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Abstract Based on the Hipparcos proper motions and available radial velocity data of O-B
stars, we have re-examined the local kinematical structure of the young disk population of
∼ 1500 O-B stars not including the Gould-belt stars. A systematic warping motion of the
stars about the direction to the Galactic center has been reconfirmed. A negative K-term im-
plying a systematic contraction of stars in the solar vicinity has been detected. Two different
distance scales are used in order to find out their impact on the kinematical parameters, and
we conclude that the adopted distance scale plays an important role in characterizing the
kinematical parameters at the present level of the measurement uncertainty.
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1 INTRODUCTION

Kinematical information of the local disks provides a crucial constraint for Galactic dynamical and mass
models. During the last decade, a great deal of effort has been expended in studying the local kinematics
of our Galaxy in response to the enormous progress made in the acquisition of high-quality observational
data. The absolute stellar proper motions, radial velocities and trigonometric parallaxes are fundamental
quantities to characterize the Galactic velocity fields in the solar vicinity. Because of the small velocity
dispersion and small rotational lag relative to the LSR of the young disk population, which includes neutral
hydrogen, O-B stars and supergiants, classical Cepheids, and young open clusters, the analysis of large
scale velocity fields of objects that belong to the young Galactic disk is the principal tools used by many
investigators.

It is found in the early investigation of the large scale distribution of H I gas in the Galaxy, that the
H I gas layer has systematic deviations above the Galactic plane on one side and below it on the other side
similar to many flat galaxies (Kerr 1957). This structure is called the Galactic warp. Young optical objects
such as O-B stars have a very close relation to the H I gas, and are considered as an optical counterpart
of the H I warp. Thus, they are expected to exhibit similar spatial distribution and kinematical behaviors
as the H I gas. Analyzing the proper motions of O-B5 stars, supergiants and bright giants provided by
ground-based astrometric catalogue ACRS (Astrographic Catalogue Reference Stars), a warping motion
inherent in the Galactic warp was detected by Miyamoto et al. (1993). Based on stellar proper motions
in the Hipparcos catalogue, Smart et al. (1998) and Drimmel et al. (2000) reported that the kinematics of
the O-B stars toward the Galactic anti-center shows negative systematic motions as opposed to the expected
positive motions. Carrying out a proper-motion analysis for Hipparcos O-B5 stars, Miyamoto & Zhu (1998)
found a clear warping motion with a systematic rotation of +3.8±1.1 km s−1 kpc−1 for stars about the axis
pointing to the Galactic center.
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The space velocities of the stars in the solar neighborhood can be interpreted as an average rotation
about the Galactic gravity center plus random motions (velocity dispersion). The epicyclic approximation
of the stellar orbits in the Galactic plane states that the circular velocity is realized by the rotation of the
LSR defined by an ideal sample of stars with a limiting velocity dispersion of zero. Such stellar systems
are said to be dynamically cold. In the cold limit, the streaming is along the closed orbits supported by
the gravitational potential. Thus, knowledge about the Galactic potential and the mass distribution of the
Galaxy can be gained from the kinematical study. Since the young disk population of O-B stars and classical
Cepheids yield the lowest velocity dispersion, the rotational velocity of the LSR defined by it gives the best
approximation to the circular velocity at the Sun.

In the recent years, a great mass of work has been carried out in the kinematical analysis of the Galaxy,
including using data of the very early type of stars as well as the late type giants. Among them, proper
motion analysis was the usual way to characterize the kinematical structure of the Galaxy; few studies were
based on radial velocity data due to the lack of available radial velocity measurements of useable size. The
period-luminosity relation, subsequently extended into a period-luminosity-color relation, has made it pos-
sible to obtain reliable distances for the classical Cepheids. Radial velocity measurements, complemented
with the photometric distance scales invited people to solve the local kinematical structure defined by the
disk Cepheids, and yielded the Oort constant A and the galactocentric distance of the Sun R 0 (Caldwell
& Coulson 1987; Pont et al. 1994; Pont et al. 1997; Metzger et al. 1998). Feast & Whitelock (1997) pro-
posed the Cepheid period-luminosity relation derived from Hipparcos trigonometric parallaxes. The Oort
constants were obtained from the proper motions of Cepheids observed by the Hipparcos satellite (Feast &
Catchpole 1997). The Oort constants A = 14.8±0.8 km s−1 kpc−1 and B = −12.4±0.6 km s−1 kpc−1

given by Feast & Catchpole(1997) are consistent with those recommended by IAU 1985 (Kerr & Linden-
Bell 1986), while significantly larger values for A − B have been found from the proper motions analysis
by several authors. The VLA observation of the proper motion of the compact radio source Sgr A*, which is
generally thought to mark the Galactic center, gives A − B = 28.5±0.9 km s−1 kpc−1 (Backer & Sramek
1999). Even larger values for A − B have been found by Olling & Dehnen (2003), derived from proper
motions of the old red giants from ACT/Tycho-2 catalogues; by Méndez et al. (1999) and by Miyamoto &
Zhu (1998), based on stellar proper motions from the Southern Proper Motion Program and the Hipparcos
O-B5 stars.

