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Abstract We present details of a work aiming at the overestimation of Lyapunov
exponents defined by the geodesic deviation equations in the previous work. The
geodesic deviation vector with post-stabilization is used to compute the fast Lyapunov
indicator, considered to be a very sensitive tool for discrimination between ordered or
weakly chaotic motions. We make a detailed study of the dynamics in the superposed
Weyl field between a black hole and shell of octopoles by using the fast Lyapunov
indicator with the Poincaré surface of section. In particular, we examine the effects
on the dynamics around the fixed points, of varying one of the three parameters
(specific energy E, specific angular momentum L and octopolar moment O), while
keeping the other two fixed, and identify the intervals of the varying parameter where
the motion is regular or chaotic.
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1 INTRODUCTION

Chaos is regarded as a typical nonlinear phenomenon with exponential sensitivity on small vari-
ations of the initial conditions. Chaotic dynamics in classical physics has developed for about 40
years. However, its broad concern in relativistic astrophysics began only with the last decade or so.

Up to now, the study of chaos in general relativity has followed two main directions. One deals
with the time evolution of a gravitational field itself, such as the dynamical evolution of mixmas-
ter universe (Contopoulos et al. 1999; Hobill et al. 1994; Szydlowski 1997; Imponente & Montani
2001). The other concerns the geodesic or non-geodesic motion of particles in a given gravitational
field. There are two types of typical physical models: spinning systems and static axisymmetric
massive core-shell systems. Spinning systems, as the case of non-geodesic motion, mainly involve
a spinning particle in Schwarzschild spacetime (Suzuki & Meada 1997), in Kerr spacetime (Hartl
2003) and spinning compact binaries (Hartl 2003; Levin 2000; Cornish 2001; Schnittman & Rasio
2001; Cornish & Levin 2002). It has been of particular interest to study the dynamics of spinning
compact binaries because compact binary systems are an excellent natural source for investigating
gravitational waves. Here it should be noted that gravitational wave detection can not succeed
when chaos appears. On the other hand, many references focus on the geodesic motion of particles
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in axisymmetric configurations called superposed Weyl spacetimes (Guéron & Letelier 2001, 2002;
Vieira & Letelier 1999), which are viewed as idealized simplification models for many interesting as-
trophysical objects involving active galactic nuclei, black holes or neutron stars with axisymmetric
surrounding sources such as accretion disks, massive halos, shells and rings. Certainly, the geodesic
motion of other systems such as a celestial body with magnetic charge and moment is also consid-
ered (Wang & Huang 2001). One main interest lies in the survey of some physical properties and
structures associated with fields, for example, conditions of the formation of static configuration,
the motion of free test particles in the additional matter, etc (Semerák et al. 1999, 2001; Semerák
& Žáček 2000; Karas 2004). Another motivation is to understand the dynamics of particles moving
around superposed Weyl fields (Vieira & Letelier 1999). For the superposed Weyl field between
a monopolar core and a pure halo dipole, there is a great contrast between Newtonian dynamics
and its relativistic counterpart. Vieira & Letelier (1997) pointed out that the former is integrable,
while the latter is chaotic in some cases. They explored further chaotic behaviors of orbits trapped
in the intermediate vacuum between a core and shell of dipoles, quadrupoles, and octopoles (Vieira
& Letelier 1999). In addition, the onset of chaos around the superposition of a black hole and a
thin/thick disk can be seen in references (Saa & Venegeroles 1999; Saa 2000).

