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Abstract The size distributions of 2D and 3D Voronoi cells and of cells of V p(2, 3),—2D
cut of 3D Voronoi diagram—are explored, with the single-parameter (re-scaled) gamma dis-
tribution playing a central role in the analytical fitting. Observational evidence for a cellular
universe is briefly reviewed. A simulated Vp(2, 3) map with galaxies lying on the cell bound-
aries is constructed to compare, as regards general appearance, with the observed CfA map
of galaxies and voids, the parameters of the simulation being so chosen as to reproduce the
largest observed void size.
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1 INTRODUCTION

Applications of the Voronoi diagram (see Voronoi 1980) in astrophysics started with Kiang (1966) where
the size distribution of 1D Voronoi cells given by random seeds was theoretically deduced in a rigorous
way. Kiang (1966) also derived from Monte Carlo experiments, the size distributions of the corresponding
2D and 3D cells. The idea that random Voronoi areas and volumes follow gamma distributions with indices
4 and 6 respectively was later referred to as “Kiang’s conjecture”, see Okabe et al. (1992). The application
of Voronoi diagram to the distribution of galaxies started with Icke & van de Weygaert (1987), using initial
seeds generated by a sequential clustering process. Later on Pierre (1990) introduced a general algorithm
for simulating one-dimensional lines of sight through a cellular universe. The large microwave background
temperature anisotropies over angular scales up to one degree were calculated using a Voronoi model for
large-scale structure formation in Barrow & Coles (1990) and Coles (1991).

The possibility to explain the CfA slices using a fractal distribution of seeds and inserting the galaxies
on the faces of the irregular polyhedron was explored by Zaninetti (1991). A detailed Monte Carlo sim-
ulation of pencil beam-like redshift surveys was carried out by Subba Rao & Szalay (1992): they found
that the probability of finding regularity varies from 3 to 15 percent depending on the details of the mod-
els. Another Monte Carlo study was carried out by van de Weygaert & Babul (1994) where three different
distributions of nuclei were adopted in order to perform extensive statistical analysis of several geometrical
aspects of three dimensional Voronoi tessellation. In a different context, a new way of partitioning space
into cells the shape of rhombic dodecahedron was introduced in Kiang (2003); and applications were made
to the CfA catalogue and to the IRAS/PSCz catalogue (Kiang et al. 2004). A void hierarchy approach was
introduced in Sheth & van de Weygaert (2004) which contains two parameters characterising respectively
the dynamics of the formation of voids and collapsed objects.
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We now briefly review some published astronomical observations that point to a cellular structure of the
universe. On analysing the data from four distinct surveys at the north and south Galactic poles Broadhurst
et al. (1990) found an apparent regularity in the galaxy distribution with a characteristic scale of 128 Mpc.
The astronomers that analysed the maps of the galaxy distribution up to cz=15 000 km s −1 (see for example
de Lapparent et al. (1988) and Geller & Huchra (1989)) found large coherent structures: the largest void
found having a diameter of 5000 km s−1. Great advances in the observational data (see Folkes et al. 1999;
Ratcliffe et al. 1996 and Shectman et al. 1996), brought the limits of the observations to cz=60 000 km s −1

and confirmed the existence of voids in the distribution of galaxies. The distribution of clusters in rich super-
clusters is not isotropic: it is periodic along a cubic lattice approximately aligned with the super-galactic
coordinates, see for example Saar et al. (2002).

The Voronoi diagrams are also used to process the astronomical data, see El-Ad & Piran (1997) and
Ramella et al. (2001). As an example Ramella et al. (2001) implemented a Voronoi Galaxy Cluster Finder
that uses galaxy positions and magnitudes to find clusters and determine their main features: size, richness
and contrast above the background.

