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Abstract We study the statistical properties of the combined emission of a population of
discrete sources. In particular, we consider the dependence of their total luminosity (Ltot =
∑

k Lk) and fractional rmstot variability on the number of sources n or on the normalization
of the luminosity function. We show that due to small number statistics a regime exists, in
which Ltot grows non-linearly with n. This is in apparent contradiction with the seemingly
obvious prediction 〈Ltot〉 =

∫

LdN/dLdL ∼ n. In this non-linear regime, the rmstot de-
creases with n significantly more slowly than expected from the rms∼ 1/

√
n averaging law.

Only in the limit of n � 1 do these quantities behave as intuitively expected, Ltot ∼ n
and rmstot ∼ 1/

√
n. Using the total X-ray luminosity of a galaxy due to its X-ray binary

population as an example, we show that the LX–SFR and LX–M∗ relations predicted from
the respective “universal” luminosity functions of high and low mass X-ray binaries are in a
good agreement with observations.
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1 BASIC STATISTICAL PROPERTIES

The statistical properties of a power law distribution are interesting because combined quantities from
summing over a power law distribution show, at first glance, counterintuitive behavior. In particular the total
X-ray luminosity versus star formation rate (SFR) exhibits a more complex behavior. This relation, as shown
in the left hand panel of Figure 5, is non-linear at low star formation rate/X-ray luminosities, and the relation
becomes linear only at high star formation rates. As shown below this behavior results naturally from the
properties of the luminosity function of X-ray binaries. In the following we will discuss the interesting
statistical properties of the power law probability distribution using the X-ray binary luminosity function
as an example. Note, however, that the statistical properties hold for any power law distributed random
variable.

As Grimm et al. (2003) have shown the normalization of the HMXB luminosity function is directly
proportional to the star formation rate in a galaxy. Thus the straightforward way to compute the total X-ray
luminosity of a galaxy due to HMXBs from the luminosity function is simple integration, i.e. the expectation
value of the total luminosity Ltot:

〈Ltot〉 =

∫ L2

L1

LN0L
−α, (1)

with N0 the normalization and α the (differential) slope of the power law luminosity function, and L1

and L2 the lower and upper limits of the validity of the power law distribution. The existence of a lower
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Fig. 1 Left: Gaussian probability distribution with a mean of 50 and a standard deviation of 15. Right: A
power law distribution from 1 to 1000 and a differential slope of 1.5. The dotted lines indicate the mean of
the distributions. On the left side the solid line indicates the mode as well. The mode of the power law is
always at the lower end of the distribution.

limit derives simply from having a finite number of sources. The existence of an upper limit might be due
to physical constraints, that will be discussed below. The quantity in Eq. 1 is obviously always directly
proportional to the normalization.

The difference between this simple estimate and the observational results arises because the luminosity
function is a probability distribution of a discrete number of sources. That the probability distribution has
the form of a power law leads to the important distinction between the mode of the distribution, the most
likely value to observe, and the mean of the distribution, the average value of the distribution. For the
often-used Gaussian distribution this distinction disappears as is illustrated on the left hand side in Figure 1.

The left hand side of the figure shows a Gaussian probability distribution with a mean of 50 and a
standard deviation of 15. The dotted line indicates the mean of the distribution and the solid line the mode
of the distribution. The two are identical for a Gaussian distribution. The right hand side of Figure 1 shows
a power law distribution from 1 to 1000 and a differential slope of 1.5. The dotted line again indicates the
mean of the distribution. The mode of a power law distribution is obviously always at the lower boundary
of the distribution, at 1 in this case. Note that this is only the case for a single source.

One of the properties of a Gaussian distribution is that the sum of Gaussian distributed random variables
follows a Gaussian as well. However, as will be shown below the sum of power law distributed variables is
not a simple power law. The mode of the power law distribution for more than 1 source changes from the
lower limit of the validity range to the expectation value of Eq. 1 with increasing number of sources. For a
sufficient number of sources the Central Limit Theorem applies and the distribution becomes Gaussian.

Another property of a luminosity function is that it consists of discrete sources. The distribution is not
continuous. An important consequence of this is that for low normalizations of the luminosity function a
random sampling of the distribution will most likely result in a brightest source whose luminosity does not
equal the upper validity limit of the luminosity function. The point is illustrated in the left hand side of
Figure 2. Although the luminosity function extends from 1 to 1000 by definition, the normalization is too
small for the brightest source to reach a luminosity of 1000.