We emphasize that it would be questionable to apply Newtonian dynamical methods or indi-
cators (such as Lyapunov exponents) for the identification of chaotic orbits from regular ones to
a relativistic gravitational system. This is because time and space coordinates play only a book-
keeping role for events and have no physical meaning in general. Consequently, these indicators
would not remain invariant under coordinate transformations in general relativity. There exists a
widely known problem caused by non-covariant classical definition of Lyapunov exponents in mix-
master universe (Imponente & Montani 2001; Szydlowski et al. 1997). All these facts state that it is
necessary to take a proper quantity rather than a coordinate one as an indicator for the detection
of chaos in general relativity. To avoid the time coordinate redefinition ambiguity of Lyapunov
exponents, Wu & Huang (2003) proposed a new definition (M1) of invariant Lyapunov exponents
suitable for exploring the dynamics of orbits in relativistic gravitational systems with the help of a
“1+3” splitting of spacetime and the projected norm. In fact, the definition is less rigorous in the
framework of general relativity, and becomes only a revised version of the classical approximate
two-particle method (Tancredi et al. 2001) for the computation of Lyapunov exponents. In view of
this fact, Wu et al. (2005) presented a more rigorous method (M2) by means of geodesic deviation
equations. In addition, another invariant two-particle method (M3) where the integration time
variable in the geodesic equations is proper time rather than coordinate time, and the projected
norm is not adopted. To check the validity of the two approximate methods M1 and M3, they com-
pared M1 and M3 with M2 by choosing a static axisymmetric spacetime involving a Schwarzschild
black hole plus a purely octopolar shell as a physical model. It is found that M2 might lead to
overestimation of the Lyapunov exponents for either quasi-regular or chaotic orbits. The problem
can be worked out through post-stabilization (Chin 1995) by variation of the 4-velocity constraint.
Meanwhile, it is also pointed out that M1 fails to compute Lyapunov exponents when the time
component of the 4-velocity of an observer (i.e. a reference trajectory) is always larger than 1 at
any proper time of the observer, and the difference in coordinate time and his proper time becomes
dramatic viewed on a long time. As a result, M3 was recommended for most cases.

In the present paper, the geodesic equations and their geodesic deviation equations for a Weyl
spacetime are derived in detail, and some details as to how to solve the geodesic deviation vector
numerically by post-stabilization are given. Another important motivation is to find a simple and
fast method to estimate the effects of different parameters on the dynamical features of the black-
hole + octopolar-shell system. In this sense, fast Lyapunov indicators (Froeschlé et al. 1997), as a
very sensitive tool to separate chaotic from regular orbits, are adopted. The paper is organized as
follows. Some details of the previous paper are given in Section 2. By virtue of the Poincaré surface
of section and the Lyapunov exponents, we explore the dynamics of this system numerically in
Section 3. In Section 4 we use fast Lyapunov indicators to gain further insight into the dynamics
of the particles in the spacetime for various dynamical parameters. Finally, a summary follows in
Section 5. Some complicated expressions are listed in an Appendix.
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2 SOME DETAILS OF THE PREVIOUS WORK

Suppose that a particle moves freely in a four-dimensional time-like spacetime with the metric
ds2 = gµνdx

µdxν , where Greek subscripts run from 0 to 3 and Latin indexes from 1 to 3, and
c = G = 1 units are used. Its equations of motion are the following geodesic equations:

ẍµ = −Γµ
αβẋ

αẋβ , (1)

and the corresponding geodesic deviation equations are

D2ξµ

Dτ2
= −Rµ

αλβξ
λUαUβ . (2)

Equation (2) can be rewritten in the form

ξ̈µ = −2Γµ
αβ ξ̇

βUα − Γµ
αβ,λξ

λUαUβ . (3)

In the above expressions, Γµ
αβ is a Christoffel symbol, and Rµ

αλβ denotes a Riemannian curvature
tensor, Uα, ξµ and ξ̇µ stand for the 4-velocity, the geodesic deviation vector and its derivative,
respectively.

Next, we will write down the concrete expressions of geodesic equations and their geodesic
deviation equations for a static axisymmetric spacetime, namely, a Weyl spacetime.

2.1 Geodesic Equations and Geodesic Deviation Equations for a Weyl Metric

Let us consider a black-hole-shell configuration, which comprises a central black hole surrounded
by an axisymmetric shell. The vacuum between the core and the shell can be described by the
Weyl spacetime (Vieira & Letelier 1999)

ds2 = −
(
1− 2

r

)
ePdt2 + eQ−P

[(
1− 2

r

)−1

dr2 + r2dθ2
]

+ e−P r2 sin2 θdφ2 , (4)

where (t, r, θ, φ) is a set of Schwarzchild coordinates, while P and Q are two functions depending
on r and θ only. P relates to the gravitational potential of the shell, and Q deals with the nonlinear
coupling interaction between the core and the shell besides a potential from the shell. P and Q are
expressed as sums of multipoles. Obviously Eq. (4) represents the Schwarzchild spacetime if there
exists no shell-type matter.