One possible starting point is to consider a series of explosions that took place at the same time in a
homogeneous space. The shells from the explosions meet in a 3D network of irregular polyhedra. From an
astrophysical point of view this network can be realized by a set of primordial explosions, see Charlton &
Schramm (1986) and Zaninetti & Ferraro (1990), described by the Sedov solution in the adiabatic phase:

R(t) =
(25

4
E t2

π ρ
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= 12.49 Mpc
(E64 t9 2

n−7

)1/5

, (1)

where t represents the time, E the energy injected in the explosion, ρ the density of matter, ρ = nm, n
the number of particles per unit volume, m = 1.4mH, mH the mass of the hydrogen, t9 = t/109 yr,
E64 = E/1064 erg and n−7 = n/(10−7particles cm−3).

The above cited works leave the following questions unanswered or only partially answered. Is “Kiang’s
conjecture” applicable to the distribution of the galaxies? What is the probability density function of a
two–dimensional section of a 3D Voronoi network? Can the averaged area connected with the voids in
the distribution of galaxies visible on the CfA2 slices be guessed from the theory? Can the number of
theoretical voids in the distribution of galaxies in a sphere of radius equal to that of the CfA2 slices be
deduced theoretically?

One way of answering these questions is to derive the index of the gamma distribution that characterises
the distribution of the 2D and 3D Voronoi cells, see Sections 2.5 and 3.3. The index of the gamma distribu-
tion that characterises the sectional area of a 3D Voronoi network as well some characteristics of the voids
in the distribution of galaxies will be derived in Section 3.1. The observed large scale structures of galaxies
are referred to as CfA slices, LCRS slices or pencil beam surveys: they are simulated in Section 4. The
number of seeds necessary to produce a theoretical network comparable to the observed one is computed in
Section 4.1.1.

2 THE PRELIMINARIES

The type of adopted lattice, the importance of setting properly the boundary conditions, the type of seeds that
generates the polygons/polyhedron, the concept of unitarian area and volume and a first two dimensional
scan are now introduced.

2.1 The Adopted Lattice

We start with a 2D or a 3D lattice made of pixels2 and pixels3 points: present in this lattice are Ns seeds
generated according to some random process. All the computations are usually performed on this mathe-
matical lattice; the conversion to the physical lattice is obtained by multiplying the unit by δ = side

pixels−1 ,
where ‘side’ is the length of the square/cube expressed in the adopted physical units.
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2.2 Boundary Conditions

In order to minimise boundary effects introduced by those polygons/polyhedra that cross the lattice bound-
ary, we amplify the area/cube in which the seeds are inserted by a factor ‘amplify’. Therefore the N seeds
are inserted in an area/volume that is pixels2 × amplify or pixels3 × amplify, which is bigger than the box
over which we perform the scanning; ‘amplify’ is generally taken to be equal to 1.2. This procedure inserts
periodic boundary conditions to our square/cube. The number of seeds that fall in the area/cube is N s with
Ns < N . In order to avoid computing incomplete area/volumes we select the cells that do not intersect the
square/cubic boundary. This is obtained by selecting the cells that belong to seeds that are contained in an
area/volume that is ‘select’ times smaller than pixels2 or pixels3; ‘select’ is taken to vary between 0.1 and
0.5.

2.3 The Seeds

The seeds are generated independently on the X and Y axis in 2D (and the Z axis in 3D) through a
subroutine that returns a pseudo-random real number taken from a uniform distribution between 0 and 1. In
practice we used the subroutine RAN1 as described in Press et al. (1992).

