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Abstract Pulsar observers have to contend with several effects of propagation through the
ionized interstellar medium. I review those effects and howthey can be used to study the
interstellar plasma. Pulsars are normally observed under conditions of strong scintillation
and show both diffractive and refractive effects. I emphasize the diffractive scintillation as
exhibited in the dynamic spectrum and in its converse – pulsebroadening. From Parkes ob-
servations of the pulse broadening of PSR J1644−45, I estimate the inner scale in an inter-
stellar region of strong plasma turbulence to be about 100 km. I discuss the representation
of dynamic spectra in terms of their “secondary spectra” andshow how the arcs, that are of-
ten revealed, are related to both angular broadening and pulse broadening. Anisotropy in the
scattering both changes the scattered pulse shape but also enhances the visibility of the arcs.
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1 INTERSTELLAR DISPERSION AND SCATTERING

The starting point for analysis of interstellar propagation effects for pulsars is the dispersion of pulse arrival
time versus frequency. From the change in arrival time observed over a bandwidthδν centered at frequency
(ν0), we can determine the dispersion measure DM, which is the column density of electrons along the
pathL from each pulsar. One can also think of the corresponding radio propagation phase over that path
φ = (2π/λ)

∫ L

0
n(rz/L, z)dz, wheren(r, z) is the refractive index at transverse positionr and distance

z from the pulsar. Assuming that the interstellar electron density Ne is such thatν0 is always much larger
than the local plasma frequency, we obtainφ = L(2πν0/c) + reDMλ, wherere = 2.82 × 10−15 m is
the classical electron radius. The associated group delayTg = ∂φ/∂ν/(2π) = L/c + reDM/(2πν2

0
);

subtracting the free-space terms, we see that the dispersive plasma delay is simply related to the plasma
phase asTg = −φ/(2πν0) (Rickett 1988). Of course, pulsar observers have to remove the differential delay
that this causes over the bandwidth, either by coherent or incoherent methods.

The best timing measurements require correction for changes in DM, as was done by Kaspi et al. (1994)
for early measurements of PSR B1937+21. Ramachandran et al.(2006) have recently assembled 20 years
of timing results on this pulsar at various radio frequencies, from which they have estimated the variations
in DM and its structure function. Because of the relation of plasma delay to plasma phase one can directly
obtain the structure function inφ (their figure 7). At 1.4 GHz they fit it by the function:

Dφ(t) = 〈[φ(t′) − φ(t′ + t)]2〉 = (t/δtd)
α [radian2], (1)

over times from 12–5000 days and estimateδtd = 180 s andα = 1.66 consistent with 5/3, as expected
for a medium with a Kolmogorov wavenumber spectrum. The changes in DM orφ are largely due to the
motion of the line of sight from the pulsar to the Earth relative to the dispersing interstellar electrons.
Ramachandran et al. estimate this velocity to be 40 km s−1 for mapping time scales to spatial scales. Hence
the spatial scale associated withδtd is 7200 km. The same transverse gradients inφ that cause DM to vary
also cause interstellar scattering and scintillation (ISS). In pulsars the primary effects are broadening of the
pulse shape and fluctuations in the pulse amplitude over timeand frequency.
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Interstellar Scattering

Considering the scintillation first, the dominant (diffractive) scale (sd) is defined by the separa-
tion where the spatial structure function equals one radian2. When the scattering medium can be de-
scribed by an isotropic Kolmogorov wavenumber spectrum we obtain Dφ(b) = (b/sd)

5/3. If the
spectrum were anisotropic with an axial ratioA, Dφ is a similar power law of the quadratric form
√

A(x/sd)2 + (y/sd)2/A. The diffractive scale is intimately linked to the angular broadening angle
θd = λ/(2πsd), which is the characteristic width of the angular spectrum for plane incident wave. Thus
smaller diffractive scales correspond to wider angular scattering and vice-versa; and so anisotropy causes
wider scattering in the spatially narrow direction (herex). For the pulsar geometry we have a point source at
distanceL and if the scattering occurs in a relatively thin layer at distancesL from the pulsar, the apparent
angles of arrival at the observer would beθ2 = sθd.

