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Abstract The stochastic acceleration of subrelativistic electrons from a background plasma
is studied to find an explanation of the hard X-ray emission detected from the Coma cluster.
We show that the temporal evolution of the electron distribution functions has, at its final
stationary stage, a rather specific form determined by the interactions with charged back-
ground particles and electromagnetic fluctuations. These distribution functions cannot be de-
scribed by simple exponential or power-law expressions. A broad transfer region is formed
by Coulomb collisions at energies between the Maxwellian and power-law parts of the distri-
bution functions. In this region the radiative lifetime of a single quasi-thermal electron differs
greatly from the lifetime of the distribution function as a whole. This solves the problem of
rapid cluster overheating by nonthermal electrons (Petrosian, 2001): while Petrosian’s esti-
mates are correct for nonthermal particles they are inapplicable in the quasi-thermal range.
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1 INTRODUCTION

The problem of the energetics of the emitting electrons in clusters of galaxies is one of the key. First, we
recall Petrosian’s arguments (see Petrosian, 2001). He estimated the yield of bremsstrahlung photons as
Y ∼ (dE/dt)br/(dE/dt)i ∼ 3 × 10−6 in the energy range of 20–80 keV. Here (dE/dt)i/(dE/dt)br is
the ratio of ionization to bremsstrahlung losses. Then for the X-ray flux from Coma in this energy range,
FX ' 4 × 1043 erg s−1, a large amount of energy Fe ∼ FX/Y ∼ 1049 erg s−1 is transmitted from the
accelerated electrons to the background plasma by ionization losses. As a result the intracluster plasma tem-
perature should rise to > 108 K in a time of only ∼ 3 × 107 years. These conclusions were obtained under
the assumption that the lifetime of a single electron equals the lifetime of the particle distribution function.
These estimates are correct only in the case that the electrons are nonthermal and therefore collisionless.
However, they cannot be used in energy ranges where the spectrum is formed by Coulomb collisions be-
cause the lifetime of particles differs strongly from that of the distribution function.

In this respect, I would like to clarify the remark given after my talk. It was mentioned that the origin
of emitting electrons is not very serious because they can easily be produced as secondaries (from π±-
decay or as knock-on electrons) by primary protons. To my opinion, this is a misunderstanding of the
problem. The problem is not to produce electrons but how to produce necessary power which according to
Petrosian’s estimates is huge if the emitting particles are nonthermal independently of that they are primary
or secondary. In the case of secondary knock-on electrons the problem of power is only aggravated because
they are definitely nonthermal and only a part of the energy of primary protons is transformed into the
energy of high energy electrons.

2 THE COEFFICIENT OF IN-SITU ACCELERATION

The evolution of the distribution function, f(p, µ, z, t), of particles which are scattered by electromagnetic
fluctuations is described by the well-known Fokker-Planck equation
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where v and p are the particle velocity and momentum, µ is the cosine of its pitch-angle and Q0 is the
source function. Charged particle scattering is classically interpreted as particle resonant interaction with
electromagnetic fluctuations in the intracluster medium. In order to calculate the coefficient Dij , one should
sum over all resonances. Steinacker & Miller (1992) and Miller & Steinacker (1992) showed that the gy-
roresonant acceleration of electrons from thermal to relativistic energies requires a very broad spectrum of
waves.

For a power-law spectrum of magnetic fluctuations W (k) which is a function of the wave-number k
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the momentum diffusion coefficient describing electron in-situ acceleration has the form
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Here µ is the cosine of particle pitch-angle, β = v/c,
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where me and mp are the electron and proton rest masses.

3 SPECTRUM OF ACCELERATED ELECTRONS IN THE HALO OF THE COMA CLUSTER

For the Coma cluster we take the parameters presented in Liang et al. (2002): the best estimates of the
intracluster temperature are T = 8.21± 0.09 keV from Ginga. An excess of hard X-rays above the thermal
component has been detected in the energy range 20–80 keV (Fusco-Femiano, 1999). As in Liang et al.
(2002), we estimate the average electron density within the Beppo-SAX field of view of 1.◦3 (i.e. a volume
of V ∼ 1.7 × 1075 cm3) to be n̄e ∼ 1.23× 10−4 cm−3.

Using Eqs. (2), (4) and (5), we can calculate the coefficient of momentum diffusion for any particle
energy. Following Dogiel (2000) and Liang et al. (2002), we use a kinetic equation, which is valid for
subrelativistic and relativistic energies, to describe particle in-situ acceleration from the background plasma
including the influence of Coulomb collisions and stochastic acceleration
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This equation is written in the dimensionless variables p̃ and the dimensionless time t̃ = tν and diffusion
coefficients D̃p(p) = Dp(p)/(νmkT ). The frequency ν is

ν =
2πnc2r2
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For notational simplicity, we drop the tilde in Eq. (7) and hereafter. Here
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where re = e2/(mc2) is the classical electron radius.
The dimensionless rate of ionization loss has the form

(

dp

dt

)

i

=
1

p

√

p2 +
mc2

kT

γ
√

γ2 − 1
(11)

×
{

ln

[

Emc2(γ2 − 1)

h2ω2
pγ2

]

+ 0.43

}

,

where ωp is plasma frequency and E(p) is particle kinetic energy.

The quasi-steady state solution of Eq. (7), obtained by Gurevich (1960), is
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and n(t) is the density of background plasma.
The stochastic acceleration violates the equilibrium condition and as a result Coulomb collisions form

a flux of particles running-away into the acceleration region in the momentum range p > pM where the
value of pM is determined by parameters of acceleration.

The acceleration forms the collisionless part of the spectrum in the momentum range p > pinj > pM

where the injection momentum pinj is determined from the condition
(
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)
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4 POWER OF ELECTRONS NECESSARY FOR BREMSSTRAHLUNG X-RAYS

In the range p > pM there are two excesses above the equilibrium Maxwellian spectrum are formed .
When pM < p < pinj, the excess is formed by Coulomb collisions (the collisional regime of quasi-thermal
particles), and one can imagine the spectrum there as a distorted Maxwellian function. For p > pinj the
spectrum is formed by particle interactions with plasma waves (the collisionless regime of nonthermal
particles). Petrosian’s arguments can be applied to the range of p > pinj only.

We estimate the power necessary to support this excess above the equilibrium state at any energy Ee.
Then from Eq. (1) we obtain an expression for the rate of change of the energy content of the electrons We
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where the total number of particles with momentum ≥ p in a volume V , Fe(p) = V
∫ ∞

p
f(p)4πp2dp, and

the total electron energy in this volume, We ' EeFe. As follows from this equation, Petrosian’s estimates
of the power are completely correct for the energy range of nonthermal particles (p > pinj). Indeed, if the
energy interval of 20–80 keV is in the range p > pinj, then Y ∼ 3×10−6 and Fe ∼ FX/Y ∼ 1049 erg s−1.

However, for the temperature of the Coma intracluster gas with the temperature T = 8.21 keV, the elec-
trons emitting excess at 20–80 keV are just quasi-thermal. Therefore the heating they require is almost two
orders of magnitude below Petrosian’s estimate. This resolves the energetic problem raised by Petrosian: the
ionization losses of the radiating electrons heat the plasma relatively slowly, so that a temperature > 108 K
will be reached only after > 109 years.
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