2.4 The Adopted Units

In order to deal with quantities of the order of one we divide the obtained area/volume in units of
pixels2/pixels3 by the expected “unitarian” area/volume , uA and uV defined as

uA = pixels2 × amplify/N , (2)

uV = pixels3 × amplify/N . (3)

This operation represents a first normalisation. The expected unitarian quantities can also be expressed in
physical units, up

A and up
V ,

up
A = side2 × amplify/N , (4)

up
V = side3 × amplify/N . (5)

Special attention should be paid when we deal with a 2D cut of a 3D network; this case is named V p(2, 3),
see Section 3.1. The unitarian area uA(2,3) is expected to be

uA(2,3) = u
2/3
V , (6)

and the physical counterpart
up

A(2,3) = (up
V )2/3 . (7)

2.5 The Two Dimensional Scan

A lattice made of (pixel)2 points is considered and a typical run using the seeds as given by a random
process is presented in Figure 1. Once the histogram of the area is obtained, we can fit it, following Kiang
(1966), with the following one parameter probability density function (pdf):

H(x; c) =
c

Γ(c)
(cx)c−1 exp(−cx) , (8)

where 0 ≤ x < ∞, c > 0 and Γ(c) is the gamma function with argument c. This pdf is characterised by
µ=1 and σ2=1/c. The value of c is obtained from the method of the matching moments,

c =
1
σ2

=
n − 1∑n

i=1(xi − 1)2
. (9)

The data should be normalised in order to have x = 1. The frequency histogram and its best fit with
the gamma-variate are shown in Figure 2. The caption of Figure 2 includes also the following quantities
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Fig. 1 The 2D Voronoi–diagram defined by random
seeds. The parameters are pixels = 800, N = 180,
amplify = 1.2, side = 2 × 16 000 km s−1 and
select = 0.5.

Fig. 2 Histogram of area size and the best fitting
gamma distribution; same input parameters as in
Figure 1, c = 4.38, number of bins =10 , χ2 =
12.67, A = 0.98, Amax = 2.19 and Amin = 0.17.

expressed in normalised area units (see formula (3)) A, Amax and Amin, respectively the averaged, the
maximum and the minimum of the area–sample and χ 2, that represents the goodness of fit.

The value of c in the case of 2D random Voronoi cells according to “Kiang’s conjecture” is c = 4; in
this numerical simulation, we have c = 4.38.

3 THE 3D CASE

In order to make a comparison with the astronomical observations the tessellation in � 3 is firstly analysed
through a planar section and the distribution of volume is numerically derived.

3.1 The 2D Cut

We now work on a 3D lattice Lk,m,n of pixels3 elements. Given a section of the cube (characterised, for
example, by k = pixel

2 ) the various Vi (the volume belonging to the seed i) may or may not cross the little
cubes belonging to the two dimensional lattice.

Following the nomenclature introduced by Okabe et al. (1992) we can call the intersection between a
plane and the cube previously described as Vp(2, 3). A typical result of this 2D sectional operation in the
x-y plane is presented in Figure 3, the frequency histogram and the best fit with a gamma-variate pdf of the
Vp(2, 3) distribution are shown in Figure 4 together with the derived value of c. We assume that galaxies are
distributed on the faces of the irregular polyhedra so we expect to find concentrations of galaxies along the
boundaries shown in Figure 3. The thick edges of Figure 3 represent the intersection between the “observed
slice” and a face.

Considering the great importance of the Vp(2, 3) diagram in the astrophysical applications we consid-
ered three such diagrams in the x-y, x-z and y-z planes. This allowed us to find the average values of the
sample properties and their errors, given in the captions of Figure 4.

The mathematical theory of the cell size distribution in 1D Poisson Voronoi diagram, see Okabe et al.
(1992), gives

A = 0.68λ−2/3 , (10)

where λ is the intensity of the Poisson process. Our values of A, see captions in Figure 4, are near to the val-
ues predicted by the mathematical theory. The frequency distribution of the number of edges/crossed faces
is shown in Table 1 together with the theoretical values given in Okabe et al. (1992).
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Fig. 3 A Vp(2, 3) diagram generated by random
seeds. The parameters are pixels = 800, N =
1900, side = 2× 16 000 km s−1, amplify = 1.2
and select = 0.1.

