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Abstract The property of dark energy and the physical reason for the acceleration of the
present universe are two of the most difficult problems in modern cosmology. The dark en-
ergy contributes about two-thirds of the critical density of the present universe from the ob-
servations of type-Ia supernovae (SNe Ia) and anisotropy ofcosmic microwave background
(CMB). The SN Ia observations also suggest that the universeexpanded from a deceleration
to an acceleration phase at some redshift, implying the existence of a nearly uniform compo-
nent of dark energy with negative pressure. We use the “Gold”sample containing 157 SNe Ia
and two recent well-measured additions, SNe Ia 1994ae and 1998aq to explore the properties
of dark energy and the transition redshift. For a flat universe with the cosmological constant,
we measureΩM = 0.28+0.04

−0.05, which is consistent with Riess et al. The transition redshift is
zT = 0.60+0.06

−0.08. We also discuss several dark energy models that definew(z) of the param-
eterized equation of state of dark energy including one parameter and two parameters (w(z)
being the ratio of the pressure to energy density). Our calculations show that the accurately
calculated transition redshift varies fromzT = 0.29+0.07

−0.06 to zT = 0.60+0.06
−0.08 across these

models. We also calculate the minimum redshiftzc at which the current observations need
the universe to accelerate.
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1 INTRODUCTION

Type Ia Supernovae (SNe Ia) have been considered astronomical standard candles and used to measure the
geometry and dynamics of the universe. Kowal (1968) showed that SNe Ia give a well-defined Hubble dia-
gram whose intercept could provide a good measurement of theHubble constant. Colgate (1979) suggested
that the peak luminosityLp is a constant. Subsequent observations showed that Type-I SNe should be split
(Uomoto & Kirshier 1985; Porter & Filippenko 1987). Theoretical models suggested that SNe Ia arise from
the thermonuclear explosion of a carbon-oxygen white dwarfwhen its mass reaches the Chandrasekhar
mass (Colgate & McKee 1969). Colgate (1979) suggested that observations of SNe Ia aroundz ≃ 1 could
measure the deceleration parameterq0. Hansen, Jorgensen & Norgaard-Nielsen (1987) detected SN 1988U
at z = 0.31. Around this redshift, 100 SNe Ia would have been needed to distinguish between an open
universe and a closed universe. Phillips (1993) discoveredan intrinsic relation in SNe Ia:Lp = a×△mb

15,
where△m15 is the decline rate in the optical band 15 days after the peak luminosity. This relation could be
used to explore cosmology.

Using 16 high-redshift SNe and 34 nearby SNe, Riess et al. (1998) found that our universe has been
accelerating. Using 42 SNe Ia, Perlmutter et al. (1999) obtained the same result. SN Ia observations also
provided evidence for a decelerating universe at redshiftshigher than the transition redshiftzT ≃ 0.5
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(Riess et al. 2001; Turner et al. 2002; Riess et al. 2004). Tonry et al. (2003) found thatΩM = 0.28 ±
0.05 and−1.48 < w < −0.72 at the 95% confidence level for a flat universe from high-z SNe. Daly &
Djorgovski (2003) derived that the universe changed from deceleration to acceleration atzT = 0.45 using
a model-independent method. Combining the constraints from the recent Ly-α forest analysis of Sloan
Digital Sky Survey (SDSS) and the SDSS galaxy bias analysis with previous constraints from the SDSS
galaxy clustering, the latest SNe, and first-year WMAP cosmic microwave background anisotropy, Seljak
et al. (2004) found thatΩΛ = 0.72±0.02, andw(z = 0.3) = −0.98+0.10

