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Abstract The dynamics of compact binaries is very complicated because of spin-orbit cou-
pling and spin-spin coupling. With Laskar’s frequency map analysis (FMA) and frequency
diffusion as an indicator, we found that misalignment of the spins and orbital angular mo-
mentum has a great effect on the dynamics, and for systems with different mass ratios
β ≡ m2/m1 chaos occurs at different spin-orbit configurations. For equal-mass binaries
(β = 1), chaos occurs when the spins nearly cancel each other out. For some other systems
(for example β ∼ 1/2), the binaries are irregular, even chaotic, when the spins are perpendic-
ular to the orbital angular momentum. For the case where gravitational radiation is taken into
account, we give an analytic estimation for the frequency diffusion based on the decay of the
orbit, which is roughly consistent with our simulations. This means the FMA is not suitable
as a chaos indicator for weak chaotic cases with dissipative terms.
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1 INTRODUCTION

Owning to the high nonlinearity of Einstein’s field equation, chaos will occur naturally. Several authors
have found chaos in several relativistic systems (Varvoglis & Papadopoulos 1992; Karas & Vokrouhlicky
1992; Bombelli & Calzetta 1992; Dettmann et al. 1994; Wu et al. 2006; Wu & Zhang 2006). However, those
systems are idealized. In the cases of astrophysics, chaos in compact binaries is much more meaningful.

Compact binaries, including black hole – black hole, neutron star - black hole and neutron star – neu-
tron star systems, are important sources of gravitational waves for ground-based observatories, such as
LIGO, VIRGO and GEO600. However, chaos could make the number of templates that matches the ob-
served waveform increase exponentially, rendering impractical template-based gravitational wave detection.
Furthermore, a binary with a pulsar is an ideal lab for checking general relativity in strong field by radio
observation on the time of arrival of pulses, especially for the Square Kilometre Array (SKA, Kramer 2004).

According to the mass ratio β ≡ m2/m1, binaries can be classified as (1) extreme mass ratio binaries
(β � 1) and (2) comparable-mass binaries (β ∼ 1), and they are described by different models in the frame
of general relativity. Several authors have studied their dynamical behavior, and obtained some results.

An example of extreme mass ratio binary is one where one component is a supermassive black hole
(∼ 106M�) in a galactic nucleus and the other component is a stellar-sized compact star (∼ 1 − 10M�).
Suzuki & Maeda (1997) studied the motion of a spinning particle in Schwarzschild spacetime with
Lyapunov characteristic exponent (LCE) and Poincaré section. They found that the motion of the parti-
cle can be chaotic under some appropriate conditions, which is purely induced by the spin-orbit interaction.
However, their chaotic conditions of spin are unphysical 1. Later, Hartl (2003a,b) investigated the dynamics
of spinning test particles in Kerr spacetime, and found that, for all physically realistic values of spin, chaos
does not happen, and that in principle there is no chaos in extreme mass ratio binaries.

∗ Supported by the National Natural Science Foundation of China.
1 A dimensionless spin parameter S = s/(mM) is usually defined in a binary system with component masses m and M , where

s is the spin angular momentum of the component m and the c = 1, G = 1 unit system is adopted. For an extreme Kerr black hole
s = m2, then S = m/M . Consequently, for an extreme mass ratio binary we have S � 1. The value adopted by Suzuki & Maeda
(1997) is S ∼ 1, which should be considered as unphysical. However, for a comparable mass ratio binary, S can reach 1 maximally.
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The case of comparable-mass compact binaries is more complicated. Different authors have obtained
different results. Levin (2000) investigated spinning compact binaries, using fractal basin boundary scan
as a chaos indicator, and found some fractal structures in the survey, which mean chaos. Soon after that,
Schnittman & Rasio (2001) reexamined Levin’s result and found no chaotic behavior by LCE, and placed a
lower limit on the divergence time that is many times greater than one typical inspiral time. As a response,
Cornish & Levin (2003) stated that, by using LCE, they did find that some eccentric orbits to have chaotic
behavior but the chaos is damped by dissipation so that most orbits will only be mildly affected.