The mutual interference of the waves scattered at differentangles causes the intensity to vary across a
wavefront and then the motion of the observer relative to thepulsar and medium cause variations in time
(Interstellar Scintillation - ISS). In pulsar observations we normally have “strong scintillation” which is
whenm = (Irms/〈I〉) > 1, and the dominant effect is diffractive intensity fluctuations over a scalesd

with a scintillation indexm ∼ 1. Actual measurements of the diffractive ISS of PSR B1937+21at 1.4 GHz
by Cordes et al. (1990) showed a scale of 17800 km. This can be compared with the 7200 km which was
extrapolated over a factor of 2300:1 from the DM variations.The difference suggests an exponent slightly
steeper than the fitted value of 1.66 – perhaps due to the effect of an inner scale.

As is well known diffractive ISS is a narrow band process, which is characterized by the frequency
difference for a 50% decorrelation in the ISS (δνd). There are also refractive interstellar scintillations (RISS)
which occur on time-scales of days to months, correspondingto scales in the medium on the size of the
scattering disk, which are typically correlated over a 2:1 bandwidth. The latter have rms amplitudes of
1%–20% and will not be discussed further.

Temporal and Angular Broadening

Interstellar pulse broadening is also due to diffraction. The extra path length for a wave component de-
flected by the screen through an angleθs causes a time delayt = zeθ

2

s/(2c) whereze = Ls(1 − s)
with s as the pulsar-screen distance as a fraction of the pulsar-earth distance. The pulse broadening is also
related to the narrow band diffractive ISS, having a characteristic decay timeτd ∼ (2πδνd)

−1. The scat-
tered pulse shape is related directly to the angular scattering spectrum (B(θs, β)) asP (t) =

∫

2π

0
B(θs =

√

(2ct/ze), β)dβ, whereβ is the “azimuth” ofθs. In almost all discussions of this pulse broadening the
scattering has been assumed to be isotropic making theβ integration unimportant. Figure 1 shows a simple
calculation of the effect of anisotropy using an ellipticalGaussian angular scattering function with axial
ratio A = 1, 2, 4, 8. As is well-known, the circularly symmetric case (A = 1) maps the Gaussian bright-
ness distribution to a one-sided exponential pulse shape, which is a straight line on the loge-linear scale.
As A increases, the far-out pulse decay becomes slower (due to the late arrival of waves scattered in the
wide direction). Thus high dynamic range measurements of the scattered pulse shape can be influenced by
anisotropy in the scattering.

Pulse Broadening as a Probe of Interstellar Scattering

The effect of anisotropy is a serious complication in the interpretation of the detailed form of the far-out
pulse decay, as a probe for an inner scale in the scattering plasma. Figure 2 shows observations by Rickett
et al. (2005) of the pulse decay at 660 MHz from PSR J1644–45 (observed at Parkes for an hour using
1024 channels over a bandwidth of 32 MHz). The data were fittedby a theoretical model withisotropic
Kolmogorov scattering with an inner scale from either a screen (on left) or an extended medium (on right).
The model was fitted to the pulse decay (from the thin dotted line onwards) to avoid the influence of the
intrinsic pulse shape. The fitted parameters were the diffractive time constant, the inner scale and the off-
pulse level of the received power. The solid lines are the best fit Kolmogorov spectrum models; the error
bars show the observed pulse relative to the base level, which was estimated independently for the two
models. The dotted line is for a large inner scale (exponential decay) and the dashed line is for a small inner
scale(simple Kolmogorov) model with the fitted time constants. The fact that the observations lie between
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Fig. 1 (a) Left: Pulse shape due to screen with elliptical Gaussian Scattered brightness functions. Vertical
scale is natural log of scattered pulse response. Axial ratiosA = 1, 2, 4, & 8 (from lowest to highest curve).
(b) Right: Pulse shape due to two screens with orthogonal scattering ellipses of axial ratios as listed; the
configuration is constrained so that the apparent scatteredimage is circular.

Fig. 2 Natural log of the observed pulse profile averaged over 32 MHznear 660 MHz; screen (left) and
extended medium (right) model fits are overplotted. Parkes observations by Rickett et al. (2005).

these two extremes allows us to estimate the inner scale. Theestimated inner scale is76 ± 5 km for the
extended scattering medium, while it is(190 ± 12)

√

s(1 − s) km for a screen at fractional distances.
We saw in Figure 1a that the effect of anisotropy in a screen isto cause a slower pulse decay at late

times (curving upwards relative to the straight line). Though this calculation was for a very large inner scale
(Gaussian scattered brightness), we expect a similar effect for the Kolmogorov models. An unknown axial
ratio would cause a degeneracy in the fit and so the quoted inner scale results become lower bounds if the
axial ratio is larger than 1.5.