−0.12. In the model ofw(z) = w0, they
foundw0 = −0.990+0.086+0.160+0.222

−0.093−0.201−0.351(1σ, 2σ, 3σ) . From their analysis, they concluded that the equation
of state did not vary with redshift. Alam et al. (2004) obtained the transition redshiftzT = 0.57 ± 0.07
from a joint analysis of SNe Ia and CMB. On the other hand, utilizing the SN Ia data Bassett et al. (2004)
derived that the transition redshift varied fromzT = 0.14 to zT = 0.59, but Gong (2004) foundzT ≃ 0.3.
Jarvis et al. (2005) analyzed the 75 square degree CTIO lensing survey in conjunction with CMB and SN
Ia data and measuredw0 = −0.894+0.156

−0.208 (95% confidence level). When taking the dark energy model of
w(a) = w0 + wa(1 − a), they foundw0 = −1.19+0.53

−1.74, wa = 1.31+3.04
−2.40 (95% confidence level). Gong

(2005) found the transition redshift waszT ≃ 0.6 using one-parameter dark energy models. Chang et al.
(2005) gavew0 = −1.29, the deceleration parameterq0 = −0.97 andzT = 0.70 by using the recent data
of X-ray cluster gas mass fraction. Clocchiatti et al. (2005) derivedΩM = 0.79+0.15

−0.18 andΩΛ = 1.57+0.24
−0.32

(1σ confidence level) if no prior assumption is made, orΩM = 0.29+0.06
−0.05 if ΩM + ΩΛ = 1 is assumed,

from a sample of 75 low-redshift and 47 high-redshift SNe Ia with the MLCS2k2 luminosity calibration.
For a different sample of 58 low-redshift and 48 high-redshift SNe Ia with luminosity calibrations using
the PRES method, the results wereΩM = 0.43+0.17

−0.19 andΩΛ = 1.18+0.27
−0.28 (1σ confidence level) on no

prior assumptions, orΩM = 0.18+0.05
−0.04 if ΩM + ΩΛ = 1 was assumed. Virey et al. (2005) argued that the

determination of the present deceleration parameterq0 through a simple kinematical description could lead
to wrong conclusions. A dynamical dark energy model must be taken into account. Meng & Fan (2005)
suggested that LAMOST redshift survey could help to reduce the error bounds of dark energy parameters
expected from other observations. Zhang & Wu (2005) deriveda transition redshift ofzT = 0.63 using the
CMB, LSS and SNe Ia data for the holographic dark energy model.

Riess et al. (2004) selected a sample of 157 well-measured SNe Ia, called the “Gold” sample. Assuming
a flat universe, they concluded: (1) Using the strong prior ofΩM = 0.27 ± 0.04, fitting to a static dark
energy equation of state yields−1.46 < w < −0.78 (95% confidence level). (2) Assuming a possible
redshift dependence ofw(z) (e.g., usingw(z) = w0 + w1z), the data with the strong prior indicate that the
regionw1 < 0 and especially the quadrant (w0 > −1 andw1 < 0) are the least favored. (3) Expandq(z)
into two terms:q(z) = q0 + zdq/dz. If the transition redshift is defined throughq(zT) = 0, they found
zT = 0.46 ± 0.13.

Current SN Ia observations provide the most direct way to probe the dark energy component at low
redshifts. This is due to the fact that the SN data allow a direct measure of the luminosity distance, which
is related to the expansion law of the universe. Since 1998, many dark energy models have been proposed
in the literature. The simplest one is that the dark energy parameter is constant,w(z) = w0. A linear
parameterization isw(z) = w0 + w1z. Recently a simple two-parameter modelw(z) = w0 + w1z/(1 + z)
was discussed. By fitting the model to the SN Ia data,w0 + w1 > 0 was found. At high redshifts, however,
this model was not valid. In order to solve the problem, Jassal, Bagla & Padmanabhan (2004) modified
this parameterization tow(z) = w0 + w1z/(1 + z)2. Hannestad & Mörtsell (2004) parameterizedwz as
wz = [1 +