In addition, Levin (2003) studied chaotic initial conditions in comparable-mass compact binaries in
detail for two values of mass ratios, 1.4/10 and 1/3. She found that the transition to chaos occurs as the
sizes of the spin and the misalignment are increased, which is consistent with her previous result that some
orbits will remain regular as a circular inspiral with the spins exactly aligned with the orbital momentum
(Levin 2000). Hartl & Buonanno (2005) claimed that there is no chaos in physical cases. Using LCE, they
surveyed different mass configurations: (20+25)M�, (10+5)M�, (5+5)M�, (10+10)M�, (20+20)M�,
(20 + 10)M�, and (10 + 5)M�, at a gravitational wave frequency f Newt

GW = 240 Hz quasicircular orbit
with 500 randomly oriented initial spins for each case. It was found that chaotic orbits only occur for the
(10+10)M� (fraction 0.002) and (20+10)M� (fraction 0.104) mass configurations. For (10+10)M�, the
chaotic orbits are clustered at the lowest values of the total angular momentum J , corresponding to initial
spin vectors nearly antiparallel to the orbital angular momentum L (so that J = |L + S| is minimized).
Chaos for the (20 + 10)M� configuration occurs mainly for values of J in the middle of the possible
range. In all eccentric cases considered, they found no evidence of chaos. However, we wonder why there
is no chaos in the case of (20 + 20)M� for which the relativistic correction is larger than for the case of
(10 + 10)M�.

An important difference in the dynamics between relativistic and Newtonian systems is the chaos indi-
cator. In Newtonian dynamics, chaos emerges when nearby trajectories separate exponentially in a compact
phase space, which could be indicated by the LCE,

λi = lim
t→∞

log[∆ri(t)]
t

. (1)

Whereas, for relativistic systems there exists ambiguity in the meaning of space and time coordinates in
the sense of measurement, which can be chosen arbitrarily. Consequently, an LCE defined in Newtonian
mechanics would be not applicable in general relativity and a covariant Lyapunov exponent should be used,
such as Wu & Huang (2006a). Now, Suzuki & Maeda (1997) and Hartl (2003a,b) did not use a strict
covariant Lyapunov exponent. In the survey of Hartl (2003a, b), but used an unrenormalized deviation
vector method to calculate the LCE because of its speed. That is not a robust method. Besides, fractal basin
boundary scan was used, because of its independence of the coordinate system, as in Levin (2000, 2003).

In this paper, the chaos indicator we use is Laskar’s FMA (Frequency Map Analysis) and frequency
diffusion. A dynamical system generates a time series and periodic orbits correspond to constant line peaks
in the frequency map and power spectrum. Quasiperiodic orbits correspond to peaks of finite widths, and
shifting in time. For chaotic orbits, the power spectrum has no line peaks and is a continuum. Unfortunately,
owning to the poor precision in extracting frequencies by the widely used fast Fourier transform (FFT), it
is difficult to distinguish complicated regular, quasiperiodic and weak chaotic orbits, but Laskar’s scheme
overcomes this problem (see Sec. 3 below for details of its implementation and its validity for compact
binaries).

The arrangement of this paper is as follows. Section 2 shows the equations of motion of orbit and spin
and the conservation laws in compact binaries. Section 3 presents a brief introduction to Laskar’s FMA. In
Section 4 we give the results from our numerical simulations.

2 THE EQUATIONS OF MOTION OF ORBIT AND SPIN

To use full relativistic solution for compact binaries would be a formidable job so we adopt the post-
Newtonian (PN) expansion for relativistic 2-body problem (Kidder 1995). This includes the equations of
motion up to 2 PN (O(c−4)), 2.5 PN gravitational radiation term and spin equations with de Sitter and
Lense-Thirring precession (Bark & O’Connell 1975). Although the post-Newtonian converges slowly, es-
pecially when the gravitational field is strong, it could still give a qualitative picture of compact binaries,
such as the nonlinear effects, the existence of unstable circular orbits and the nature of spin precession.
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With harmonic gauge, the PN expansion of the equation of orbital motion is (Kidder 1995)

r̈ = a
(0)
N + a

(1)
PN + a

(1.5)
SO + a

(2)
PN + a

(2)
SS + a

(2.5)
RR + · · · , (2)

where a
(0)
N is the Newtonian term, a

(1)
PN the first order PN acceleration, which induces the precession of

periastron, a(2)
PN is the second order PN acceleration, which induces the innermost stable circular orbit. The

spin-orbit coupling term a
(1.5)
SO and spin-spin coupling term a

(2)
SS cause the orbital angular momentum to

precess, a
(2.5)
RR is the reaction term of gravitational radiation, which is a dissipative term in PN expansion

and causes the energy and orbital angular momentum to decay.
The spin equation is (Barker & O’Connell 1975)