We do not have a theoretical pulse shape for an extended medium with anisotropic scattering. Of course
such a model would also have to specify how the orientation ofthe major axis of the scattering varies with
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distance. As a simple test of the physical ideas involved, wecomputed the pulse shape due to scattering
in two orthogonal elliptical Gaussian screens (see Figure 1b). The screens are at 0.2 and 0.8 of the pulsar
distance and their scattering ellipses had equal axial ratios with their angles of scattering constrained so
that the overall scattered image appears to be circular for the observer. The point of interest here is that the
pulse shape, which would be exponential for a single circular Gaussian screen, has a slower late-time decay
as the axial ratio increases. This is because angular broadening and temporal broadening have differing
weighting functions versus distance. Screens near the pulsar have a bigger effect on the pulse decay than on
the apparent scattering angle and vice versa. We anticipatethat some traces of this behaviour would be seen
in the pulse shape from an extended distribution of randomlyoriented scattering ellipses. The equations
used are:

P (t) =

∫ ∫

B1(θs1)B2(θs2)δ[t − τ(θs1, θs2)]dθs1dθs2 , (2)

where

τ(θs1, θs2) = [(L − z1)z2θ
2

s1 + z2(L − z1)θ
2

s2 + 2z2(L − z1)θs1
˙θs2]/(2cL) . (3)

Herez1 andz2 are the distances from each screen to the observer which for Figure 1b are0.2L and0.8L.

2 DYNAMIC SPECTRA, SECONDARY SPECTRA AND ARCS

The usual display of diffractive ISS is the dynamic spectrum, (as in Figure 3) which plots pulse intensity
versus frequency and time. The intensity is usually estimated from the area of average pulse profiles ob-
served in a channel bandwidthδν integrated for timeδt. A striking feature of such plots is that the intensity
is deeply modulated in frequency (δνd) as well as in time (δtd). The condition to see the ISS is evidently that
the channel bandwidth is narrower than the characteristic scintillation bandwidthδνd and alsoδt < δtd. In
contrast, the condition to see pulse broadening is that the basic time resolution∼ (2δν)−1 is smaller than
the pulse decay timeτd, or equivalently the observed channel bandwidth includes many independent scintles
(if dispersion is removed coherently then one needs many diffractive scintles across the total bandwidth).

The left panel of Figure 3 shows the primary dynamic spectrum. One can recognize the characteristic
widths (δνd×δtd), but with sufficiently fine resolutions one can also see a criss-cross patterned substructure.
The right panel shows its Fourier power spectrum (secondaryspectrum) plotted logarithmically versus delay
fν(µs) and frequencyft (MHz). The parabolic arcs (first discovered by Stinebring etal. 2001) extend well
beyondτd in delay. The relationships between the scattered pulse shape, scattered brightness distribution,
primary dynamic spectrum and secondary spectrum are summarized in Figure 4, which also illustrates how
these quantities are related to the generalized second moment of the received electric field (Γ2D(σ, δν)).
Note that the sum ofS2 overft gives the auto-correlation (RP (δt)) of the scattered pulse shape.

However, the relationships in Figure 4 do not explain the physics of the parabolic arcs, which is due to
interference of pairs of components in the scattered brightness atθs1 andθs2 (see Stinebring et al. 2001;
Cordes et al. 2006; Walker et al. 2004). The components have differing delays and differing Doppler shifts
due to their changing path lengths. While the delay depends on the square of the angles (zeθ

2

s/2c), the
difference in Doppler shifts depends linearly on the angles, giving ft = V · (θs1 − θs2)/(λ), whereV is
the “scintillation velocity” relative to the medium. Theselinear and quadratic dependencies give a general
quadratic relation betweenft andfν .

In the special case that one of the angles is close to zero andθs1 = (θsx1, θsy1), the quadratic be-
comes a parabolafν = af2

t + b, wherea = zeλ
2/(2cV 2). If V is along thex-axis b ∝ θ2

sy1
which

is positive, and henceS2 falls to zero outside the primary arcfν = af2

t . Moreover in such a case,
any point (fν , ft) inside that arc can be mapped to the scattered brightness distribution B(θs, β), as
θs =

√

(2cfν/ze) = (λ/V )
√

fν/a and cosβ = ft

√

a/fν. Thus we have the remarkable result that
an observation of the secondary spectrum with a single antenna can be mapped to the two dimensional
scattered brightness (though since onlycosβ is determined points at±β are superimposed).