(

1+z
1+zs

)q
]/[w−1

0 + w−1
1 ( 1+z

1+zs

)q
]. The equation of statew(z) was parameterized by Lee (2005)

aswz = wr × [w0 exp(qx) + exp(qxc)]/[exp(qx) + exp(qxc)], wherex = ln a = − ln(1 + z). Johri &
Rath (2005) found all the observational constraints are satisfied by the two above parameterizations by the
combined CMB, LSS and SN Ia data. The Hannestad-Mörtsell model and the Lee four-parameter model
for the equation of state may be well-behaved representations of dark energy evolution in a large range of
redshifts. Here we examine two phenomenological parameterizations for the dark energy which were given
by Wetterich (2004).

In our previous paper (Wang & Dai 2006), we constrained the cosmological parameters and tansition
redshift by using the gamma-ray burst plus SN Ia sample.
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In this paper, we systematically explore the properties of dark energy and cosmological transition red-
shift in several dark energy models. The structure of this paper is as follows: In Section 2, we describe our
analysis methods and numerical results in a Friedmann-Robertson-Walker cosmology with the cosmolog-
ical constant. In Section 3, we present cosmological constraints in the one-parameter dark-energy models.
In Section 4, we explore the cosmological constraints in two-parameter dark-energy models. Conclusions
and a brief discussion are presented in Section 5.

2 COSMOLOGY WITH THE COSMOLOGICAL CONSTANT

The SN Ia observations provide the currently most direct wayof probing the dark energy at low to medium
redshifts since the luminosity-distance relation is directly related to the expansion history of the universe.
The luminosity distance is given by (Dicus & Repko 2004)

dL =







cH−1
0 (1 + z)(−Ωk)−1/2 sin((−Ωk)1/2I) , Ωk < 0

cH−1
0 (1 + z)I , Ωk = 0

cH−1
0 (1 + z)(Ωk)−1/2 sinh((Ωk)1/2I) , Ωk > 0

(1)

where
Ωk = 1 − ΩM − ΩDE, (2)

I =

∫ z

0

dz/H(z), (3)

H(z) = ((1 + z)3ΩM + f(z)ΩDE + (1 + z)2Ωk)1/2, (4)

f(z) = exp[3

∫ z

0

(1 + w(z′))dz′

(1 + z′)
], (5)

wherew(z) is the equation of state for dark energy anddL is the luminosity distance. The luminosity
distance expected in a Friedmann-Robertson-Walker (FRW) cosmology with mass densityΩM and vacuum
energy density (i.e., the cosmological constant)ΩΛ is

dL = c(1 + z)H−1
0 |Ωk|

−1/2sinn{|Ωk|
1/2 ×

∫ z

0

dz[(1 + z)2(1 + ΩMz) − z(2 + z)ΩΛ]−1/2}, (6)

whereΩk = 1 − ΩM − ΩΛ, andsinn is sinh for Ωk > 0 andsin for Ωk < 0 (Carroll et al. 1992). For
Ωk = 0, the luminosity distance isdL = cH−1

0 (1 + z) times the integral. WithdL in units of megaparsecs,
the predicted distance modulus is

µ = 5 log(dL) + 25. (7)

We can plot the Hubble diagram for the Gold sample containing157 SNe Ia and two recent, well-measured
SNe Ia 1994ae and 1998aq (Riess et al. 2005). The likelihood functions for the parametersΩM andΩΛ can
be determined fromχ2 statistic,

χ2(H0, ΩM , ΩΛ) =
N

∑

i=1

[µi(zi, H0, ΩM , ΩΛ) − µ0,i]
2

σ2
µ0,i

+ σ2
ν

, (8)

whereσν is the dispersion in the supernova redshift (transformed todistance modulus) due to peculiar
velocities, andσµ0,i

is the uncertainty in the individual distance moduli. The confidence regions in the
ΩM − ΩΛ plane can be found through marginalizing the likelihood functions overH0 (i.e., integrating the
probability densityp ∝ exp−χ2/2 for all values ofH0). The Friedmann equations are