Ṡi = Ωi × Si , i = 1, 2, (3)

where
Ωi = ΩidS + ΩiLT , i = 1, 2, (4)

in which ΩidS is the de Sitter precession and ΩiLT is the Lense-Thirring precession.
If the gravitational radiation is neglected, the total energy E and total angular momentum J = L + S

are conservative up to 2 PN and 1.5 PN, respectively, which are

E = EN + E1 PN + E2 PN + ESO + ESS, (5)

L = LN + L1PN + L2PN + LSO, (6)

S = S1 + S2. (7)

3 FREQUENCY MAP ANALYSIS

In the early 1990’s, Laskar proposed the method of FMA (Laskar 1990, 1993) for investigating dynamical
systems. In the application of the standard map, it was shown that the FMA is even sensitive to weak chaos
(Laskar et al. 1992). Here we give a brief introduction to this method which heavily depends on observation.
For a time series f(t) defined in C, one could construct a quasiperiodic approximation of f(t) in the time
interval [−T, T ], which converges to f(t) when T tends to infinity.

Assume that
f(t) = eiν1t +

∑
k∈Zn−(1,0,...,0)

akei〈k,ν〉t, ak ∈ C (8)

in which the frequency vector (ν) satisfies the Diophantine condition. Laskar proposed an iterative algo-
rithm to find approximate values of all the frequencies and their corresponding amplitudes. First, a scalar
product is defined as

〈f(t), g(t)〉 =
1

2T

∫ T

−T

f(t)g(t)χ(t)dt, (9)

where χ(t) is a positive, even weight function and g(t) is the complex conjugate of g(t). With the weight
function χ(t) = χp(t),

χp(t) =
2p(p !)2

(2p)!
(1 + cosπt)p, (10)

in the time interval [−T, T ], the algorithm of FMA could obtain ν T
1 , an approximation of ν1, by requiring

that 〈f(t), eivT
1 t〉 reaches maximum. As T → ∞, νT

1 converges to ν1. Their difference is

ν1 − νT
1 =

(−1)p+1π2p(p !)2

ApT 2p+2

∑
k


(ak)
Ω2p+1

k

cos(ΩkT ) + O
( 1

T 2p+2

)
, (11)

where Ωk = 〈k, ν〉 − ν1, Ap = −2(π2/6 − ∑p
k=1 1/k2)/π2. Especially, with p = 1, the accuracy of νT

1

we obtained is proportional to 1/T 4, as compared to 1/T with the FFT. Therefore, (ν1, ν2, . . . , νn) could
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be determined one by one precisely with FMA. The PN expansion of the equations of motion satisfies the
assumption of FMA.

To apply FMA to compact binaries, we define a complex function f o(t) for their orbital motion as

fo(t) = |r| sin θeiϕ, (12)

where θ and ϕ are the Euler angles (see Fig. 1).
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Fig. 1 Left: r is the vector connecting two stars and ϕ and θ are its Euler angles. Right: Si is one of the
spins, ϕi and θi are its Euler angles, where i = 1, 2. See text for the adopted coordinate system.

In addition, we define the frequency diffusion σ after Robutel & Laskar (2000), which is an indicator
of chaos, as

σ = 1 − ν2

ν1
, (13)

where ν1 and ν2 are the fundamental frequencies obtained in the time intervals [0, T ] and [T, 2T ], respec-
tively.

4 NUMERICAL RESULTS

In our numerical simulations, the coordinate system we adopted is a Cartesian coordinate system o-xyz,
with origin at one of the compact stars, m1, and the plane xy and the x axis respectively the orbital plane and
the line connecting the two components at the initial instant. With PN expansion, this system can be taken
as a system close to being integrable, in which Gm/c2r or v2/c2 are small parameters, (m = m1 + m2).
The spins of the compact stars are Si = χiGm2

i /c, in which χi is the spin parameter and χi � 1. The
initial orientations of the spins are ϕ1 = ϕ2 = 0 and θ1 and θ2 are left as free parameters. Hereinafter, we
use G = 1 and c = 1 units, and in Section 4.1 and 4.2, we will check only the cases of quasicircular orbits.

