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Dissipation of Low-Frequency Waves in the Pulsar Wind
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Abstract Low-frequency waves and energy dissipation in the relativistic pulsar wind are dis-
cussed. The Poynting flux, which is initially dominant in thepulsar wind, may be transported
by large amplitude low-frequency waves: in the region near the pulsar such waves can be rel-
ativistic MHD waves, and in the region far from the pulsar they can be electromagnetic (EM)
waves. Both types of wave are considered and in the latter case, coherent nonlinear Compton
scattering may lead to highly beamed coherent radio emission with synchrotron-like spectra,
which may be potentially observable.
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1 INTRODUCTION

A major unresolved issue in understanding phenomena of pulsar wind nebulae (PWNe) is how the pulsar’s
spin-down power is converted to particle kinetic energy in the relativistic wind that interacts with its en-
vironment. The pulsar’s rotation energy drives a relativistic outflow that is electromagnetically dominant
near the star and terminates at the standing shock where the flow becomes nonrelativistic. The features of
the termination shock are well studied in observations fromradio to X-rays (Hester et al. 1995) and forma-
tion of such shock requires the energy content of the wind before the shock to be predominantly in kinetic
energy (Kennel & Coroniti 1984). Numerous mechanisms have been proposed to explain such conversion,
and these can be broadly classified as the steady MHD wind model in which the wind is treated as steady
ideal MHD fluids (e.g. Michel 1969; Chiueh, Li & Begelman 1998), and the plasma wind model in which
modulation due to the magnetic dipole’s rotation plays an essential role in energy transport and dissipation
(e.g. Asseo, Kennel & Pellat 1978; Usov 1994; Melatos & Melrose 1996; Lyubarsky & Kirk 2001; Kirk &
Skjaeraasen 2003). In the ideal MHD model, the conversion ofPoynting flux to kinetic energy is achieved
through collimation, which is possible under certain special boundary conditions at the base of the outflow
(e.g. Chiueh, Li & Begelman 1998). In the plasma wind model, the Poynting flux is transported in large
amplitude waves and dissipated through magnetic reconnection near the equatorial region if the large am-
plitude waves concerned are the entropy wave (e.g. Lyubarsky & Kirk 2001) or through wave damping if
the Poynting flux is carried by EM waves (e.g. Asseo, Kennel & Pellat 1978).

The low-frequency waves play an essential role in energy transport and dissipation in the pulsar wind.
The idea that a pulsar emits large amplitude waves was first discussed by Ostriker & Gunn (1969) and was
not favored initially because a pulsar generates ample relativistic pairs and EM waves at pulsar’s rotation
frequency do not propagate in the dense pair plasma. However, there are two main arguments for the rele-
vance of low-frequency waves in the pulsar wind. First, observations of the outward-propagating features
in the Crab nebula, known as wisps, in both radio and optical strongly point to the wave-like nature of the
pulsar wind (Bietenholz et al. 2004). Second, the pulsar’s rotation should modulate its outflow, generating
waves that can transport energy and be dissipated. Such waves can be MHD waves that can propagate in a
dense plasma and be dissipated or converted to EM waves. Large amplitude EM waves may exist beyond
a certain radial distance where the plasma density becomes sufficiently low. The relevant large amplitude
MHD waves and EM waves in the pulsar wind are discussed here focusing on dissipation of and coupling
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between the two types of wave. Specifically, nonlinear Compton scattering of relativistic particles on large
amplitude waves is considered, as it may provide observablesignatures for the existence of such EM waves.

2 THE σ PROBLEM IN PULSAR WINDS

The pulsar light cylinder radius (LC),RLC, which is the radius where the rotation speed equals the speed of
light, separates two regions: the magnetosphere in which the magnetic field as the zeroth order approxima-
tion is considered as a static dipole and the wind in which thetoroidal magnetic field component becomes
important. One may define a characteristic radius,r∗, where the toroidal field becomes dominant and par-
ticles move radially. This radius is generally different from RLC. However, except where it is specified
otherwise, for simplicity,r∗ ∼ RLC is assumed. The properties of the wind can be characterised by a
parameter,σ, the ratio of the magnetic to particle kinetic energy, defined by