H2 +
k

a2
=

8πG

3
(ρM + ρr + ρ), (9)

ρ̇ + 3H(ρ + p) = 0. (10)
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The Hubble constantH = ȧ/a, the dot representing time derivative. Hereρ is defined as

ρ = ρ0 exp
[

3

∫ z

0

(1 + w(z′))dz′

(1 + z′)

]

. (11)

HereρM is the matter energy density,ρr the radiation energy density andz = a0/a − 1 is the redshift.
Combining Equations (9) and (10), we can find the acceleration equation,

ä

a
= −

4πG

3
(ρM + 2ρr + ρ + 3p). (12)

At ä = 0, the universe changes from deceleration to acceleration phase. So we can define the transition
redshift. For the cosmological-constant model we obtain the transition redshift,

zT =
(2ΩΛ

ΩM

)1/3

− 1. (13)

In Figure 1 we plot the Hubble diagram for the 159 SNe Ia. We usethe 159 SNe Ia data to obtain the
confidence regions and transition redshift (see Fig. 2). Fora flat universe, we obtainΩM = 0.28+0.04

−0.05. This
result is consistent with Riess et al. (2004). The best valuefor the transition redshift iszT = 0.60+0.06

−0.08. Let
zc be the minimum redshift at which current observations require the universe to accelerate; it is determined
from the conditiond(tc, t0) = 1/H(tc). So we have

∫ zc

0

dz
√

ΩM (1 + z)3 + ΩΛ(1 + z)3(1+w)
=

1 + zc
√

ΩM (1 + zc)3 + ΩΛ(1 + zc)3(1+w)
. (14)

With a prior ofΩM = 0.27 ± 0.04, we obtainzc = 2.01 > zT = 0.60.

Fig. 1 Hubble diagram of SNe Ia. Observed SNe Ia are shown as dots. The
solid line is the best fit for a flat cosmology:ΩM = 0.29 andΩΛ = 0.71.

3 ONE-PARAMETER DARK-ENERGY MODEL

3.1 Constant Parameterization

We consider an equation of state for dark energy,

wz = w0. (15)
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Fig. 2 Left panel shows the1σ, 2σ, 3σ confidence levels in theΩM − ΩΛ plane. The line represents
the flat universe. Right panel shows the transition redshiftprobability curve. The transition redshift can be
summarily expressed byzT = 0.60+0.06

−0.08 .

In this dark energy model, the luminosity distance for a flat universe is (Riess et al. 2004)

dL = cH−1
0 (1 + z)

∫ z

0

dz[(1 + z)3ΩM + (1 − ΩM )(1 + z)3(1+w0)]−1/2. (16)

Combining Equations (11), (12) and (15), we calculate the transition redshift through

ΩM + (1 − ΩM )(1 + 3w0) × (1 + z)3w0 = 0. (17)

We use the 159 SNe Ia data to obtain the confidence regions and transition redshift, and derivew0 =
−0.975+0.12

−0.15 at the1σ confidence level. See Figure 3. So if we assumew0 = constant, then the SN Ia data
favor w0 = −1. At the 95% confidence level we have−1.35 < w0 < −0.75. These results are consistent
with Tonry et al. (2003), Knop et al. (2003), Bennett et al. (2003) and Riess et al. (2004). The best value of
the transition redshift iszT = 0.52+0.05

−0.06(1σ). In this dark energy modelzc satisfies the following equation,
∫ zc

0

dz
√

ΩM (1 + z)3 + (1 − ΩM )(1 + z)3(1+w0)
=

1 + zc
√

ΩM (1 + zc)3 + (1 − ΩM )(1 + zc)3(1+w0)
. (18)

ForΩM = 0.27 andw0 = −0.975, we obtainzc = 2.02 > zT = 0.52.
We now consider the second one-parameter dark energy equation (Gong & Zhang 2005),

wz =
w0

1 + z
exp(

z

1 + z
). (19)