4.1 Reliability of Our Numerical Simulations

We use the RKF7(8) integrator in our simulations. To investigate its validity, we check the conservation
quantities E and |J |, with m/r = 1/100 and 1/1000 in one spin or two spins conditions, respectively.
Figure 2 shows the relative errors of E and |J | without gravitational radiation. In the top panel, there is just
one spin in that system, and the small parameter m/r is 1/100. During the integration time span 25 000 T 0,

(T0 the initial orbital period), i.e. T0 = 2πm−1/2a
3/2
0 , ∆E/E and ∆|J |/|J | are confined to within 10−5

and 10−6, respectively. In the bottom panel, two spins are taken account, and ∆E/E and ∆|J |/|J | both
vary rapidly around 10−5. Figure 3 is similar to Figure 2, but for m/r = 1/1000, in which ∆E/E varies
between 10−8 − 10−7 with one spin and around 10−7 with two spins, and the corresponding ranges of
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∆|J |/|J | are 10−10 − 10−9 and 10−7 − 10−6. The step size we adopt in our integration is T0/100. We
would like to underline that the relativistic correction in Figure 3 is one whole magnitude smaller than that
in Figure 2, and this is the main factor when explaining the difference between the two figures. In principle,
relative errors of conservative quantities vary periodically within a specific range according to theoretical
prediction, and the conservation laws held well in our numerical simulation, so our numerical integration is
valid for these systems in the given time span.
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Fig. 2 Evolution of the relative errors of E and |J | in the case of no gravitational radiation. The unit of t
is T0 and the time span is T = 25 000 T0. The initial conditions of the top panel are β ≡ m2/m1 = 1/3,
m/r = 1/100, x/m = 100, ẋ = 0, y = 0, ẏ = 0.1, S1 = 0.65m2

1, θ1 = 45◦ and S2 = 0. The initial
conditions of the bottom panel are β ≡ m2/m1 = 1/3, m/r = 1/100, x/m = 100, ẋ = 0, y = 0,
ẏ = 0.1, Si = 0.65m2

i , θi = 45◦ and i = 1, 2.

To verify our code of Laskar’s FMA, we applied it to the standard map before our calculation on
the binary systems. By a comparison between the graph of the structure of the phase space and the map
of frequency diffusion, we found they are consistent, and we applied our code to the Keplerian 2-body
problem. As an integrable system its frequency diffusion should be strictly zero. Our result matches the
theoretical prediction within our machine precision for sampling time span T = 600 T 0.

4.2 Frequency Diffusion Map

To investigate the effects of spins, we make frequency diffusion map σ in the (θ 1, θ2)- plane, θ1, θ2 being
the angles between the spins and the orbital angular momentum at the initial instant. As a chaos indicator for
a conservative system, the sign of σ could be ignored, so our frequency diffusion maps below portray just
the absolute value of σ, when gravitational radiation is turned off. What concerns are: (1) the influence of
using different sampling time span T on the diffusion map, (2) the effect of gravitational radiation reaction
and (3) the influence of different mass ratios.

4.2.1 Sampling time span T

It has been shown that the accuracy of the FMA increases with increasing sampling time span T . Therefore,
we pick up different sampling time span T in making frequency diffusion map.
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Fig. 3 Evolution of the relative errors of E and |J | in the case of no gravitational radiation. The unit of t
is T0 and the time span is T = 25 000 T0. The initial conditions of the top panel are β ≡ m2/m1 = 1/3,
m/r = 1/1000, x/m = 1000, ẋ = 0, y = 0, ẏ = 0.0316, S1 = 0.65m2

1, θ1 = 45◦ and S2 = 0. The
initial conditions of the bottom panel are β ≡ m2/m1 = 1/3, m/r = 1/1000, x/m = 1000, ẋ = 0,
y = 0, ẏ = 0.0316, Si = 0.65m2

i , θi = 45◦ and i = 1, 2.

Figure 4 shows the frequency diffusion map |σ| of the orbit on grey scale in the (θ 1, θ2)-plane, for
different values of sampling time span T . The gray scale shown on the right of each map gives a quantitative
measure of the chaotic indicator |σ|, brighter shades corresponding to more chaotic motion. In these cases,
we neglect gravitational radiation. The only difference between the top and bottom panels is the sampling
time span T (T = 60 T0 for the top, T = 600 T0 for the bottom). Obviously, the longer sampling time span
gives more details. The reason is that ν1 − νT

1 decreases as T−(2p+2) (see Eq. (11)). In our case p = 1,
when the sampling time increases by a factor of 10, the precision of extracting frequency would increase by
104 and the frequency diffusion would be improved by 4 orders of magnitude. So we adopt T = 600 T 0 in
the following simulations.

Though they are made with different sampling time, these frequency diffusion maps have same high
diffusion regions in both panels. These regions are all located at θ 1 ≈ π/2, which means chaos could be
triggered off when S1 (the spin of the more massive component star) is perpendicular to the orbital angular
momentum at the initial moment.