In our previous work, using the Hipparcos proper motion supplemented with radial velocity data, we
have performed a kinematical study of the Cepheids, and found a negative K-term which implies a Galactic
contraction in the solar neighborhood (Zhu 2000). The reality of this contraction is still doubtful. In the
present work, we concentrate our effort on an analysis of the young disk population of O-B stars on the
basis of the transverse velocity data combined with the radial velocity data, in order to re-examine the
Galactic warping motion found before (cf. Miyamoto & Zhu 1998) and the local contraction of the young
disk population.

2 KINEMATICAL MODEL

In the early part of the last century, Lindblad and Oort developed a simple axisymmetric model to character-
ize the local kinematics of stars of the solar vicinity. They actually considered that all stars move on closed
circular orbits parallel to the Galactic plane, and introduced two Oort constants, A and B, for describing the
differential rotation of the Galaxy. In a galactocentric cylindrical coordinate system, these two parameters
are given as
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Here, R is measured from the Galactic center, R0 is the galactocentric distance of the Sun. The azimuthal
angle θ is reckoned counterclockwise. The combinations of the two constants give the rotational velocity of
the LSR defined by the stars under consideration and its gradient at the Sun,

V0 = −Vθ = (A − B)R0, (3)
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The classical axisymmetric Oort method is easily generalized to an asymmetric model (Chandrasekhar
1942). In the two-dimensional case, we suppose that all stars move on orbits parallel to the Galactic plane.
Then, the Oort constants can be expressed as
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The parameters A and C denote the azimuthal and radial strain (shear) of the velocity field, respectively,
B characterizes the vorticity (rotation), and K implies the local contraction (or expansion). This model is
often applied to analyze the radial velocity data, while local expansion cannot be significantly determined
just from the proper motion analysis.

In our previous work, we have given a three-dimensional asymmetric model by using the first-order
expansion with 12 kinematical parameters to characterize the local Galactic velocity field (Zhu 2000). In
this model, both proper motions and radial velocities of stars are needed to derive all 12 kinematical com-
ponents, including three components for solar motion with respect to the LSR defined by stars considered.
A detailed description has been given by Zhu (2000). The other nine kinematical parameters consisting of
three components of vorticity (D−

32, D
−
13, D

−
21), three components of strain velocity (D+
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+
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12), and

three additional components of Galactic expansion and/or contraction (D +
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33), are given by
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Fig. 1 Hipparcos and Skymap distance scales.

Note that the coefficients D+
12 and D−

21 are identical to the Oort constants A and B defined by
Equations (5) and (6). The constants C and K are provided by the combinations of D +

11 and D+
22:
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)
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or
D+

11 = K + C, D+
22 = K − C. (19)

For the thin disk population of stars, the derivative along z-axis is impossible to be meaningfully de-
termined, thus, we have ∂/∂z = 0. Suppose Vz = 0, the three-dimensional model of Equations (9)–(17)
is easily generalized to a non-axisymmetric model of Equations (5)–(8). Similarly, we can simplify the
asymmetric rotation model of Equations (5)–(8) to the circular rotation model of Equations (1) and (2).

In the following, the analysis is based on the 3-D model to re-examine the local velocity of the O-B
stars at heliocentric distances of up to 3 kpc.

3 THE SAMPLE

The astrometric data were taken from the Hipparcos Catalogue, including proper motions and trigono-
metric parallaxes of stars. In order to obtain reliable spectral types, luminosity classes, and spectroscopic
parallaxes, the Skymap Catalogue (Slater & Hashmall 1992), which contains 248 558 stars was used. The
radial velocity data were taken from the General Catalog of mean radial velocities (Barbier-Brossat & Figon
2000) which contains 36 145 stars. Carrying out cross-identification, we found 2164 O-B stars common to
three catalogues. Among them, 209 Hipparcos stars have no parallax measurements or negative parallaxes,
and 365 stars belong to binaries, multiples, or suspected non-single systems indicated by the Hipparcos
catalogue.