σ =
B2

2µ0nmec2γ
, (1)

whereγ is the Lorentz factor of the bulk plasma,n = MnGJ is the pair density in terms of the multiplicity
M (number of pairs per primary particle) and the Goldreich-Julian (GJ) densitynGJ = ε0ΩB/e. The GJ
density inside the LC can be written asnGJ = NGJ(R0/r)3, wherer is a radial distance,R0 = 104 m
is the star’s radius, andNGJ ≈ 5.3 × 1018(B0/5 × 108 T)(P/33 ms)−1 m−3 is the GJ density on the
polar cap (PC). Alternatively, Equation (1) can be written as the ratio of the electron cyclotron frequency
to rotation frequencyΩ: σ = (Ωe/2γMΩ)|r=RLC

. For the Crab pulsar, one predicts thatσ ∼ 103 − 104 at
the LC. Since both the plasma density and the magnetic energydensity are scaled as1/r2, σ would remain
constant if there were no dissipation in the wind. Since fromobservations one infers a lowσ ≪ 1 before the
termination shock (Kennel & Coroniti 1984; Hester et al. 1995), there must be a conversion mechanism that
transforms the magnetic energy to particle’s kinetic energy. One strong possibility is through dissipation of
large amplitude waves.
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Fig. 1 The ratio of the plasma number density to the critical density for M = 10
3 (lower) and104 (upper).

Left: Absence of damping. Right: Damping is included. We assume damping occurs atr = 10
3RLC with

the characteristic damping length∆r = r (solid line) and10r (the dashed line). The inclusion of damping
leads to a second critical radius wheren = nGJ. The parameters are for the Crab pulsar. The MHD and
EM zones correspond respectively to the regions withn/nGJ ≥ 1 andn/nGJ < 1.

3 LARGE AMPLITUDE WAVES

The pulsar wind is commonly described in the ideal MHD model,often in the steady flow approximation.
However, it was recognised that the ideal MHD conditions canonly be satisfied up to a certain radial
distance before the plasma density drops to a sufficiently low value below which the displacement current
cannot be neutralised (e.g. Usov 1994; Melatos & Melrose 1996). The corresponding critical densitync
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can be estimated as follows. The displacement current (the∂E/∂t term in the Maxwell’s equations) is
∼ ΩE/µ0c

2, whereE is the electric field of the relevant wave. The current supported by a relativistic
plasma is aboutnec. AssumingE ∼ cB, one finds the critical density as

nc = ε0BΩ/e = nGJ, (2)

which decreases with an increasing radial distance as1/r, much slower than the plasma density does as
1/r2, where the wave frequencyΩ is identified as the pulsar angular frequency. It should be emphasised here
thatnGJ has a different meaning from that for the magnetosphere: It characterises the displacement current
of a wave not the density for corotation as in the magnetosphere, though they both have the same form. Let
nGJ = nGJ(r∗)(r∗/r)2 for r > r∗ ≥ RLC andn = MnGJ. Whenr∗ ∼ RLC, one hasnGJ(r∗) ∼ NGJθ

6

d,
whereθd = (R0/RLC)1/2 is the half-opening angle of the PC. Usingnc = nGJ(r1)(r∗/r), the critical
density corresponds to a radius,

rc = M r∗. (3)

For M = 5 × 103, one hasrc ∼ 5 × 103RLC for r∗ = RLC, well inside the termination shock
(rs ∼ 7 × 1016 m). The other useful characteristic radius is whereΩ = ωp, given by r1/RLC =

2.2×107 (P/33 ms)−1(B0/5 × 108 T)1/2(M/5 × 103)1/2, giving rise tor1 ∼ 1013 m for the Crab pulsar.
Figure 1 shows plots of the ratio of the plasma density to the critical density. The relativistic flow atr ≥ rc

must be treated as EM waves (e.g. Usov 1994; Melatos & Melrose1996).
If the relevant EM wave is subject to damping, the above simple two-zone model does not apply. The

critical density depends on the wave amplitude and damping would effectively increase the critical density.
This complication is illustrated in Figure 1. One assumes that the wave is damped on a characteristic length
∆r. In each case there are two MHD zones and two EM wave zones. Theouter EM zone is determined by
r1 and the size of the inner EM zone strongly dependent on the damping rate and also on how MHD waves
couple to an EM wave and vice versa. In the first MHD zoner ≤ rc, EM waves cannot propagate (Asseo,
Kennel & Pellat 1978). Poynting flux may be carried in relativistic MHD waves such as entropy waves
or fast magnetosonic waves (e.g. Lou 1998; Lyubarsky 2003),and these waves may be subject to some
dissipation due to turbulences by reducing the displacement current, or converted to EM waves, which
are damped at a larger radial distance near the second critical radius (see Figure 1). Asseo et al considered
damping of large amplitude electromagnetic waves in the fluid model including radiation reaction and found
that the damping distance is∝ (nGJ/n)3, implying that large amplitude waves are damped only when the
density is close to the critical density (2). Thus it seems possible that the dissipation is only partial and some
vacuum-like, large amplitude waves may exist in the EM zones.