It is easy to find two integrals, namely, the specific energy constant E and specific angular
momentum constant L in the φ direction:

ṫ = Er(r − 2)−1e−P , (5)

φ̇ = LeP r−2 sin−2 θ . (6)

For the 4-velocity Uα, there is always the identity,

UαU
α = −

(
1− 2

r

)
eP ṫ2 + eQ−P

[(
1− 2

r

)−1

ṙ2 + r2θ̇2
]

+ e−P r2 sin2 θφ̇2 = −1 . (7)

Thus we have the three obvious integrals above.
If a fourth integral exists, then the integrability of the spacetime is ensured. Otherwise, chaos

becomes possible. In general, it is difficult to judge whether or not there is a fourth integral. For
more information with regard to the dynamical behavior of the spacetime, it is necessary to use the
geodesic equations, even the geodesic deviation equations. Because the evolution equations about
t and φ have been given by the first-order ordinary differential Eqs. (5) and (6) respectively, in the
light of Eq. (1) we consider only the evolution equations of r and θ in the forms
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r̈ = −(Γ1
00ṫ

2 + Γ1
11ṙ

2 + 2Γ1
12ṙθ̇ + Γ1

22θ̇
2 + Γ1

33φ̇
2) , (8)

θ̈ = −(Γ2
00ṫ

2 + Γ2
11ṙ

2 + 2Γ2
12ṙθ̇ + Γ2

22θ̇
2 + Γ2

33φ̇
2) . (9)

Noting Eq. (3), we can write the geodesic deviation equations

δṫ = −2(Γ0
01ṫδr + Γ0

02 ṫδθ) , (10)

δφ̇ = −2(Γ3
13φ̇δr + Γ3

23φ̇δθ) , (11)

δr̈ = −2(Γ1
00ṫδṫ+ Γ1

11ṙδṙ + Γ1
12ṙδθ̇ + Γ1

21θ̇δṙ + Γ1
22θ̇δθ̇ + Γ1

33φ̇δφ̇)

−(Γ1
00,1ṫ

2δr + Γ1
00,2ṫ

2δθ + Γ1
11,1ṙ

2δr + Γ1
11,2ṙ

2δθ + 2Γ1
12,1ṙθ̇δr

+2Γ1
12,2ṙθ̇δθ + Γ1

22,1θ̇
2δr + Γ1

22,2θ̇
2δθ + Γ1

33,1φ̇
2δr + Γ1

33,2φ̇
2δθ), (12)

δθ̈ = −2(Γ2
00ṫδṫ+ Γ2

11ṙδṙ + Γ2
12ṙδθ̇ + Γ2

21θ̇δṙ + Γ2
22θ̇δθ̇ + Γ2

33φ̇δφ̇)

−(Γ2
00,1ṫ

2δr + Γ2
00,2ṫ

2δθ + Γ2
11,1ṙ

2δr + Γ2
11,2ṙ

2δθ + 2Γ2
12,1ṙθ̇δr

+2Γ2
12,2ṙθ̇δθ + Γ2

22,1θ̇
2δr + Γ2

22,2θ̇
2δθ + Γ2

33,1φ̇
2δr + Γ2

33,2φ̇
2δθ). (13)

As an illustration, Eqs. (10) and (11) are derived from the variations of Eqs. (5) and (6) rather than
Eq. (3). The relevant non-vanishing Christoffel symbols associated with their partial derivatives are
displayed in Appendix A.

It is obvious that the geodesic Eqs. (5), (6), (8) and (9) as well as the geodesic deviation
equations (10)–(13) are not easy to solve exactly and that one has no choice but numerical integra-
tions. However, the usual integrators bring on some artificial dissipation in long-term integrations.
This may lead to a destruction of some constraints so great that the numerical solutions become
meaningless. As was stated in the previous work (Wu et al. 2005), the Runge-Kutta-Fehlberg (9)
8 (hereafter RKF(9)8) scheme displays such a bad numerical accuracy of the geodesic deviation
vector that spurious Lyapunov exponents occur, and it was recommended post-stabilization be
used with the integrator to preserve the constraints. The following subsection gives some details
of the implementation of post-stabilization.