In order to inspect the systematic deviation of the distance scales which might disturb the velocity
field for kinematical analysis, we compared the Hipparcos distance scale with the Skymap distance scale.
Figure 1 shows the differences of the two systems. Statistically, the Hipparcos distance scale is smaller than
that of the Skymap by about 10% on the average.

It is well known that the Gould-belt stars are embedded in the solar vicinity, which are O-A type
stars younger than 3×107 years and exhibit quite different features in both their spatial distribution and
kinematics (Westin 1985). The presence of a positive K-term was recognized as the main kinematical
characteristic of the Gould Belt. This system has an inclination some 20◦ with respect to the Galactic
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Fig. 2 Gould-belt stars projected on the XZ plane.

equator. Kinematical analyses of Gould-belt stars were recently performed by several authors (Torra et al.
2000; Comerón 1999), and are outside the scope of our present work. In order to avoid the disturbance from
the Gould-belt stars, we picked out and removed 363 individual stars found in the present sample. Figure 2
displays the orientation and extent of the Gould-belt system, projected on the plane perpendicular to the
Galactic plane. The X-axis is pointing to the Galactic center from the Sun and the Z-axis is positive in the
direction to the north Galactic pole.

To ensure our sample belongs to the young disk population of stars, we selected O-B5 stars of all
luminosity classes and B5-A0 stars of luminosity classes I-II in the following analysis, excluding the Gould-
belt stars mentioned above.

4 ANALYSIS PROCEDURES

We apply the 3-D model discussed in Section 2 to derive the 12 kinematical parameters for the O-B stars.
The equation of condition was given by Zhu (2000). These parameters are to be solved via the generalized
least-squares method, for the known positions, proper motions, radial velocities and heliocentric distances.
Prior to applying the least-squares to derive the unknowns, several points regarding the sampling domain of
stars should be carefully considered.

It is well known that the velocity field of the Galaxy is characterized by an overall rotation, and, for
a given group of stars, by their velocity dispersion and asymmetric drift velocity. Statistically, the velocity
dispersion is proportional to the reciprocal of the heliocentric distance,
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where, the proper motion is in units of mas yr−1, r is the heliocentric distance in kpc, κ=4.74047. The
radial velocity is given in km s−1, and α, β and γ are the semi-axes of the velocity ellipsoid. The longest
axis deviates from the center-anticenter direction by the vertex deviation � v. Values of the semi-axes of
the velocity ellipsoid and of the vertex deviation derived from the observations, were given by Binney &
Merrifield (1998). It is easy to understand from Equations (20)–(22) that the random motion of stars at the
solar vicinity dominates the systematic motion with respect to the LSR. To avoid such localized disturbances
as well as disturbances from various known streams in the solar neighborhood, we set the lower limit of the
heliocentric distance for the present sample at r = 0.2 kpc.
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The youngest B6-A0 supergiants, bright giants and O-B5 stars belong to the thin disk population of
stars of the Galaxy with a typical scale height of about 0.1–0.2kpc. A meaningful determination of the
velocity gradient along the direction perpendicular to the Galactic plane is impossible due to the small scale
height. So we put ∂VR/∂z = ∂Vθ/∂z = ∂Vz/∂z = 0. Inspecting the correlation coefficients among the 12
parameters, this point has been proved by a testing solution. Referring to Equations (11)–(14) and Equation
(17), we have additional constraints for the present sample of stars
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Then, we have only nine parameters in total to be determined, comprising the three parameters of the solar
motion (u0, v0, w0) and the six parameters of the Galactic interior motion (D−
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Measurement errors in the proper motion, parallax and radial velocity, introduce errors in the star’s
spatial velocity. In order to exclude stars with particularly large errors in the transverse and radial velocities
or particularly large random motions, we introduce a numerical filter, |ε|. Considering both the measurement
errors and the random velocities given by Binney & Merrifield (1998), we set |ε| = 50 km s −1. In our
analysis, the filter automatically excludes those stars whose residual spatial velocities are larger than |ε|.

Due to the complexities arising from the measurement errors and stellar velocity dispersions, it is dif-
ficult to establish a reasonable mathematical weighting model. In the present analysis, we use the simple
fitting errors from our model to calculate the weights. Initially, we adopt a constant weight. Having de-
termined the initial values of the kinematical parameters, we calculate the residuals of the three velocity
components. In an iterative fashion, this yields the weights for our analysis. The final solution gives esti-
mated values of the kinematical parameters as well as their standard errors.