The mapping is such thatS2 is greatest for waves from nearβ = 0 or π, which brightens the outer edge
of the arc. It also means that thin bright arcs occur when the scattering is anisotropic and aligned with the
velocity. In Figure 3 the most prominent arc is quite narrow as if due to anisotropy, while the arc that lies



Anisotropy in Pulsar Scattering 201

Frequency (MHz)

T
im

e 
(m

in
)

1380 1400 1420 1440 1460

0

5

10

15

20

25

30

35

Delay (microsec)
D

op
pl

er
 F

re
qu

en
cy

 (
m

H
z)

0 0.5 1 1.5 2 2.5

−50

−40

−30

−20

−10

0

10

20

30

40
20

25

30

35

40

45

50

55

δ t
d

δ ν
d

Fig. 3 Left: Dynamic spectrum of PSR B1133+16 recorded by Stinebring at Arecibo on modified Julian
Date 53224; the darkness of the grayscale is linear in intensity. Right : The secondary spectrum (S2) of the
data on the left (its 2-D Fourier power spectrum). The greyscale is logarithmic (dB) as shown in the tablet,
revealing remarkable fine parabolic arcs visible out to delays much larger thanτd, which is the width in
delay of the dark region near the origin and can also be estimated as(2πδνd)

−1.

Fig. 4 Relationships between primary, secondary spectra, scattered brightness distribution, pulse shape, and
the second moments of the field.
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Fig. 5 Simulated primary and secondary spectrum for a Kolmogorov screen in intermediate scintillation.
Left: Axial ratio = 1.0;Right: Axial ratio 4:1. The strength of scintillation as characterized by the variance
calculated assuming weak scintillation (ie the Born model)was 10.

Fig. 6 408 MHz Secondary spectrum from PSR B1929+10 observed at Jodrell Bank 1985 June 21. The
slopes are caused by refraction which also shifts the apex ofthe parabola.

outside it has a filled interior, suggesting a more isotropicscattering at its distance (presumably nearer to
the pulsar).

The special case of a strong undeviated component arises directly in weak scintillation, where there is
an essentially unscattered “core” that interferes with thescattered waves. The other case is in strong scin-
tillation from a medium with a power law spectrum (like the Kolmogorov spectrum); then waves within the
half-power width of the ensemble averaged scattered brightness act as the core and interfere with an effec-
tive “halo” of waves from much higher angles. The mapping described above is robust in weak scintillation
but only applies in strong scintillation under conditions that approach an ensemble average, and then the
effective resolution is set by the scattered core. This is distinct from the inversion technique of Walker and
Stinebring (2005), who attempt to estimateB under snapshot conditions.

Cordes et al. (2006) describe the theory of arcs under asymptotic weak and strong scintillation; they
also present simulations for some intermediate cases, which are reproduced in Figure 5. Both left and
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right panels are for Kolmogorov spectra with the same strength of scintillation, but the left is isotropic
and the right is anisotropic with an axial ratio 4:1 aligned with wider angular scattering along the velocity.
These verify that arcs can be seen at intermediate strengthsof scintillation and are enhanced when there is
anisotropy aligned with the velocity.

Figure 6 illustrates the arc phenomenon for a case in which the dynamic spectrum (on left) shows
pronounced sloping features. The sloping features are due to refraction by a gradient in electron column
density, that shifts the scattered image through an angle (sayθr), but as is discussed in Cordes et al. (2006)
the direction for a minimum group delay (fν) is at−θr. The observable consequence is that while the arc
is brighter for postive Doppler, its apex is at negative Doppler.

3 SUMMARY

I have reviewed some of the basics of interstellar dispersion and scattering and the influence of anisotropic
scattering. Anisotropy causes the scattered pulse shape atfar-out times to decay more slowly than its initial
rate of decay. This is seen as a convex curve when plotted on log/linear scales. The effect complicates
attempts to use the shape of the far-out decay to estimate an inner scale to the standard Kolmogorov model
for the interstellar density.

I also reviewed the basic cause of parabolic arcs in the secondary spectrum plotted versus the differential
delay and the differential Doppler shift between two components of the scattered angular spectrum. The
special case in which one of the components follows a nearly straight path leads to the parabolic form often
observed. That special condition occurs directly in weak scintillation, and approximately applies under
strong scintillation. Anisotropy enhances the visibilityof arcs. Plasma refraction shifts the direction for
maximum brightness in the opposite direction to that for minimum delay.
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