2.2 To Solve the Geodesic Deviation Equations Numerically by Use of the
Post-stabilization

2.2.1 Some Constraints

In fact, the variables t, φ, ṫ, φ̇, δt, δφ, δṫ and δφ̇ do not explicitly appear in the four second-order
differential Equations (8), (9), (12) and (13) through rearrangement. Thus these four equations
should have been separated into eight first-order differential equations in the variables, r, θ, ṙ, θ̇,
δr, δθ, δṙ and δθ̇. However, only six of these variables are independent owing to the existence of
the 4-velocity constraint (7) and its variational constraint δ(UαU

α) = 0. It is a practical problem
as to how to compute constrained systems numerically. In principle, the number of numerically
integrated first-order differential equations should be the same as the dimension of the phase space.
It means that two variables, e.g., θ̇ and δθ̇, should be removed. This idea is called reduction of the
order of differential equations of motion by use of constraints (Wu & Huang 2005).

As far as the constraint (7) is concerned, we have

θ̇ = ±
√
r−2eP−Q

[
− 1 +

(
1− 2

r

)
eP ṫ2 − eQ−P

(
1− 2

r

)−1

ṙ2 − e−P r2 sin2 θφ̇2
]
. (14)

It is difficult to choose the signs in the course of numerical integration, therefore, we do not succeed
in removing the θ̇ variable. In other words, the reduction of the order of equations becomes invalid
in this case. In spite of this, θ̇ should be given by Eq. (14) at the initial time, and it is admissible
to select arbitrarily one of the two signs.
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On the other hand, the variational constraint of 4-velocity is

δU = −eP ṫ2
[ 2
r2
δr +

(
1− 2

r

)(∂P
∂r

δr +
∂P

∂θ
δθ

)
+

(
1− 2

r

)2
ṫ

( ∂ṫ
∂r
δr +

∂ṫ

∂θ
δθ

)]
+ eQ−P

·
{[(∂Q

∂r
− ∂P

∂r

)
δr +

(∂Q
∂θ
− ∂P

∂θ

)
δθ

]
·
[(

1− 2
r

)−1

ṙ2 + r2θ̇2
]
− 2
r2

(
1− 2

r

)−2

ṙ2δr

+2
(
1− 2

r

)−1

ṙδṙ + 2rθ̇2δr + 2r2θ̇δθ̇
]}

+ e−P r2 sin2 θφ̇2
[
− ∂P

∂r
δr − ∂P

∂θ
δθ +

2
r
δr

+2
cos θ
sin θ

δθ +
2
φ̇

(∂φ̇
∂r
δr +

∂φ̇

∂θ
δθ

)]
= 0, (15)

where δU is a linear function of δr, δθ, δṙ and δθ̇. We easily solve for δθ̇ and obtain

δθ̇ = e2P−Q ṫ2(2r2θ̇)−1
[ 2
r2
δr +

(
1− 2

r

)(∂P
∂r

δr +
∂P

∂θ
δθ

)
+

(
1− 2

r

)2
ṫ

( ∂ṫ
∂r
δr +

∂ṫ

∂θ
δθ

)]

−(2r2θ̇)−1 ·
{[(∂Q

∂r
− ∂P

∂r

)
δr +

(∂Q
∂θ
− ∂P

∂θ

)
δθ] ·

[(
1− 2

r

)−1

ṙ2 + r2θ̇2
]

− 2
r2

(
1− 2

r

)−2

ṙ2δr + 2
(
1− 2

r

)−1

ṙδṙ + 2rθ̇2δr
]}
− e−Q sin2 θφ̇2(2θ̇)−1

·
[
− ∂P

∂r
δr − ∂P

∂θ
δθ +

2
r
δr + 2

cos θ
sin θ

δθ +
2
φ̇

(∂φ̇
∂r
δr +

∂φ̇

∂θ
δθ

)]
. (16)

It seems advantageous to implement the reduction of the order of equations if we adopt Eq. (12)
with Eq. (16) instead of Eq. (13) to work out the variational solution (δr, δθ, δṙ, and δθ̇). However,
θ̇ may be equal to zero at some time when the integration scheme would fail.

As was mentioned in the previous work, Baumgarte’s stabilization method (1973) or Chin’s
post-stabilization method (1995) is a simpler way for the conservation of one or more constraints
during the whole numerical integration.