5 SOLUTIONS

The kinematical parameters are to be solved on the basis of the discussions in Sections 2–4. In order to
inspect what difference the adopted distance scale makes, two experiments were made. In the first, we took
the distance scale from Skymap spectroscopic measurements and the solutions are given in Table 1. In the
second, we replaced the spectroscopic distance scale by that obtained from the Hipparcos trigonometric
parallax measurements, and the solutions are given in Table 2. The first row of the each solution gives the
total number of stars considered and the number of stars in each final solution after applying the numerical
filter |ε|. In each of the two tables, the solutions refer to different subsets of our sample. First, the radial
velocities complemented with Hipparcos proper motions for all O-B5 stars, B6-A0 supergiants and bright
giants (luminosity classes I and II) for distances r ≥ 0.2 kpc, and excluding the Gould-belt stars define the
subset S1. It is noticeable that the stars of S1 are distributed mainly within 3 kpc of the Sun, with only a few
out to ∼5 kpc.

Now, the first-order expansion of the velocity field given by our model may not be valid at a large he-
liocentric distance. Also, the error of the distance estimate may be increased at the large distance, especially
for the distance estimates from the Hipparcos trigonometric parallax. To avoid these disturbances, we set the
upper limit of the heliocentric distance at r = 3.0 kpc. The subset S1 restricted to the distance range 0.2 kpc
≤ r ≤ 3.0 kpc, defines our subset S2. Next, considering the short time base of observation by the Hipparcos
satellite (37 months), the proper motions for binaries might not be reliable. To avoid any disturbance from
such stars, we exclude all such data and obtain the subset S3 (heliocentric distances 0.2 kpc≤ r ≤ 3.0 kpc).

Our subset S4 consists of all O-B5 stars (and no later types) in the heliocentric distance range 0.2–
3.0 kpc, including the binaries. Finally, our subset S5 is S4 after excluding the binaries. All the solutions
derived from the different subsets of stars are collected in Tables 1 and 2.

Within each of the two tables (Table 1 or Table 2), all the solutions for the five different subsets are in
good mutual agreement for all the nine parameters. Recall that Solutions S1, S2 and S3 refer to a mixed
sample of O-B5 stars and B6-A0 supergiants and bright giants, while solution S4 and S5 are obtained
from the pure O-B5 stars. The kinematical solutions show that O-B5 stars, B6-A0 supergiants and bright
giants are characterized by the same kinematics. Comparing solutions S1, S2 and S4 with solutions S3 and
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Table 1 Kinematical solutions from proper motions and radial velocities of O-B stars based on the Skymap
spectroscopic distance scale.

S1 S2 S3 S4 S5
No. of stars 1611 (1499) 1522 (1450) 1254 (1192) 1406 (1345) 1150 (1099)
u0 (km s−1) 11.51±0.39 11.52±0.40 11.53±0.47 11.51±0.41 11.57±0.50
v0 (km s−1) 14.45±0.38 14.44±0.40 14.08±0.48 14.24±0.41 13.84±0.49
w0 (km s−1) 7.81±0.39 7.81±0.41 7.86±0.47 7.74±0.41 7.79±0.50
D−

32 (km s−1 kpc−1) 1.27±0.50 1.31±0.52 1.21±0.60 1.24±0.54 1.08±0.63
D−

13 (km s−1 kpc−1) 0.03±0.58 0.04±0.59 –0.13±0.68 0.07±0.62 –0.09±0.73
D−

21 (km s−1 kpc−1) –16.16±0.77 –16.19±0.78 –15.92±0.91 –16.21±0.82 –15.94±0.97
D+

12 (km s−1 kpc−1) 12.76±0.76 12.86±0.79 13.08±0.91 13.08±0.83 13.31±0.96
D+

11 (km s−1 kpc−1) –2.34±1.15 –2.51±1.18 –3.10±1.37 –2.78±1.25 –3.53±1.46
D+

22 (km s−1 kpc−1) –1.79±1.00 –1.87±1.04 –2.53±1.20 –2.14±1.08 –2.90±1.26

Table 2 Kinematical solutions from proper motions and radial velocities of O-B stars based on the
Hipparcos distance scale.