4 NONLINEAR COMPTON SCATTERING

If large amplitude EM waves exist in a particular region in the pulsar wind, such as the EM wave zones
described above, nonlinear Compton scattering by relativistic electrons or positrons may produce observable
radiation (Blandford 1972; Arons 1972). For electrons (or positrons) the basic dimensionless parameter
characterising the strength of the radiation field is

a =
eE

mecΩ
≈ 1011

(

P

33 ms

)

−3 (

B

108 T

) (

RLC

r

)

, (4)

whereE is the amplitude of the electric field of the wave, and the approximation corresponds to the assump-
tion of transverse waves withE ∼ cB. The basic theory for Compton scattering on an intense radiation
field was worked out between late 60 s and early 70 s (e.g. Eberly & Sleeper 1968; Sarachik & Schappert
1970; Gunn & Ostriker 1971) and was refined recently, primarily motivated by the recent advances in high
power laser technology (e.g. Esarey, Ride & Sprangle 1993).There are two approaches in treating Compton
scattering on intense radiation fields: a test particle model (Sarachik & Schappert 1970; Gunn & Ostriker
1971; Blandford 1972; Arons 1972), in which motion of a single particle in a background radiation field
is considered, and fluid model (e.g. Asseo, Kennel & Pellat 1978). In the following we adopt the former
with the wave-induced space-charge potentialΦ derived from the fluid continuity equation and the Poisson
equation (Sprangle et al. 1992). An exact solution can be obtained assuming that the wave amplitude is a
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periodic function of a Lorentz invariant phaseφ = Ωt−k0 ·x, wherek0 is the wave vector of the incoming
(large amplitude) wave.

The electric field and power radiated by a particle in a strongradiation field can be derived from the
current

j(ω, k) =
ec

ΩD̃0

eiϕ0

∫

dφu(φ) exp [i (Aφ − Z sin φ)] , (5)

whereω and k = k(sin θ, 0, cos θ) are the frequency and wave vector of the scattered radiation, re-
spectively. In Equation (5),ϕ0 = k(1 − cos θ)z0 is the phase due to the initial position,̃D0 =

D0 + Φ̂, Φ̂ = Φ/mec
2, D0 = γ0(1 − n0 · β0) with n0 = k0c/Ω is the doppler factor,A =

(ω/Ω)
[

1 + (1 − cos θ)(1 + a2 − D̃2
0)/2D̃2

0

]

, andZ = k(ρ sin θ + x0). Equation (5) is derived using the

single particle approach (Melrose 1986). We assume that theparticle moves initially along thez axis and
that the waves are circularly polarised, propagating in thesame direction (thez axis). The current can be
evaluated by expanding the exponential function in terms ofBessel functions. There are two distinct features
for scattering involving intense radiation fields. First, scattering on an intense radiation field is intrinsically
anisotropic, in contrast to the usual Thomson scattering that has symmetry in between backward and for-
ward scattering. Second, because of the relativistic effect the scattered radiation is similar to synchrotron
radiation with the characteristic frequencyωc ∼ 2a3Ω (while for the conventional Compton scattering, one
hasωc ∼ 2D̃2

0Ω).
In an intense radiation fielda ≫ 1, a particle initially at rest can be accelerated instantly to relativistic

energy and the radiation is always beamed approximately in the direction of the incident waves at an angle
determined from

cos θc = 1 −
2D̃2

0

1 + a2 + D̃2
0

. (6)

Note that the critical angle is determined by the drift velocity βD ≡ (1 + a2 − D̃2
0)/(1 + a2 + D̃2

0). When
the effect of space charges induced by the wave is ignored (Φ = 0), which is applicable for a primary beam,
one hasD̃0 = D0 = γ0(1 − β0) ≈ 1/2γ0 and obtainsθc ∼ 1/aγ0. Emission due to nonlinear Compton
scattering is confined to a very narrow cone aboutθc ≪ 1.