Fig. 4 Histogram of the area distribution of the
Vp(2, 3) diagram of Fig. 3. Shown also is the best fit
gamma distribution. The parameters are c = 1.99 ±
0.22, number of bin =10, χ2=23.09, A = 0.78 ± 0.06,
Amax = 2.12±0.26 and Amin = 0.02± 0.01.

Table 1 The Probability to have n–edges in Vp(2, 3)

seeds \ n 3 4 5 6 7 8 9
Okabe et al. (1992) 0.063 0.13 0.2 0.22 0.18 0.11 0.05
random 0.081 0.16 0.24 0.18 0.10 0.16 0.054

Fig. 5 Voronoi–diagram Vp(2, 3) in the Hammer-Aitof projection at cz = 7201 km s−1.

The derived values of c recall the theoretical distribution of 1D Voronoi segments in which c = 2,
see Kiang (1966) .

3.2 Projection on the Sphere

Another type of a 2D section of a 3D Voronoi network is a spherical cut defined by a constant value of the
distance to the center of the box. One such section is shown in Figure 5.
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3.3 The Statistics of the Volume

For every lattice point Lk,m,n we compute the nearest seed and we increase by one the volume “belonging
to” that seed. The frequency histogram and the relative best fit through gamma-variate pdf for the volume
distribution is reported in Figure 6.

Fig. 6 Histogram of the 3D Voronoi volumes. Also shown is the best-fit gamma
distribution. The parameters are pixels = 400, c = 5.50, NBIN=10 and χ2=8.05.

The experimental frequencies are fitted by a gamma–variate with c = 5.5. This value of c should be
compared with the value of 6 which was first conjectured by Kiang (1966) but later refined to 5.5 (Kiang
1990) and with the value of 5.78 deduced by Kumar et al. (1992).

4 THE SPATIAL DISTRIBUTION OF GALAXIES

The theory of the sectional area derived in Section 3.1 can be the framework that interprets the existence of
voids in the spatial distribution of galaxies. The observational evidence for the voids is briefly reviewed and
then the number of voids in the distribution of galaxies of the CfA2 slices is derived. We shall calibrate our
Voronoi diagrams with the largest observed void size in the CfA slices in our simulation of the observed
galaxy distribution.

4.1 The CfA2 Slices

The second CfA2 redshift Survey, started in 1984, showed that the spatial distribution of galaxies is not
random but tends to concentrate in filaments that could be interpreted as 2D projections of 3D bubbles.
We recall that a “slice” in the survey comprises all the galaxies with magnitude m b ≤ 16.5 in a strip
of 6◦ wide and about 130◦ long. One such slice (the so called first CfA strip) is available at the address
http://cfa-www.harvard.edu/ huchra/zcat/; more details can be found in Geller & Huchra (1989). This slice
can be down-loaded from http://cfa-www.harvard.edu/ huchra/zcat/n30.dat/.

The first of such slices presents many voids, the bigger one being 4000÷5000 km s −1 across (Huchra
2003). The greatest possible attention should be paid to the derivation of the largest void area, A obs

max, because
this is the area that fixes the scale of the voids in the simulated distribution of galaxies.

The average value of voids diameter can be derived from the following proportion:

Amax

A
=

Aobs
max

A
obs

, (11)

where the left hand side refers to the maximum and average value of the simulated cross-sectional area
Vp(2, 3) (their numerical values are visible in the captions of Figure 2) and the right hand side refers to the
same quantities on the CfA2 slices. A value for the average observed diameter, D obs, is easily found from
the previous proportion:

Dobs ≈ 0.6Dobs
max = 2700 km s−1 = 27 Mpc , (12)
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where Dobs
max = 4500 km s−1 corresponds to the extension of the maximum void visible on the CfA2 slices.

The half value of Dobs can be equated with Equation (1) that gives the radius of the explosion from primeval
galaxies and the following is obtained:

E64 t9 2

n−7
= 1.47 . (13)

This relationship regulates the three basic physical parameters involved in the explosions of primeval galax-
ies. The results of the simulation can be represented by a slice similar to that observed (a strip of 6 ◦ wide
and about 130◦ long), see Figure 7.