S1 S2 S3 S4 S5
No. of stars 1381 (1293) 1328 (1281) 1103 (1063) 1214 (1171) 1001 (964)
u0 (km s−1) 10.64±0.36 10.64±0.36 10.41±0.41 10.68±0.38 10.62±0.45
v0 (km s−1) 11.49±0.35 11.48±0.37 11.65±0.42 11.45±0.39 11.63±0.45
w0 (km s−1) 6.38±0.35 6.38±0.36 6.46±0.42 6.32±0.38 6.35±0.46
D−

32 (km s−1 kpc−1) 1.31±0.56 1.31±0.56 1.19±0.64 1.34±0.59 1.20±0.68
D−

13 (km s−1 kpc−1) –0.52±0.66 –0.53±0.66 –0.65±0.75 –0.45±0.71 –0.62±0.81
D−

21 (km s−1 kpc−1) –14.73±0.85 –14.74±0.87 –14.67±0.98 –14.81±0.92 –14.76±1.06
D+

12 (km s−1 kpc−1) 16.30±0.86 16.32±0.86 16.37±0.98 16.19±0.93 16.18±1.06
D+

11 (km s−1 kpc−1) –4.11±1.31 –4.11±1.32 –3.92±1.50 –3.82±1.42 –4.00±1.63
D+

22 (km s−1 kpc−1) –4.21±1.11 –4.26±1.12 –4.24±1.27 –4.14±1.18 –4.03±1.36

S5, where the first three are for stars including binary and multiple systems, and the last two are for stars
with all suspected non-single systems excluded, we find that the Hipparcos proper motions for binaries do
not disturb our kinematical solution drastically, as we suspected before (cf. Miyamoto & Zhu 1998), even
though the proper motions were derived from observations in a short-time span of less than 37 months.

Recall again that the solutions in Tables 1 and 2 are derived from stars on different distance scales,
namely the spectroscopic and the Hipparcos distance scales. Comparing the solutions in Tables 1 and 2,
we find the kinematical parameters strongly depended on the distance scale adopted. It is revealed that the
Hipparcos distance scale is about 10% lower than the spectroscopic distance scale. In our previous work
(Miyamoto & Zhu 1998), we have discussed the effect of the distance estimate in the proper motion anal-
ysis. In that case the distance estimate directly influences the determination of the solar motion, but only
indirectly influences the determination of the parameters D±

ij through the solar motion. In analyzing the
radial velocities, however, the case is just the opposite. Such a feature is easily inferred from the matrix
elements given by equations (17)–(21) by Zhu (2000), and has been confirmed by inspecting the correlation
coefficients among the parameters to be determined. For this complex effect, we have the following con-
clusions: (a) a lower distance scale results in decreasing the absolute values of the parameters of the solar
motion (u0, v0, w0), and increasing the absolute values of (D+

12, D
+
11, D

+
22); (b) due to the small scale height

of the young disk population of O-B stars, all the stars considered here are located close to the Galactic plane
at very low Galactic latitude b. Thus, the parameters D−

32(= D+
32) and D−

13(= −D+
13) are only weakly cor-

related with the distance scale; (c) similar to the asymmetric drift, the lower the solar motion component v 0

is, the faster the Galactic rotational speed will be, and the rotational velocity of the Galaxy is proportional
to (D+

12 − D−
21). Therefore, the lower distance scale gives a lower estimate of the solar motion component

v0, which indirectly leads to an increase of the value (D+
12 − D−

21).
Another serious problem is the low precision of the distance measurements. Inspecting the Hipparcos

trigonometric parallaxes, we find that a majority of stars in the present wide distance range domain have
relative errors σπ/π of Hipparcos parallaxes larger than 1. The Skymap spectroscopic distances were taken
from different sources, which makes it hard to evaluate their uncertainty. When we plot the two different
distance scales one against the other, a tremendous scatter is shown (Figure 1), and the scatter is more
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pronounced for the distant stars. Instead of the spectroscopic distance scale, Miyamoto et al. (1993) tried
to use a distance scale calibrated by photometric measurement of the O-B5 stars. They found the distance
scale estimated from the photometric calibration is smaller than that of Skymap by about 5%. Thus, their
distance scale is systematically closer to that of Hipparcos.

Note that the parameter D−
13 is practically zero for all the solutions. Thus, we will confine ourselves to

deal with the other eight parameters in the following discussion.

6 CONCLUDING DISCUSSION

Because the different subset of stars (when on the same distance scale) give such highly consistent solutions
of the kinematical parameters, we can just take any one of the five solutions for the following discussion.
We prefer to take the large size S2 of O-B5 stars, B6-A0 supergiants and bright giants in distance range
0.2 kpc ≤ r ≤ 3.0 kpc.