4.2.2 Gravitational radiation reaction

Gravitational radiation reaction (2.5PN) is a dissipative factor in compact binaries, which causes decay of
the orbits. In dynamics, it will break the torus in the phase space. That will violate the assumption of the
FMA, the quasiperiodic approximation. Hence, the frequency diffusion map will be distorted inevitably.

Figure 5 shows the frequency diffusion σ of orbit on grey scale in the (θ 1, θ2)-plane with gravitational
radiation. Gravitational radiation would cause decay of the orbit, so we keep the sign of σ. As we can
see, the diffusion maps are just distorted mildly or slightly when the sampling time span is short or the
separation of two components is large, such as in the top panel and the bottom-right figure, but in the case
of long sampling span and close components, gravitational radiation destroys the structure of diffusion
map, such as in the bottom-left figure. The non-continuous belts in the top-left figure for m/r = 1/100 and



Chaos in Compact Binaries with Frequency Map Analysis 711

Fig. 4 Frequency diffusion map |σ| of orbit in the (θ1, θ2)-plane for different sampling time spans T . Here
we turn off the gravitational radiation. In the top panel T = 60 T0. The parameters in the left panel are
β ≡ m2/m1 = 1/3, m/r = 1/100, and the initial conditions are x/m = 100, ẋ = 0, y = 0, ẏ = 0.1
and χ1 = χ2 = 0.65. The parameters in the right panel are β ≡ m2/m1 = 1/3, m/r = 1/1000, and the
initial conditions are x/m = 1000, ẋ = 0, y = 0, ẏ = 0.0316 and χ1 = χ2 = 0.65. The bottom panel is
similar to the top, but for T = 600 T0.

bottom-right figure for m/r = 1/1000 are caused by gravitational radiation dissipation. With increasing
time span, these belts will develop and cover the whole figure, as in the bottom-left figure.

Due to the gravitational radiation (Brumberg 1991),

da

dt
= −64

5
m1m2m

a3(1 − e2)7/2

(
1 +

73
24

e2 +
37
96

e4

)
, (14)

we have

nk = m−1

[
p4 − 512

5
β

(1 + β)2
πp3/2k

]−3/8

, (15)

for quasicircular orbits at kth T0, where a and e are the semi-major axis and eccentricity of the orbit,
respectively. Here, a0 = a(0) = pm, and T0 = 2πmp3/2. Assuming the decay of a causes mainly change
in the fundamental frequency, we estimate

σk = 1 −
∑2k

i=k+1 ni∑k
i=1 ni

, (16)

in the short time approximation. We compare the results by the simulations and by analytic estimation (see
Table 1) for the case of β = 1/3. In Table 1 σ̄o is the average of σ from the simulations. It is shown that
analytic estimations match our simulations. This means σ can represent most of the decay.
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Fig. 5 All the conditions are the same as in Figure 4, except gravitational radiation reaction is turned on
and the sign of σ is kept.

Table 1 Comparison of the Results by Numerical Simulations
and Analytic Estimations

T p σ̄o σk

60 T0 100 −1.25 × 10−2 −1.42 × 10−2

60 T0 1000 −4.35 × 10−5 −4.29 × 10−5

600 T0 100 −1.58 × 10−1 −2.57 × 10−1

600 T0 1000 −4.25 × 10−4 −4.30 × 10−4

In conclusion, gravitational radiation reaction will distort the frequency diffusion map when the sam-
pling time span is short, and with increasing time span, it will dominate the map. In that case, the frequency
analysis is no longer suitable as a chaos indicator, and the computed frequency diffusion represents mainly
the decay of the orbit.

4.3 Mass Ratio

We investigate several cases with different mass ratios (see Fig. 6). All panels have identical initial condi-
tions except the mass ratios, which are β = 1, 3/4 and 1/2 from the top row to the bottom. Here we are
only concerned with the cases without gravitational radiation. In the case β = 1 (m 1 = m2 and S1 = S2),
it is natural that the map is symmetric about the line θ2 = θ1. However, high diffusion points are located in
the region where the two spins nearly cancel each other. This is different from Hartl & Buonanno (2005),
who found that initial nearly anti-alignment between the spins and the orbital angular momentum L trig-
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gers off chaos. In the case of β = 1/2, the diffusion map is similar to previous map with β = 1/3, and the
high diffusion region is concentrated around θ 1 ≈ π/2. The structure of the diffusion map with β = 3/4
is between the β = 1 map and β = 1/2 map, like some kind of transition. In addition, there are some
non-continuous curves consisting of very low diffusion arcs (black) and very high diffusion dots (white) in
the maps. These features emerge only after increase in the sampling time span. They deserve to study fur-
ther in detail with intensive integration and LCE. In conclusion, different mass ratios have different initial
conditions for chaos, and high diffusion region is just a tiny part in the whole diffusion map, which means
chaotic orbits are few. Also, the values of σ suggest the chaos in the inspiral phase is weak.

