulsars.

The method proposed can not distinguish the 2nd order polynomial trends in the reference clock and
the pulsar phase due to pulsar period slowing-down. However, this is not a problem if to consider the timing
data at more long intervals and process them off-line. Undersuch processing the long-term details appears
as the data span is increased.

The low fractional accuracy oḟP mentioned in the paper (Guinot & Petit 1991) produces no disadvan-
tages when processing off-line since no prediction of the pulsar rotational phase is performed. However if
one does need to predict a behaviour of the concrete atomic scale variations, e.g. UTC, then this can be done
on the basis of the UTC – PTens data by using standard forecasting methods for the time series, e.g. the
auto-regression method with reservation that only relatively short-term variations without quadratic trend
are forecasted. Under such an approach the unsatisfactory fractional accuracy of the spin period derivative
does not play significant role since the phase variations arepredicted rather than an absolute value.

The proposed filtering method can be applied in “inverse” form: one pulsar and a few reference clocks.
In such case it is also possible to separate the pulsar timingnoise and the clock variations relative to the
ideal time scale rather than to obtain a simple clock difference.
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