2.2.2 Post-stabilization

A constraint is also called a control term or a stabilizing term. Baumgarte’s method (1973) is
called stabilization of differential equations where the differential equations to be integrated nu-
merically are modified by adding the control term. Avdyushev (2003) discussed it further. To avoid
encountering difficulty in choosing the best stabilizing parameters, we are particularly interested
in Chin’s post-stabilization method (1995) among the different stabilization methods. The kernel
of post-stabilization is to add a control term to the numerical solution at the end of each time step;
the control term is obtained from a generic numerical method applied to the original equations of
motion. In detail, the process is as follows: (i) suppose that a first-order system ẋ = f(x) has the
approach solution xn at time tn, and then its numerical solution xn+1 at time tn+1 is worked out
by using a certain given integration scheme; (ii) the numerical solution xn+1 should be demanded
to be corrected to the constraint supersurface by

x̂n+1 ← xn+1 − Φ
∂Φ
∂x

/
(∂Φ
∂x
◦ ∂Φ
∂x

)∣∣∣
x=xn+1

, (17)

where ‘◦’ is the Euclidian inner product. By repeating the above operation, an approximate nu-
merical solution sequence {x̂n} is obtained. For more details, see the references (Chin 1995; Zhang
1996; Ascher 1997; Wu et al. 2006).

In Eq. (17) Φ stands for the control term. It is better to choose the energy integral as the
stabilizing term for an autonomous Hamiltonian system H(q,p), namely Φ = ∆H = H − H0,
where H0 stands for the initial energy. Then Eq. (17) appears in the following concrete forms

q̂n+1 = qn+1 −
∆H ·Hq

Hq ◦Hq +Hp ◦Hp
(qn+1,pn+1),
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p̂n+1 = pn+1 −
∆H ·Hp

Hq ◦Hq +Hp ◦Hp
(qn+1,pn+1),

where Hq = ∂H
∂q and Hp = ∂H

∂p .

2.2.3 Post-stabilization by Constraints for a Geodesic Flow

For the geodesic motion (4), we should choose the 4-velocity constraint (7) as the control term
without any hesitation. First, we adopt a traditional integrator to integrate Eqs. (8) and (9) so that
we can obtain the numerical solution (r, θ, ṙ, θ̇). Then, by use of the constraint ∆U = UαU

α + 1,
the numerical solution is corrected with the forms

r̂ = r − ∆U
UU

∂∆U
∂r

, θ̂ = θ − ∆U
UU

∂∆U
∂θ

,

ˆ̇r = ṙ − ∆U
UU

∂∆U
∂ṙ

,
ˆ̇
θ = θ̇ − ∆U

UU

∂∆U
∂θ̇

, (18)

UU =
(∂∆U
∂r

)2

+
(∂∆U
∂θ

)2

+
(∂∆U

∂ṙ

)2

+
(∂∆U
∂θ̇

)2

.

Here the partial derivatives are

∂∆U
∂r

= −eP ṫ2
[ 2
r2

+
(
1− 2

r

)(∂P
∂r

+
2
ṫ

∂ṫ

∂r

)]
+ eQ−P

{(∂Q
∂r
− ∂P

∂r

)[(
1− 2

r

)−1

ṙ2 + r2θ̇2
]

− 2
r2

(
1− 2

r

)−2

ṙ2 + 2rθ̇2
}

+ e−P r2 sin2 θφ̇2 ·
(
− ∂P

∂r
+

2
r

+
2
φ̇

∂φ̇

∂r

)
,

∂∆U
∂θ

= −eP ṫ2
(
1− 2

r

)(∂P
∂θ

+
2
ṫ

∂ṫ

∂θ

)
+ eQ−P

(∂Q
∂θ
− ∂P

∂θ

)[(
1− 2

r

)−1

ṙ2 + r2θ̇2
]

+e−P r2 sin2 θφ̇2
(
− ∂P

∂θ
+ 2

cos θ
sin θ

+
2
φ̇

∂φ̇

∂θ

)
,

∂∆U
∂ṙ

= 2ṙeQ−P
(
1− 2

r

)−1

,
∂∆U
∂θ̇

= 2r2θ̇eQ−P .

As an illustration, ∂ṫ/∂r = −2Γ0
01ṫ, ∂ṫ/∂θ = −2Γ0

02ṫ, ∂φ̇/∂r = −2Γ3
13φ̇ and ∂φ̇/∂θ = −2Γ3

23φ̇. The
corrected solution is taken as new initial conditions and the above procedure is repeated.