An obvious consequence of the discrete nature of the luminosity function distribution is that the most
likely luminosity of the brightest source depends on the normalization up to the point when the normaliza-
tion is large enough that a sufficient number of sources are close to the maximum luminosity. Because for
small enough slopes of the luminosity function the total luminosity is dominated by the brightest source(s),
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Fig. 2 Left: Cumulative power law luminosity function (solid line) with a sampling of discrete sources
(histogram). Right: Schematic cumulative power law luminosity function for various normalizations. Note
the changes of normalization and luminosity of the brightest source from the lowest to the highest normal-
ization. For clarity the luminosity functions extend to (unphysical) numbers of less than one.

this leads to the non-linear behavior in relations of total X-ray luminosity versus normalization. To compute
the expected total luminosity for a given luminosity function L2 in Eq. 1, the upper limit of the luminosity
function, has to be replaced by the most likely luminosity of the brightest source Lmax. This itself is depen-
dent on the normalization N0. Thus the total luminosity is dependent on the normalization not only through
the normalization as a multiplier in Eq.1, but also through Lmax(N0). This holds until Lmax(N0) ≥ L2.
The right hand side of Figure 2 illustrates schematically the change of the cumulative luminosity function
with increasing normalization.

2 COMPUTATION

The property of interest is the probability distribution of the total X-ray luminosity from a number of n
sources. The probability distribution for each individual source is a power law with a (differential) slope of
α in a luminosity range from L1 to L2.

A computationally convenient way to compute the probability distribution is to quantify it as the product
of the Poissonian distribution of n sources with the probability distribution of the total luminosity of exactly
n sources.

p(Ltot) =

n=∞
∑

n=0

Pµ(n)pn(Ltot) . (2)

Assuming 〈n〉 � 1 the Poisson distribution can be approximated by the delta function and thus

p(Ltot) ≈ pn(Ltot). (3)

Using the convolution theorem the probability distribution for the total luminosity can be expressed by the
probability distribution for one source

p̂n = p̂1
n, (4)

with

p̂1 =

∫ ∞

0

p1(L)eiωLdL. (5)
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Fig. 3 Probability distributions of the average luminosity
∑

n

k=1
Lk/n of n discrete sources with a power

law with slope 1.5 and lower and upper luminosity cutoffs of L1 = 1 and L2 = 1 000.

The probability distribution of the total X-ray luminosity therefore becomes

pn(Ltot) =

∫ ∞

−∞

p̂n(ω)e−iωLtotdω , (6)

where the hatted symbols are the Fourier transforms of the respective probability distribution. The resulting
probability distributions for various numbers of sources are shown in Figure 3.

For more details on the computation please refer to Gilfanov et al. (2004).

3 EXAMPLES

The behavior of the luminosity function with increasing normalization has various important implications
for the study of integrated properties derived from the luminosity function. The following examples use
mostly X-ray luminosity as the quantity of interest. But the statistical behavior is the same for any kind of
power law distribution.

The following relies on the assumption that the power law representation of the luminosity function
does not change, apart from long-term trends in its normalization. However, it is well known that X-ray
binaries are strongly variable. Persistent sources show variability of more than an order of magnitude in
luminosity. And transient sources are only observable for a relatively short time after which they disap-
pear completely. This raises the question how valid the assumption of a constant luminosity function is.
For the Milky Way Grimm et al. (2006) use several hundred luminosity functions obtained with ASM to
show that the variability of the shape of the luminosity function is quite small. Figure 4 shows the HMXB
luminosity functions for 1 513 days. Also in other galaxies Chandra observations have shown no significant
variability in the luminosity function of different galaxies like M33 Grimm et al. (2005) and the Antennae
Zezas et al. (2004). This leads to the conclusion that Chandra or XMM luminosity functions are a good rep-
resentation of the underlying X-ray source population, and the stability supports the conclusions we draw
from our statistical arguments.

3.1 Measure of Star Formation and Mass

Assuming universal luminosity functions for HMXBs and LMXBs, Grimm et al. (2003) and
Gilfanov (2004) make predictions for the expected X-ray luminosity from HMXBs or LMXBs given a
star formation rate or a stellar mass. The predictions with data are shown in Figure 5. On the left hand
side X-ray luminosity versus star formation rate is shown. The continuous line is the prediction obtained
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Fig. 4 Left: 2–10 keV HMXB luminosity functions for 1 513 days. Right: Luminosity functions of M33 for
3 different observations.

Fig. 5 Left: Total 2–10 keV X-ray luminosity versus star formation rate for samples of local galaxies and
galaxies in the Hubble Deep Field. Right: Total X-ray luminosity versus stellar mass for samples of local
galaxies from Gilfanov (2004).

from the universal luminosity function for HMXBs, and the shaded area corresponds to the 68% CL area.
Note that this is asymmetric at low star formation rate due to the tail of the probability distribution to high
luminosities. As can be seen there is a break around SFRs of around 7 M� yr−1, or X-ray luminosities
around 2− 3× 1040 erg s−1. On the right hand side the relation between total X-ray luminosity and stellar
mass of a galaxy from Gilfanov (2004) is plotted. The continuous line is the prediction from the universal
luminosity function of LMXBs. The shaded area is again the 68% CL area.