5 COHERENT RADIO EMISSION

Intense coherent radio emission may be produced through coherent Compton scattering on low-frequency
large amplitude waves. The total radiation is said to be coherent if the wave amplitudes from individual
particles are added together constructively, i.e. all particles act collectively as a single macrochargeNce,
emitting a total power ofN2

c times that of a single particle. Consider the scattered radiation in the direction
θ ∼ 0. From (5), one may obtain the condition for coherent scattering as2|ϕ0i−ϕ0j | < 1, corresponding to
∆z/λ0 < (λa6/λ0)(Ω/ωp)

2, whereϕ0i andz0i are theith particle’s initial phase and position, as defined
in (5), ∆z = |z0i − z0j |, λ = c/ω, andλ0 = c/Ω ∼ 108 cm for the Crab pulsar. Thus, for forward
scattering, the effective coherence length can be comparable to the incoming wavelengthλ0.

Coherent Compton scattering works for both an electron (or positron) beam and a neutral plasma. Since
the pair plasma in the wind has a very broad distribution in momentum, a coherent bunch can be dispersed on
a time much shorter than the flight time to the standing shock.Thus we only consider the case of a primary
electron (or positron) beam extracted from the PC. In the PC model, primary particles (electrons or pro-
tons) are accelerated to ultrarelativistic energy. If acceleration is transient and time dependent, these primary
particles form clouds of a typical sizeLg = ta/c ∼ 102 m, whereta is the light crossing time in the acceler-
ation, typically aboutta ∼ 3×10−5 s for Lg = 102 m. The number of particles in a bunch of a longitudinal
sizeLc is aboutNc ≈ 4πηLcNGJθ

6

dR2

LC
≈ 4.2×1031η

(

Lc/106 m
)

(P/33 ms)
−2

(

B0/5 × 108 T
)

, where
η < 1 is a parameter characterising the transverse coherence size. SinceLc ≫ Lg, a bunch contains a large
number (Lc/Lg) of clouds and the above estimate should be modified by a filling factor (< 1) that for
simplicity is ignored here. If the transverse size is assumed to ber/γ0a, wherer is the radial distance to the
emission region, one hasη ∼ 1/(γ0a)2 ∼ 4 × 10−18 for γ0 = 106 anda = 500. This givesNc ∼ 1014. It
is a good approximation to treat the accelerated primary particles as nearly monoenergetic with a Lorentz
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factorγ0 and a small spread∆γ ≪ γ0. It can be shown that the effect of the velocity dispersion onthe
coherence can be ignored. The dispersion time corresponds to the time for two particles to drift apart over
the distanceLc, which can be estimated fromtc ∼ 2γ3

0Lc/∆γc ≈ 108 s. Forγ0 = 106, this time is much
longer than the flight time to the termination shock.

The power radiated by an electron isPs ≈ e2ck2
0a

2γ2
0(1− β0)

2 ≈ e2ck2
0a

2/4γ2
0 , which can be derived

from (5). The emissivity is estimated to beN2
c Ps/∆V with ∆V = (r/γ0a)2∆r is the emitting volume and

∆r is the depth of the emission region. As the received power is(γ0a)2 times the power radiated due to
relativistic beaming, the flux density at a distanceD is estimated to be

F ≈
N2

c Ps(γ0a)4

D2fc
, (7)

where fc=ωc/2π. Notice that the basic angular width is∆θ < θc ∼ 1/aγ0, much smaller
than that (the smallest possible1/γ0) can be achieved within the magnetosphere. Since the rel-
ativistic wind is likely inhomogeneous in the transverse direction, which may be traced back to
a nonuniform pair cascade across the polar cap, an extremelynarrow beam structure modulated
by pulsar’s rotation can be observed if the transverse inhomogeneity in the scattering region has
a characteristic lengthr/γ0a. The flux density from forward scattering is estimated to beF ≈

(0.2 Jy) (D/2 kpc)−2 (P/33 ms)−10/3
(

B0/5 × 108 T
)2 (

γ0/106
)

−2
(fc/1 GHz)−1/3, where we usea ∼

(fcP )1/3 andLc ∼ λ0 = c/Ω. For the Crab pulsar,fc = 1 GHz corresponds toa ∼ 300. For the emission
to be coherent, propagation of the incoming wave must be highly collimated with the flow of the scattering
particles, implying that occurrence of such events may be infrequent.

6 CONCLUSIONS

Dissipation or conversion of the magnetic energy to particle’s kinetic energy occurs in the form of large
amplitude low-frequency waves. The relevant low-frequency waves near the LC are MHD waves, which
can decay or couple to EM waves in the low plasma density regions. The known processes of dissipation of
MHD waves are not efficient enough to achieveσ ≪ 1. Thus, it is possible that MHD waves couple to EM
waves and are damped subsequently. It is suggested here thatexistence of EM waves in the pulsar wind can
be tested by detecting beamed coherent radio emission due tosynchro-Compton radiation in the forward
scattering regime.
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