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Abstract Some nonlinear dynamical techniques, including state-space reconstruction and
correlation integral, are used to analyze the light curve of 3C 273. The result is compared
with a chaotic model. The similarities between them suggest there is a low-dimension chaotic
attractor in the light curve of 3C 273.
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1 INTRODUCTION

Since the discovery by Smith & Hoffleit (1963), the light curve of 3C 273 has played an important role in
our understanding of the nature of the quasar. Although it has been subjected to extensive analysis, there
is no generally accepted method of extracting the information in the light curve. Results of analysis of the
light curve ranged from a multi-periodic behavior (Kunkel 1967; Jurkevich 1971; Sillanpaa et al. 1988; Lin
2001) to a purely random process (Manwell & Simon 1966, 1968; Terrell & Olsen 1970; Fahlman & Ulrych
1975). Whatever does this seemingly random light curve tell us? Could this seeming randomness be some
behaviour other than multi-periodic or purely random?

In 1963, Edward Lorenz published his monumental work entitled Deterministic Nonperiodic Flow. In
this paper, he found a strange behavior which can appear in a deterministic nonlinear dissipative system,
which seems random and unpredictable, and is called Chaos. Chaotic behavior is not multi-periodic because
it has a continuous spectrum. Useful information can not always be extracted from the power spectrum of
chaotic signal. On the other hand chaotic behavior is not random either because it can appear in a completely
deterministic system. The concept of attractor is often used when describing chaotic behaviors. As the
dissipative system evolves in time, the trajectory in state space may head for some final region called
attractor. The attractor may be an ordinary Euclidean object or a fractal (Feder 1988) which has a non-
integer dimension and often appears in the state space of a chaotic system. For many practical systems,
we may not know in advance the required degrees of freedom and hence can not measure all the dynamic
variables. How can we discern the nature of the attractor from the available experimental data? Packard et
al. (1980) introduced a technique which can be used to reconstruct state-space attractor from the time series
data of a single dynamical variable. Moreover, an algorithm subsequently introduced by Grassberger &
Procaccia (1983) can be used to determine the dimension of the attractor embedded in the new state space.
These techniques constitute a useful diagnostic method of chaos in practical systems.

3C 273 may be a complex nonlinear dissipative system. If so, the complex light variation of 3C 273 can
be chaotic. Here we use the techniques introduced by Packard et al. (1980) and Grassberger et al. (1983) to
investigate whether there is a chaotic attractor in the light curve of 3C 273. The paper is arranged as follows:
In Section 2 a brief introduction to the method for diagnosing chaos is presented. In Section 3 we apply this
method to a chaotic model and 3C 273 and then compare the results. In Section 4 a discussion is given.

2 METHOD OF ANALYSIS

The state-space reconstruction technique (Packard et al. 1980) which is based on the notion that the attractor
of a multi-dimensional dissipative system can often be reconstructed from the time series data of a single
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variable. Since a detailed presentation of this technique is available in many places (see, e.g., Hilbron
1994; Abarbanel et al. 1993; Sprott 2003), we just give a brief introduction here. Let X 1, X2, . . . , XN be
measurements of a physical variable at times ti = t0 + (i − 1)∆t, i = 1, . . . , N. From this sequence one
can construct a set of d-dimensional vectors v i, i = 1, . . . , N − (d − 1)T of the form

vi = (Xi, Xi+T , Xi+2T , . . . , Xi+(d−1)T ), (1)

where T , called the time delay, is an integral multiple of ∆t. We assume that the real attractor in the full state
space of the system can be reconstructed from the time-delayed vectors v i moving in the d-dimensional state
space, d is often called embedding dimension. This assumption works well when the embedding dimension
is greater than about twice the dimension of the real attractor (Sprott 2003).

The correlation integral (Grassberger & Procaccia 1983; see also Hilbron 1994; Abarbanel et al. 1993;
Sprott 2003) can be used to determine the attractor dimension, defined as

C(r) =
1

(N − k)(N − k − 1)

N−k∑
i=1

N−k∑
j=1,j �=i

θ(r − |vi − vj |), (2)

where k = (d − 1)T , and θ(x) is the Heaviside function,

θ(x) =
{

1 x ≥ 0 ,
0 x < 0 .