3.2 Cutoff in HMXB Luminosity Function

The left hand side of Figure 5 shows a break in the relation between total X-ray luminosity and star for-
mation rate. For higher luminosities and/or star formation rates the relation becomes linear. However, this
relation can only become linear, if the luminosity of the brightest source does not grow beyond a certain
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Fig. 6 0.3–8 keV X-ray luminosity of the brightest source for HMXBs and LMXBs versus SFR and mass.

limit. Therefore the break implies that the luminosity function of HMXBs has a cutoff. Note that this evi-
dence is independent of our knowledge of the shape of the luminosity function.

3.3 Brightest Source as SFR/Mass Indicator

The existence of a non-linear regime in the X-ray luminosity–SFR relation implies a dependence of the
luminosity of the brightest source on the normalization of the luminosity function. Thus as long as the non-
linear relation holds the brightest source alone is an indicator of star formation rate or mass. The prediction
from the universal luminosity functions and observations are shown in Figure 6.

3.4 Aperiodic Variability

As a result of the non-linear behavior aperiodic variability, measured in rms, of a population of sources
in the low number regime does not follow the usual 1/

√
n rule. Assuming for simplicity that all sources

have the same rms value rms0 and depending on the slope of the luminosity function the total rms value
is constant if the number of sources is small enough. In Figure 7 the predictions for HMXBs and LMXBs,
obtained from the universal luminosity functions, are shown.

3.5 Nature of ULXs

One of the most interesting question at present concerns the nature of the so-called ultraluminous X-ray
sources, defined as sources with an apparent isotropic luminosity larger than ∼ 1039 erg s−1. One pos-
sible explanation is that these sources are intermediate mass black holes with masses between 100 and
10 000 solar masses. If this is the case these sources would most likely have a different luminosity function
than normal X-ray binaries. Since ULXs are very rare, the normalization of this LF would be very small.
However, normal X-ray binaries have a cutoff in the luminosity function. The extension of the ULX lumi-
nosity function would lead to another break in the total X-ray luminosity–SFR relation that would become
non-linear again, as shown in Figure 8. If any deviation from linearity to high SFR can be detected this
would be an indication for the existence of intermediate mass black holes.

3.6 Parameters of the Universal Luminosity Functions

As mentioned before, the non-linear behavior of the total X-ray luminosity depends on the shape of the
luminosity function. One can invert this relation, and deduce parameters of the luminosity function from
observations of unresolved galaxies. In particular, the slope β in the non-linear regime depends only on the
slope α of the luminosity function

β =
1

α − 1
(7)
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Fig. 7 Aperiodic variability for HMXBs and LMXBs versus SFR and stellar mass, respectively.

Fig. 8 Sketch of luminosity function and total X-ray luminosity versus SFR for hypothetical intermediate
mass black holes.

and the break luminosity is dependent on the slope α and the cutoff luminosity. In the case of α > 2 it
depends also on the lower luminosity cutoff because in this case emission from low luminosity sources
dominates the total luminosity

Lbreak,tot ≈
L2

2−α
for 1 < α < 2,

L2

2−α
×

(

L2

L1

)α−2

for α > 2 .
(8)

Sampling the total luminosity range sufficiently, slope and cutoff of the luminosity function can be de-
termined independently of the knowledge of the luminosity function. Moreover, if there are second-order
effects affecting the shape of the luminosity function a large sample of galaxies may make these effect
visible as systematic scatter in the simple luminosity relations.
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4 CONCLUSIONS

The study of the statistical properties of a power law probability distribution leads to various tools for in-
vestigating the properties of a discrete source population and the host galaxy of the population. In the case
of X-ray binaries we have shown that the behavior of integrated properties, and even individual sources,
can be used to relate X-ray luminosity and rms to the star formation rate or the stellar mass of a galaxy.
Moreover, due to statistical effects the integrated properties contain information about the underlying lumi-
nosity function even if individual objects are not observable. This can even shed new light on the nature of
the objects in the luminosity function.

It is important to note that the statistical results rest only on the condition that mode and mean of the
probability distribution are different for an individual source and that the objects of interest are discrete
sources. Therefore the above analysis is in principle applicable to a wider variety of situations, and not only
to X-ray binaries as in the example here.
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DISCUSSION

J. Beckman: Your statistical deduction and illustration are instructive and illuminating. The problem with
the plot you showed is not with the X-ray data but with the SFR estimate. They may be model dependent,
and luminosity dependent. This is because a fraction of the photons may escape the galaxy and escape
detection, like in the FIR.

H.-J. GRIMM: I agree that the SFR measurements are the most uncertain part of the X-ray luminosity–
SFR relation. The best one can do at the moment is to take UV and FIR fluxes together to estimate SFR as
this should address the problem of unknown escape fraction.

J. Beall: What will beaming of sources do to the luminosity function?

H.-J. GRIMM: Most likely beaming will not significantly affect the luminosity function. If only a fraction
of sources is beamed, the ordering of sources is changed but not the overall shape of the LF. In the patho-
logical case of all sources being beamed into the line of sight, the luminosity of all sources would increase.
This would appear as an increase in normalization. Körding, Markoff and Falcke were able to reproduce
the observed LF with their jet model, assuming all X-rays originate in the jet.