Fig. 6 Frequency diffusion of orbit in the (θ1, θ2)-plane with different mass ratios. The parameters common
to the all panels are m/r = 1/100, sampling time span T = 600 T0. The initial conditions are x/m = 100,
ẋ = 0, y = 0, ẏ = 0.1, χ1 = χ2 = 0.65. The mass ratios of the rows are β = 1, 3/4 and 1/2 from top
down.

4.4 The Time of Arrival

Changing of the orbital configuration due to spins will modulate the time of arrival (TOA) of pulses if either
or both components of the binary are pulsars. Chaos in orbital motion would cause abnormal changes of the
time of arrival of pulses. Figure 7 shows the large difference in orbit configuration with the same parameters
and initial conditions as before, except the angles between the spins and orbital angular momentum. The
left panel shows the case of θi = 90◦ which means both S1 and S2 are perpendicular to the orbital angular
momentum; the right panel shows the case of θ1 = 0◦ and θ2 = 90◦ which means S1 is parallel to, and S2
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is perpendicular to, the orbital angular momentum. We find that the value of z reached in the former case
is larger than in the latter by a factor of 10. Figures 8 and 9 show when the line of sight is along the z axis
(face-on), the frequencies of changing of inclinations and precession in those two cases are significantly
different and the difference between the maximum delay in those two cases could be as large as a factor of
10. When the line of sight is along the x axis (edge on), the maximum delays of TOA are similar.

Fig. 7 Orbital configuration without gravitational radiation. Parameters: β ≡ m2/m1 = 1/3, m/r =
1/100 and T = 260 T0 for the integration time span. The initial conditions: x/m = 100, ẋ = 0, y = 0,
ẏ = 0.1 and χ1 = χ2 = 0.65. Left: θ1 = θ2 = 90◦; right: θ1 = 0◦ and θ2 = 90◦.

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0  50  100  150  200  250

∆τ
  (

m
)

t  (T0)

-100

-50

 0

 50

 100

 0  50  100  150  200  250

∆τ
  (

m
)

t  (T0)

Fig. 8 Variation of time of arrival τ , without gravitational radiation. Parameters: β ≡ m2/m1 = 1/3,
m/r = 1/100 and T = 260 T0 integration time span. The initial conditions: x/m = 100, ẋ = 0, y = 0,
ẏ = 0.1, χ1 = χ2 = 0.65 and θ1 = θ2 = 90◦. Left: the line of sight is along the z axis (face-on); right:
the line of sight along the x axis (edge-on).

5 CONCLUSIONS

Our numerical simulations with FMA show that spins play a critical role in the configuration of compact
binaries. The mass ratio of the compact binary is also a really important factor for chaos. When the spins of
the two components of an equal-mass binary nearly cancel each other (β ∼ 1), chaos in orbits occurs. On
the other hand, when the spins are perpendicular to the orbital angular momentum, the frequency diffusion
of orbit will become remarkable for other comparable-mass systems (β ∼ 1/2), which means the systems
are irregular even chaotic, but based on our simulation, chaotic orbits are few and the chaos is weak for
inspiral systems. Furthermore, a misalignment between the spins and orbital momentum will modulate the
time of arrival of pulses if there is a pulsar in the binary, which depends sensitively on the direction of the
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Fig. 9 Variation of time of arrival τ without gravitational radiation. Parameters: β ≡ m2/m1 = 1/3,
m/r = 1/100 and T = 260 T0 for integration time span. Initial condition: x/m = 100, ẋ = 0, y = 0,
ẏ = 0.1, χ1 = χ2 = 0.65, θ1 = 0◦ and θ2 = 90◦. Left: the line of sight is along the z axis; right: the line
of sight along the x axis.

line of sight. Our work has proven that FMA is an efficient tool for investigating dynamical systems, but it
cannot work as a perfect chaos indicator for compact binaries in their final stages, because of the existence
of gravitational radiation and the failure of post-Newtonian approximation.
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