In this model the luminosity distance is given by

dL = cH−1
0 (1 + z)

∫ z

0

dz[(1 + z)3ΩM + (1 − ΩM )(1 + z)3 exp(3w0e
z

1+z − 3w0)]
−1/2. (20)

Combining Equations (11), (12) and (19), we can calculate the transition redshift through

ΩM + (1 − ΩM )(1 +
3w0

1 + z
ez/(1+z)) × exp[3w0(e

z/(1+z) − 1)] = 0. (21)

Again we use the 159 SNe Ia data to obtain confidence regions and transition redshift and derivew0 =
−1.10+0.16

−0.11 at the1σ confidence level, shown in Figure 3. We obtain−1.32 < w0 < −0.76 at the 95%
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confidence level. The transition redshift is found to bezT = 0.47+0.07
−0.05(1σ). In this dark energy modelzc

satisfies the following equation
∫ zc

0

dz
√

(1 + z)3ΩM + (1 − ΩM )(1 + z)3 exp(3w0e
z

1+z − 3w0)

=
1 + zc

√

(1 + zc)3ΩM + (1 − ΩM )(1 + zc)3 exp(3w0e
zc

1+zc − 3w0)
. (22)

ForΩM = 0.27 andw0 = −1.10, we obtainzc = 1.90 > zT = 0.47.
Our third one-parameter dark energy model (Gong & Zhang 2005) is

wz =
w0

1 + z
. (23)

Proceeding as before, we obtain the luminosity distance

dL = cH−1
0 (1 + z)

∫ z

0

dz[(1 + z)3ΩM + (1 − ΩM )(1 + z)3e(
3w0z

1+z
)]−1/2. (24)

Combining Equations (11), (12) and (23), we calculate the transition redshift through

ΩM + (1 − ΩM )
(

1 +
3w0

1 + z

)

× exp
(3w0z

1 + z

)

= 0. (25)

Again for the 159 SNe Ia data the confidence regions and transition redshift are obtained. We havew0 =
−1.15+0.20

−0.17 at the1σ confidence level shown in Figure 3 and derive−1.37 < w0 < −0.78 at the 95%
confidence level. The transition redshift iszT = 0.49+0.06

−0.05(1σ). In this dark energy modelzc satisfies the
following equation,

∫ zc

0

dz
√

ΩM (1 + z)3 + (1 − ΩM )(1 + z)3e(
3w0z

1+z
)

=
1 + zc

√

ΩM (1 + zc)3 + (1 − ΩM )(1 + z)3e(
3w0zc
1+zc

)

. (26)

ForΩM = 0.27 andw0 = −1.15, we obtainzc = 1.63 > zT = 0.49.

4 TWO-PARAMETER DARK-ENERGY MODEL

4.1 Wetterich’s Parameterization

In this section, we first consider the dark energy parameterization proposed by Wetterich (Wetterich 2004):

wz =
w0

[1 + b ln(1 + z)]2
. (27)

In this model the luminosity distance is given by

dL = cH−1
0 (1 + z)

∫ z

0

dz[(1 + z)3ΩM + (1 − ΩM )(1 + z)3+3w0/[1+b ln(1+z)]]−1/2. (28)

Using the above method we calculate the transition redshiftthrough

ΩM + (1 − ΩM )
(

1 +
3w0

[1 + b ln(1 + z)]2

)

× (1 + z)3+3w0/[1+b ln(1+z)] = 0. (29)

We consider a Gaussian prior ofΩM = 0.27 ± 0.04. We plot the transition redshift probability curve.
The transition redshift iszT = 0.39+0.06

−0.05(1σ) in Figure 4, but Gong (2004) obtainedzT = 0.26, which is
somewhat smaller than our result. This may be caused by differences in the calculation method and data.
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Fig. 3 Left panel shows the1σ, 2σ, 3σ confidence regions in theΩM -w0 plane. Grey contours refer to
the wz = w0 model; dashed contours, thewz = w0