(3)

For the dissipative system , C(r) behaves as a power of r for r small,

C(r) ∝ rD, (4)

where D is called the correlation dimension. Strictly D is not the attractor dimension, but is very close to it
(Grassberger & Procaccia 1983). Thus attractor dimension can be estimated from the correlation dimension.
Note that for large values of r the finite size of the attractor makes C(r) “saturate” at 1, while for small
values of r the finite number of data points causes C(r) to be close to zero. Thus, the curve of log 10 C(r)
versus log10 r is approximately a straight line just in the intermediate region. See Figure 1.

What we first do in practice is to compute the correlation dimension D by using Equations (2) and
(4). As the value of D depends on the delay time T and the embedding dimension d, we plot D versus d
for different values of T , as in Figure 2. If there is a chaotic attractor, D should be independent of d until
d becomes greater than some value defined by d sat. For some special value of T , dsat is about twice the
value of saturation correlation dimension D sat, that is the value independent of d (Sprott 2003). Thus, the
saturation dimension Dsat which corresponds to this special value of T is the attractor dimension that we
wish to find from the single time series data.

3 DATA ANALYSIS

First, we apply the method described above to the Lorenz model introduced by Lorenz (1963) to model the
convection in the atmosphere. It treats the fluid system (the atmosphere) as a fluid layer that is heated at the
bottom (the sun heats the earth’s surface, for example) and cooled at the top. A detailed derivation of the
equations of the Lorenz model can also be found in many textbooks (see, e.g., Hilbron 1994). Here we just
give the result,

dx/dt = σ(y − x), (5)

dy/dt = −xz + γx − y, (6)

dz/dt = xy − bz. (7)

It is important to stress that the Lorenz model introduced here is not treated as a model of 3C 273. We
just use it to produce a set of chaotic time series and show what would happen when the method of chaos
diagnosis is used to analyze a set of chaotic time series. We choose the parameters σ = 10, γ = 28 and
b = 8/3 which are used by many authors to produce a set of chaotic solution of Lorenz equations. We use the
order-4 Runge-Kutta method to solve the equations with the initial conditions x 0 = 0, y0 = −0.01, z0 = 9,
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Fig. 1 Correlation integral C(r) of Lorenz model for time delay T = 20 and embedding dimension d =
1, 2, . . . , 8 on doubly logarithmic scales. In each panel the scale of C(r) is arbitrary and the scale of r is
the same. We also give the slope fitted by using Eq. (4) in each panel.

Fig. 2 Correlation dimension D versus the embedding dimension d for the Lorenz model. Each panel has
the same scale of D and also the same scale of d.
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Fig. 3 Correlation integral C(r) of 3C 273 for time delay T = 30 and embedding dimension d =
1, 2, . . . , 8 on doubly logarithmic scales. In each panel the scale of C(r) is arbitrary and the scale of r
is the same. We also give the slope fitted by using Eq. (4) in each panel.

and generate 292 data points representing x(t) at equally spaced time intervals of ∆t = 0.05. Note that the
292 data points are generated from t = 50 to ensure the trajectory is on the attractor.

The 292 data points are analyzed using Equations (2) and (4). The results of log 10 C(r) plotted against
log10 r for time delay T = 20 are shown in Figure 1. We can see that in the intermediate region there is
approximately a straight line fit. We also plotted log10 C(r) versus log10 r for some other T values and
found that the curves are also approximately straight lines in the intermediate region as in Figure 1. Figure 2
shows the correlation dimension D versus embedding dimension d plotted for various time delays T . Now
we carefully compare these curves for different T to identify the value of T that makes d sat ≈ 2Dsat. We
note, when T = 25 or 30, we cannot find a good plateau in the curve. When T = 5, d sat is close to 6, and
Dsat ≈ 2.508 ± 0.026 obtained by averaging the values of correlation dimension for d = 6, 7, 8. When
T = 10, 15 and 20, dsat is close to 4, and the corresponding Dsat ≈ 2.401 ± 0.039, 2.367 ± 0.031 and
2.088±0.025 obtained by averaging D for d = 4, 5, 6, 7, 8. Thus, the best value which makes d sat ≈ 2Dsat

is 20. The value of Dsat estimated from the curve of T = 20 is about 2.088 ± 0.025. Thus, the attractor
dimension is about 2.088±0.025. Two crossing dash lines representing D sat = 2.088 and dsat = 4.176 are
marked in Figure 2. From the two lines, not only can we easily see why T = 20 is the special value which
we choose to estimate the attractor dimension, but also we find that there is a downward trend in the value
of Dsat as T increases. By using the full state space vectors and a large amount of data, one can find a more
accurate value of the correlation dimension of the Lorenz chaotic attractor, which equals 2.068 ± 0.086
(Sprott 2003). Our result is very close to it.