Fig. 7 Polar plot of Voronoi cells belonging to a slice 130◦ long and 6◦ wide.
Same parameters as in Figure 3.

For a more accurate confrontation between simulation and observations the effect due to the distribution
in luminosity should be introduced. Here we simply adopt the following “scaling” algorithm:

1. The field of velocity of the observed sample is divided in NBIN intervals equally spaced.
2. In each of these NBIN intervals the number of galaxies NGAL(j) (j identifies the selected interval) is

computed.
3. The field of velocity of the simulated cells belonging to the faces is sampled as in point (1).
4. In each interval of the simulated field of velocity NGAL(j) elements are randomly selected.
5. At the end of this process the number of cells belonging to the faces equalises the number and the

scaling of the observed galaxies.

A typical polar plot after the “scaling” algorithm is implemented is shown in Figure 8; its general
appearance should be compared with that of the observed plot, see Figure 9.

4.1.1 The density of voids

The density of seeds expressed in physical units, ρN , is the inverse of the physical averaged volume, ρN =
1/up

V , and therefore

up
A(2,3) = (up

V )2/3 =
( 1

ρN

)2/3

. (14)

At the same time the sectional area will be characterised by a maximum physical area, A p
max, expressed in

physical units,
Ap

max = CAmax × up
A(2,3) , (15)

and the following is easily found

ρN =
(CAmax

Ap
max

)3/2

. (16)
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Fig. 8 A Polar plot of the simulated galaxies when
the “scaling” algorithm is applied. NBIN=15 and
other parameters as in Figure 7 .

Fig. 9 Polar plot of the real galaxies belonging to
the second CfA2 redshift catalogue.

We are now ready to compute the number of sources in a sphere of radius R obs = 16 000 km s−1, the same
radius that characterises the CfA2 slices. The number of voids/seeds in the sphere turns out to be

N =
1.7 × 1013(CAmax)3/2

(Aobs
max)3/2

, (17)

where Ap
max was identified with Aobs

max. Inserting the dimension of the maximum void as deduced in
Section 4.1, we obtain Aobs

max = 1.59 × 107(km s−1)2. We now have an expression for the number of
seeds in the sphere that characterises the CfA2,

N = 268(CAmax)3/2 = 827 . (18)

5 CONCLUSIONS

The Voronoi diagram offers one way of interpreting the voids in the observed distribution of galaxies in
space. The characteristics of the cells in a two–dimensional section of a 3D Voronoi network can be com-
pared with those of the voids in the distribution of galaxies. The following items turn out to be useful to
the astronomer once Aobs

max, the maximum area connected with a void, is derived from the astronomical
observations:

– The averaged value of the voids in the distribution of galaxies should be 2741± 210 km s −1 across.
– The pdf of the area of the voids in the distribution of galaxies should be a gamma–variate with index

1.9.
– The expected averaged value of the sides of the irregular polygons that characterises the voids in the

distribution of galaxies should be 5.

The following are some further points to investigate:
– The maximum area connected with a void should be derived with a great accuracy in the various slices.
– The algorithms of describing polygonal voids from the astronomical observations should be developed

in order to test the suggested averaged number of sides, 5, as predicted from the Voronoi diagrams.
– The pdf of the area connected with the voids should be tentatively computed in order to test the predic-

tions of the Vp(2, 3) diagrams.

The Voronoi diagrams allow also to reformulate the theory of the primordial explosions because

– The average diameter of voids between galaxies is function of three parameters: time, density and
energy, see Equation (13).

– The galaxies are supposed to originate where the primordial shells meet, the faces of the Voronoi
polyhedra.

– The correlation length for galaxies can be identified with the face’s thickness that is approximately 1/6
the radius of the expanding shell.
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