1+z
exp( z

1+z
) model; dotted contours, to thewz =

w0

1+z
model. Right panel shows the transition redshift probability curve. Dotted, dashed and full lines refer

respectively to thewz = w0 model, thewz = w0

1+z
exp( z

1+z
) model, and thewz = w0

1+z
model.
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Fig. 4 Transition redshift probability curve. Full line refers tothewz = w0

(1+b ln(z))2
model; dashed line,

thewz = w0

1+b ln(z)
model; dotted line, thewz = w0 + w1

1+ln(z)
model.

Because the best fit for the above parameterization givesΩM ∼ 0 which is not physical, we apply a
modified Wetterich’s parameterization (Gong 2004)

wz =
w0

1 + b ln(1 + z)
. (30)

Combining Equations (1)–(5) and (30), the luminosity distance is calculated with

dL = cH−1
0 (1 + z)

∫ z

0

dz[(1 + z)3ΩM + (1 − ΩM )(1 + z)3[1 + b ln(1 + z)]3w0/b]−1/2. (31)

Following the above method, we calculate the transition redshift through

ΩM + (1 − ΩM )
(

1 +
3w0

[1 + b ln(1 + z)]

)

× [1 + b ln(1 + z)]3w0/b = 0. (32)
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We use a Gaussian prior ofΩM = 0.27 ± 0.04. The transition shift probability curve is plotted. The
transition redshift iszT = 0.29+0.07

−0.06(1σ) in Figure 4. This result is consistent with Gong (2004).
We apply another modified Wetterich’s parameterization:

wz = w0 +
w1

1 + ln(1 + z)
. (33)

Combining Equations (1)–(5) and (33), we can obtain the luminosity distance with

dL = cH−1
0 (1 + z)

∫ z

0

dz[(1 + z)3ΩM + (1 − ΩM )(1 + z)3+3w0 [1 + ln(1 + z)]3w1 ]−1/2. (34)

Using the above method, we calculate the transition redshift through

ΩM + (1 − ΩM )
(

1 + 3w0 +
3w1

1 + ln(1 + z)

)

× (1 + z)3w0 [1 + ln(1 + z)]3w1 = 0. (35)

We use a Gaussian prior ofΩM = 0.27 ± 0.04. The transition redshift probability curve is plotted. The
transition redshift iszT = 0.42+0.06

−0.07(1σ) in Figure 4, but Gong (2004) obtainedzT = 0.34, which is
slightly smaller than our result. This may be caused by differences in the calculation method and data.

4.2 Linder’s Parameterization

The simplest parameterization including two parameters is(Maaor et al. 2001; Weller &Albrecht 2001;
Weller &Albrecht 2002; Riess et al. 2004),

wz = w0 + w1z. (36)

This parameterization provides the minimum possible resolving power to distinguish between the cosmo-
logical constant and time-dependent dark energy. We again use the above method to calculate the luminosity
distance with

dL = cH−1
0 (1 + z)

∫ z

0

dz[(1 + z)3ΩM + (1 − ΩM )(1 + z)3(1+w0−w1)e3w1z]−1/2. (37)

Combining Equations (11), (12) and (36), we calculate the transition redshift through

ΩM + (1 − ΩM )(1 + 3w0 + 3w1z) × (1 + z)w0−w1e3w1z = 0. (38)

A Gaussian prior ofΩM = 0.27± 0.04 is applied here. Using the 159 SNe Ia data to derive the confidence
regions and transition redshift, we obtainw0 = −1.30+0.18

−0.25, w1 = 1.42+0.76
−0.83 at the1σ confidence level in

Figure 5. This result is consistent with Riess et al. (2004).The conditionw(0) < −1 suggests that the dark
energy is of phantom origin. A cosmological constant lies atthe2σ confidence level. The best value of the
transition redshift iszT = 0.41+0.06