In the same way, we treat the variational solution by

δr̂ = δr − δU

UU

∂∆U
∂r

, δθ̂ = δθ − δU

UU

∂∆U
∂θ

,

δˆ̇r = δṙ − δU

UU

∂∆U
∂ṙ

, δˆ̇θ = δθ̇ − δU

UU

∂∆U
∂θ̇

. (19)

Then we take the corrected variational solution as the initial conditions for the next integration,
and so on.

As an important application, the corrected variational solution is used to compute the
Lyapunov exponents.

2.3 Lyapunov Exponents

In classical physics, Lyapunov exponents are a key indicator of the mean exponential rate of
divergence of two nearby trajectories. One rigorous method for computing the Lyapunov exponents
is to use the tangent vector from the solution of the variational equations of the system. Another
less rigorous method is the so-called two-particle method (Tancredi et al. 2001), where we use the
deviation vector between two nearby trajectories (one the reference, one, the shadow) in place
of the tangent vector. For a compact system, the system is said to be regular if the maximum



On the Calculation of Lyapunov Indicators with Post-stabilization in a Weyl Field 131

Lyapunov exponent equals zero, and chaotic if a Lyapunov exponent is positive. Although Lyapunov
exponents are defined in the phase space, it is preferable to compute the Lyapunov exponents in
the configuration space; the Lyapunov exponents in the two spaces are equivalent in detecting the
long-term dynamical behavior of orbits (Wu & Huang 2003). We shall be computing the Lyapunov
exponents in the configuration space for preference.

As is well-known, the definition of Lyapunov exponents in Newtonian mechanics is not invariant
under coordinate transformations in general relativity. In this sense, it is vital to refine the classical
definition according to the requirement of coordinate gauge invariance. Three invariant methods
of computing the Lyapunov exponents were stated in the previous work. Here we give one of three
methods, i.e. the rigorous method (called “M2” in the Introduction) by the geodesic deviation
vector. In fact, it is easy to obtain the relativistic method from the classical variational method
when the geodesic deviation vector ξ, the Riemannian norm and the proper time τ are used in
place of the tangent vector, the Euclidian norm and the coordinate time t, respectively, for the
maximum invariant Lyapunov exponent can then be written as

Λ = lim
τ→∞

1
τ

log
‖ξ(τ)‖
‖ξ(0)‖ , (20)

where the Riemannian norm ‖ξ(τ)‖ =
√|ξ·ξ| =

√|gµνξµξν |. For a given geodesic flow, the
Riemannian inner product ξ·ξ is positive definite due to the ξ being space-like. Of course, the
method is too cumbersome to be given in many cases because of the complicated derivation of the
geodesic deviation equations. However, it is meaningful to use the method as a reference standard
to check the validity of other approximate methods.

To study the dynamics of orbits in a black-hole + octopolar-shell field further, we apply the
Lyapunov exponent given by Eq. (20) with Poincaré surface of section to the system. We are
concerned above all with the difference in the computation of Lyapunov exponents with and without
post-stabilization.

3 NUMERICAL EXPLORATIONS OF A SUPERPOSED FIELD BETWEEN A
BLACK HOLE AND AN OCTOPOLAR SHELL

Let us re-examine the full relativistic core-shell configuration involving a Schwarzschild black hole
plus a pure octopole with two metric functions (Vieira & Letelier 1999)

P (u, v) =
1
5
Ouv(5u2 − 3)(5v2 − 3),

Q(u, v) = −2
5
Ov[5(3u2 − 1)(1− v2)− 4] +

3
100
O2[−25u6(1− v2)

·(5v2 + 2v − 1)(5v2 − 2v − 1) + 15u4(1 − v2)(65v4 − 40v2 + 3)
−3u2(1 − v2)(25v2 − 3)(5v2 − 3)− v2(25v4 − 45v2 + 27)],

where u = r − 1, v = cos θ, and O is an octopolar parameter.
Unlike the previous work, here we adopt distinct dynamical parameters and starting conditions.