The total velocity of the Sun S0 relative to the LSR defined by the stars considered, with the apex
towards �0 and b0, derived on the basis of the Skymap distance scale, is

S0 = 20.1 ± 0.4 km s−1, �0 = 51.2◦ ± 1.2◦, b0 = +22.9◦ ± 1.1◦, (26)

while based on the Hipparcos distance scale, is

S0 = 16.9 ± 0.4 km s−1, �0 = 47.2◦ ± 1.3◦, b0 = +22.2◦ ± 1.2◦. (27)

Our previous determination of the solar motion gave

S0 = 19.1 ± 0.5 km s−1, �0 = 49.2◦ ± 1.6◦, b0 = +21.9◦ ± 1.3◦, (28)

which was obtained from a proper motion analysis of O-B5 stars based on the Skymap distance scale
(Miyamoto & Zhu 1998). The present determinations coincide with the previous one within the standard
errors, except the total solar motion based on the Hipparcos distance scale.

The parameters D+
12 and D−

21 are identical to the Oort constants A and B in the circular model. Then
we have
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)
R=R0

= 29.05± 1.11 km s−1 kpc−1, (29)
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= −3.34 ± 1.11 km s−1 kpc−1 (30)

for the Skymap distance scale; and
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(
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)
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= 31.05± 1.22 km s−1 kpc−1, (31)

A + B =
(
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)
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= 1.58 ± 1.22 km s−1 kpc−1 (32)

for the Hipparcos distance scale. Here (A + B) expresses the slope of the rotation curve at the Sun. It
indicates that the variation of the distance scale does not only change the rotational speed of the Galaxy, but
also changes its gradient at the Sun.

Carrying out a proper-motion analysis for Hipparcos O-B5 stars, we found a clear warping motion
that is a systematic rotation +3.8±1.1 km s−1 kpc−1 of stars about the axis pointing to the Galactic center
(Miyamoto & Zhu 1998). The present analysis gives

2D−
32 = −

(
1
R

∂Vz

∂θ

)
R=R0

= +2.6 ± 1.0 km s−1 kpc−1 (33)

on the Skymap distance scale, and

2D−
32 = −

(
1
R

∂Vz

∂θ

)
R=R0

= +2.6 ± 1.1 km s−1 kpc−1 (34)
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on the Hipparcos distance scale. The determination of the warping motion is fortunately independent of the
distance scale adopted, as we discussed before.

The K-term is derived from a combination of the parameters D +
11 and D+

22. On the Skymap distance
scale, we have

K =
1
2

(
D+

11 + D+
22

)
= −2.2 ± 0.8 km s−1 kpc−1; (35)

while on the Hipparcos distance scale, we have

K =
1
2

(
D+

11 + D+
22

)
= −4.2 ± 0.9 km s−1 kpc−1. (36)

A negative K-term means an overall contraction of stars in the solar vicinity. The existence of a mean
positive K-term associated with the earliest type Gould-belt stars in the solar neighborhood has long been
recognized. This trend in the motion of the earliest type stars has been taken as evidence for expansion of
the local system at the solar vicinity. Comerón et al. (1994) have examined the local kinematical structure
of the O-B stars, and found that stars with within 1.5 kpc of the sun exhibit a contraction, while stars within
0.4 kpc show an expansion that may be dominated by the moving groups. A recent work by Bobylev (2004)
confirmed that a negative K-term exists in the distant O-B stars. It should be noted that our present work
differs from both Comerón et al. and Bobylev, because we have already removed Gould-belt stars from our
sample.

In general, we conclude that the kinematical structure of O-B stars other than the Gould-belt stars,
exhibits an overall rotation around the Galactic gravitation center on the Galactic plane simultaneously with
a warping motion and a contraction. The adopted distance scale plays an important role in characterizing
the kinematical parameters at the present level of the measurement uncertainty.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant
10333050) and by Nanjing University Talent Development Foundation.

References

Backer D. C., Sramek R. A., 1999, ApJ, 524, 805
Barbier-Brossat M., Figon P., 2000, A&AS, 142, 217
Binney J., Merrifield M., 1998, Galactic Astronomy, Princeton: Princeton University Press, p.633
Bobylev V. V., 2004, Astronomy Letters, 30, 159
Caldwell J. A. R., Coulson I. M., 1987, AJ, 93, 1090
Chandrasekhar, S., 1942, Principles of Stellar Dynamics, Princeton: Princeton Univ. Press
Comerón F., 1999, A&A, 351, 506
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