From the analysis of the Lorenz model, we know that the curve of log 10 C(r) versus log10 r is ap-
proximately a straight line in the intermediate region for a dissipative system with an attractor. Thus, the
correlation dimension can be estimated from the slope of the straight line. Moreover, for the dissipative
system, the correlation dimension D will be independent of the embedding dimension d as it increases and
a special value of the delay time T which makes dsat ≈ 2Dsat can be identified.

Now we analyze the 292 data points of the light curve of 3C 273 in the form of 100-day means (Kunkel
1967). The results of log10 C(r) plotted against log10 r for time delay T = 30 are shown in Figure 3.
The curves are also approximately straight lines in the intermediate region, as in Figure 1. The results
of correlation dimension D plotted against d for different time delays T are shown in Figure 4. As in
Figure 2, when T = 35 it is difficult to find a good plateau to estimate the attractor dimension. When
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Fig. 4 Correlation dimension D versus the embedding dimension d for 3C 273. Each panel has the same
scale of D and also the same scale of d.

T = 10, 15, 20, 25 and 30, dsat is close to 5, and the corresponding Dsat ≈ 3.17±0.05, 2.90±0.05, 2.86±
0.04, 2.82±0.04 and 2.72±0.04 obtained by averaging D for d = 5, 6, 7 and 8. Thus, the best value which
makes dsat ≈ 2Dsat is 30 and the attractor dimension is estimated to be about 2.72 ± 0.04. Two crossing
dash lines in Figure 4 represent Dsat = 2.7 and dsat = 5.4. Guided by the two lines, we also readily find
why T = 30 is special and there is a downward trend in the value of D sat as T increases.

At last, we compare the Lorenz model with 3C 273. First, the curve of log 10 C(r) versus log10 r is
approximately a straight line in the intermediate region in both. Secondly, a plateau, where the embedding
dimension is independent of the correlation dimension, can be found at some values of time delay T both in
the Lorenz model and 3C 273. Thirdly, the special time delay T which makes d sat ≈ 2Dsat can be identified
in both. Fourthly, there is a downward trend in the value of D sat as T increases in both. These similarities
between the two cases strongly suggest that there is a low-dimension chaotic attractor in the light curve of
3C 273.

4 DISCUSSION

The nature of AGNs is still an open question. The study of variations in their light curves is expected to
yield valuable information about their nature. 3C 373 has been known to be the brightest AGN. In this
paper, the state-space reconstruction and correlation integral are used to analyze the light curve of 3C 273,
and the result is compared with the Lorenz model. The similarity between them strongly suggests there
is a low-dimension chaotic attractor in the light curve of 3C 273. Thus, the variation of the light curve of
3C 273 has a nonlinear dynamical origin, which cannot be interpreted as multi-periodic behavior or a purely
random process. The evidence of chaotic behavior we showed indicates that the concepts of nonlinearity
may be helpful to understand the nature of the variations in the light curves of AGNs.
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It is interesting to compare 3C 273 with other sources. Misra et al. (2004, 2006) have analyzed the X-
ray light curves of GRS 1915+105 by using the same method along with surrogate data analysis and found
evidence for a non-linear limit cycle origin for one of the low frequency QPOs detected in the source, while
some other types of variability can be due to an underlying low-dimension chaotic system. The chaotic
behavior found in the microquasar GRS 1915+105 and the quasar 3C 273 implies that chaotic behavior
may be a universal feature in the seemingly random light curves found in many sources. It is expected to
find a common nonlinear dynamical origin to explain this chaotic behavior, which may be the nonlinear
temporal evolution of the magneto-hydrodynamicflow of the inner accretion disk (Misra et al. 2004, 2006),
and it also may come from turbulent motion in a gaseous cloud around the object (Li & Xiao 2000).

Some authors (e.g., Uttley et al. 2005) have considered that dynamical chaos is not required to explain
the data, but our results together with Misra et al. (2004) cogently proved that the seemingly random light
curves found in some sources are indeed chaotic. We expect that our results are confirmed further by other
chaotic and nonlinear time-series analyses.
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