Let the angular momentum L be equal to 3.8, and the other dynamical parameters be E = 0.9675
and O = 7.25 × 10−7 instead of E = 0.9679 and O = 7.012 × 10−7. The initial values of three
variables, r, θ and ṙ, can be given arbitrarily in their respective admissive intervals, but θ̇ must obey
Eq. (14) at the initial time. As a check, some of orbits satisfying the geodesic Eqs. (8) and (9) were
computed independently by each of us, using different integration schemes (RKF(9)8 and the 12th
order Adams-Cowell integrator). The Poincaré surface of section at the plane θ = π/2, θ̇ < 0 shown
in the left of Figure 1 was obtained using RKF(9)8. The global dynamical structure of the system
(4) can be clearly seen from the surface of section. Orbits in the (r, ṙ) plane are classified as either
regular orbits or chaotic orbits. There is a larger region consisting of many tori and islands, which
correspond to regular orbits. Each torus can be obtained from a point in the Poincaré map. For
example, mapping the starting point F (10,−0.05) in the (r, ṙ) plane, we acquire a set of points Fi

that lie precisely on a single torus. Here no points Fi will come back exactly to the starting point F ,
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Fig. 1 Left: Poincaré surface of section at the plane θ = π/2, θ̇ < 0 for the full relativistic core-
shell configuration with parameters E = 0.9675, L = 3.8 and O = 7.25×10−7 . Right: Maximum
Lyapunov exponent as a function of integration time for the regular orbit with the starting point
F (10,−0.05) in the (r, ṙ) plane (Curves A and B) and for the chaotic orbit with the initial point
G(6.5, 0) (Curves C and D). Curves (A) and (C) are integrated simply with RKF(9)8; Curves
(B) and (D) resulted from integration with post stabilization by the variational constraint of
the 4-velocity. Common logarithmic scale is used for both axes.

and the infinite set of the points Fi is dense everywhere on the torus. It means that the trajectory
in the phase space is not closed. In the case, the trajectory is typically quasi-periodic. For the
trajectory made up of the three little loops or islands surrounding three points α(7.415, 0.0315),
β(17.042,−0.0857) and γ(11.071, 0.1159), respectively, an important point to emphasize is the
manner in which the three little loops appear on the plot as the same trajectory. Rather than
tracing out one loop at a time, successive points occur at each of the three loops locations in turn.
Hénon & Heiles (1964) called this feature a chain of islands. There are other such chains in the
diagram, but some of them can be invisible if the islands are too small. The existence of tori or
chains means the presence of other isolating integrals for the system. In the middle of the tori
there are two invariant points H(8.341, 0.0889) and K(13.846,−0.0301) of the Poincaré map. They
correspond to independent stable and closed periodic orbits. These periodic orbits may be elliptical
orbits in the three-dimensional configuration space, but they can not be circular orbits because
the stability criterion of a circular orbit is the effective potential is an extremum at the point H
or K. Similarly, three fixed points, α, β and γ, at the centers of the chain of three islands, are
said to be periodic points of the Poincaré map in that the system returns to the same point every
third time the orbit crosses the section. On the other hand, mapping the starting point G(6.5, 0),
we have a number of isolated points, which are randomly distributed in a smaller region called a
chaotic region.

Also we use the Lyapunov exponent by Eq. (20) to investigate the orbital dynamics of particles
in the spacetime quantitatively. To obtain the geodesic deviation vector ξ, we have to integrate
Eqs. (5), (6), and (8)–(13) together numerically. Furthermore, it is necessary to apply a periodic
renormalization to avoid overflow due to fast growth of ξ. Although the Lyapunov exponents are
defined in the configuration space, the renormalization should be limited to the phase space, that
is, the velocity deviation vector ξ̇(t) should be multiplied by the same factor 1/‖ξ(t)‖ as when
the deviation vector ξ(t) is pulled back from its unit vector. In addition, we take the proper time
τ as the integration variable, and assume at t = 0, the initial values θ = π/2, φ = 0, δt = 0,
δr = 1/

√
g11, δθ = 0, δφ = 0 and δṙ = 0. The initial values of θ̇ and δθ̇ are given by Eqs. (14) and

(16), and the initial values of r and ṙ are provided in the different cases.
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Curve (A) in the right of Figure 1 displays the maximum Lyapunov exponent for a regular
orbit with the initial point F . As the previous work mentioned, we can see again that there is a
fully false estimation of a positive value. A tentative interpretation of this overestimation stems
from a breakdown of the variational constraint (15) due to insufficient accuracy in the course of
the numerical integration. It was reported that this problem could be successfully treated with
post-stabilization. Accordingly, we took Eq. (19) and recalculated the Lyapunov exponent for the
same orbit. As is shown by Curve (B) in the right of Figure 1, the Lyapunov exponent now tends to
zero. Here the superiority of the post-stabilization is dramatically visible. In contrast, the problem
of spurious Lyapunov exponent remains if we use Eq. (18) in place of Eq. (19). The reason is that
RKF(9)8 has maintained the 4-velocity constraint (7) with a rather higher accuracy so that the
numerical solution of the geodesic equations is not necessarily corrected by the post-stabilization.
Otherwise, Eqs. (18) and (19) should be used together if Eq. (20) is used to calculate the Lyapunov
exponents.