−0.04(1σ) in Figure 5. In this dark energy modelzc satisfies the following
equation

∫ zc

0

dz
√

ΩM (1 + z)3 + (1 − ΩM )(1 + z)3(1+w0−w1)e3w1z

=
1 + zc

√

ΩM (1 + zc)3 + (1 − ΩM )(1 + zc)3(1+w0−w1)e3w1zc

. (39)

ForΩM = 0.27 , w0 = −1.30 andw1 = 1.42, we obtainzc = 1.20 > zT = 0.41.
The above model is not compatible with the CMB data since it diverges at high redshifts. Linder (2003)

proposed an extended parameterization which avoids this problem,

wz = w0 +
w1z

1 + z
. (40)
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Fig. 5 Left panel shows confidence regions derived from 159 SNe Ia. Solid contours refer to thew(z) =
w0 + w1z

(1+z)2
model; green contours, thew(z) = w0 + w1z/(1 + z) model; dashed contours, thewz =

w0 + w1z model. The position of a cosmological constant,(−1, 0), is marked by a large dot. Right panel
shows the transition redshift probability versus. Solid line refers to thewz = w0 +w1z model; dashed line,
thew(z) = w0 + w1z/(1 + z) model; dotted line, thew(z) = w0 + w1z/(1 + z)2 model.

We use again the above method to calculate the luminosity distance with,

dL = cH−1
0 (1 + z)

∫ z

0

dz[(1 + z)3ΩM + (1 − ΩM )(1 + z)3(1+w0+w1)e−3w1z/(1+z)]−1/2. (41)

Combining Equations (11), (12) and (40), we calculate the transition redshift through

ΩM + (1 − ΩM )(1 + 3w0 +
3w1z

1 + z
) × (1 + z)w0+w1e−3w1z/(1+z) = 0. (42)

We obtain the confidence regions and transition redshift as before, and obtainw0 = −1.35+0.35
−0.28,w1 =

2.02+2.26
−1.85 at the1σ confidence level in Figure 5. This result is consistent with Riess et al. (2004). Here

w(0) < −1 suggests that the dark energy is of phantom origin. A cosmological constant lies at the2σ
confidence level. We find the transition redshift to bezT = 0.31+0.04

−0.02(1σ) in Figure 5. In this dark energy
modelzc satisfies the following equation,

∫ zc

0

dz
√

ΩM (1 + z)3 + (1 − ΩM )(1 + z)3(1+w0+w1)e−3w1z/(1+z)

=
1 + zc

√

ΩM (1 + zc)3 + (1 − ΩM )(1 + zc)3(1+w0+w1)e−3w1zc/(1+zc)
. (43)

ForΩM = 0.27 , w0 = −1.35 andw1 = 2.02, we obtainzc = 1.47 > zT = 0.31.
By fitting thewz = w0 + w1z

1+z model to the SN Ia data,w0 + w1 > 0 was found, so at high redshifts
this model is not proper. In order to avoid this problem, Jassal, Bagla & Padmanabhan (2004) modified this
parameterization to

wz = w0 +
w1z

(1 + z)2
. (44)

Proceeding as before we calculate the luminosity distance with

dL = cH−1
0 (1 + z)

∫ z

0

dz[(1 + z)3ΩM + (1 − ΩM )(1 + z)3(1+w0)e3w1z2/2(1+z)2 ]−1/2. (45)
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Combining Equations (11), (12) and (44), we calculate the transition redshift through

ΩM + (1 − ΩM )
(

1 + 3w0 +
3w1z

(1 + z)2

)

× (1 + z)3w0e3w1z2/2(1+z)2 = 0. (46)

Now we consider a Gaussian prior ofΩM = 0.27±0.04. We use the 159 SNe Ia data to obtain the following
confidence regions and transition redshift. The best valuesarew0 = −1.50+0.82

−0.51 andw1 = 5.02+4.86
−4.05 at

the 1σ confidence level in Figure 5. The dark energy is also of phantom origin because ofw(0) < −1.
A cosmological constant lies at the2σ confidence level. The transition redshift iszT = 0.45+0.06

−0.05(1σ) in
Figure 5. In this dark energy model,zc satisfies the following equation

∫ zc

0

dz
√

ΩM (1 + z)3 + (1 − ΩM )(1 + z)3(1+w0)e3w1z2/2(1+z)2

=
1 + zc

√

ΩM (1 + zc)3 + (1 − ΩM )(1 + zc)3(1+w0)e3w1z2
c/2(1+zc)2

. (47)

ForΩM = 0.27 ± 0.04 , w0 = −1.50+0.82
−0.51 andw1 = 5.02+4.86

−4.05, we obtainzc = 1.35 > zT = 0.45.

5 DISCUSSION AND CONCLUSIONS

In this paper we have used the Gold sample containing 157 SNe Ia plus two recently well-measured SNe Ia,
1994ae and 1998aq, to explore the property of dark energy andthe transition redshift. Our results are listed
in Table 1.

Table 1 Constraints on the Cosmological Parameters and TransitionRedshift in Several Dark Energy
Models

Dark energy model w0(1σ) w1(1σ) zT(1σ) zc

wz = w0 −0.975+0.12
−0.15 N/A 0.52+0.05

−0.06 2.02

wz = w0

1+z
−1.15+0.20

−0.17 N/A 0.49+0.06
−0.05 1.63

wz = w0

1+z
e
z/(1+z)

−1.10+0.16
−0.11 N/A 0.47+0.07

−0.05 1.90

wz = w0

1+b ln(z)
N/A N/A 0.29+0.07

−0.06 N/A

wz = w0

(1+b ln(z))2
N/A N/A 0.39+0.06

−0.05 N/A

wz = w0 + w1

1+ln(z)
N/A N/A 0.42+0.06

−0.07 N/A

wz = w0 + w1z −1.30+0.18
−0.25 1.42+0.76

−0.83 0.41+0.06
−0.04 1.20

wz = w0 + w1z
1+z

−1.35+0.35
−0.28 2.02+2.26

−1.85 0.31+0.04
−0.02 1.47

wz = w0 + w1z
(1+z)2

−1.50+0.82
−0.51 5.02+4.86

−4.05 0.45+0.06
−0.05 1.35

For a flat universe with a cosmological constant, we measureΩM = 0.28+0.04
−0.05 and the transition

redshiftzT = 0.60+0.06
−0.08. Using accurate formulae of the transition redshift in different dark energy models,

we find that the transition redshift varies fromzT = 0.29+0.07
−0.06 to zT = 0.60+0.06

−0.08. The transition redshifts
zT for all the tested parameterizations are less than that in the ΛCDM model. From these results we can
see that the transition redshift is different in different dark energy models, — it is model-dependent. In
these models, the dark energy properties are consistent with a cosmological constant, so we cannot exclude
that cosmological constant acts as dark energy. We find thatw < −1 is more favored. For all the dark
energy models we findzc > zT. Although there exist many dark energy models, we are still not able
to decide which model gives us the right answer and to find out the nature of dark energy. Higher order
models are more suitable for probing the nature of dark energy and its evolution, such as the Hannestad-
Mörtsell model and Lee’s four-parameter model. However, more parameters mean more degrees of freedom,
as well as more degeneracies in the determination of the parameters. The CMB can break degeneracies
between cosmological parameters and the SNAP mission will use a two-meter space telescope to obtain
high accuracy observations of more than 2000 SNe fromz = 0.1 to z = 1.7. So the dark energy and
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the transition redshift will hopefully be determined more accurately. Dark energy may be a clue to new
fundamental physics.
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