Repeating the above procedure, we followed a chaotic orbit with the starting point G. The
case is similar to the above. Specifically, without post-stabilization, a spurious large value of the
Lyapunov exponent appears (see curves (C) and (D) in the right of Fig. 1). This shows once again
the superiority of post-stabilization.

The above facts have amply demonstrated that post-stabilization brings about a better nu-
merical accuracy. The treatment is not more expensive and is simple to use: it is an interesting
technique to compute the Lyapunov exponents that tell us information on the dynamical behavior
of the orbits. Now we wonder what the dynamical properties at the fixed points α (or β and γ),
H and K of the Poincaré map are when we vary the dynamical parameters. However, it is very
expensive to obtain a stable limit value of the Lyapunov exponent. So, it is an advantage to use
the fast Lyapunov indicators (Froeschlé et al. 1997).

4 ASSESSMENT OF EFFECTS OF DISTINCT PARAMETERS ON
DYNAMICAL FEATURES USING FAST LYAPUNOV INDICATORS

4.1 Fast Lyapunov Indicators

It is well known that the time necessary to reach a given value, either of the length of any tangential
vector or of the angle between tangential vectors is taken as an indicator of stochasticity for a
Newtonian dynamical system. Following this general idea Froeschlé et al. (1997) defined three
different fast Lyapunov indicators as follows:

ψ1(t) = 1/|v1(t)|n , (21)

ψ2(t) = 1/(
n∏

j=1

|vj(t)|) , (22)

ψ3(t) = 1/(supj|vj(t)|n) . (23)

Here V n(0) = (v1(0),v2(0), · · · ,vn(0)) is a set of n independent vectors in an n-dimensional phase
space with the same initial condition Xn(0) = (x1(0), x2(0), · · · , xn(0)), the symbol “| |” denotes
the Euclidian norm, and vj(t) represents the j-th tangential vector at time t. It is particularly
emphasised that no renormalization is made at all in the whole course of integration of the varia-
tional equations. Given any threshold, any one of the three indicators will reach the value fast for
a chaotic orbit, and slowly for a regular orbit. Conversely, in the same time span, any one of these
indicators will tend to show different values for an ordered and a chaotic orbit with completely
different time rates. More specifically, each of the three indicators will decrease exponentially with
time for a chaotic orbit, while only polynomially for an ordered orbit. This allows one to distinguish
between the two cases. Because the computation of two indicators ψ2(t) and ψ3(t) requires solving
of the variational equations for n times for a set of n initial tangential vectors, it would no longer
be cheap. Froeschlé & Lega (2000) therefore gave a fourth indicator of the form

ψ4(t) = log |v1(t)| . (24)
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Fig. 2 Decay of the FLI with proper time τ . Curve F is for the regular orbit with the starting
point F ; Curve G, the chaotic orbit with the initial point G. Curves marked with the asterisk
are cases where post-stabilization by the constraint (15) was not applied.

This expression describes the evolution of the separation between two nearby trajectories with
time. It is clear that the indicator ψ4(t) divided by a sufficiently long time t is the maximum
Lyapunov exponent for the case of an initial unit vector. On the other hand, ψ4(t) is regarded as
the largest Lyapunov exponent in a relatively short time. This shows their correlation. Compared
with the Lyapunov exponent, ψ4(t) is a faster and more sensitive tool for discriminating between
ordered and weakly chaotic motion.

Now let us apply a fast Lyapunov indicator to the relativistic gravitational system (4). As in
the case of Lyapunov exponent, it is necessary to avoid the lack of covariance. Accordingly, we
have to modify the fast Lyapunov indicator (FLI) with the following expression,

FLI(τ) = − lg ‖ξ(τ)‖ , (25)

in the light of Eqs. (21) and (24). Here ξ satisfies the geodesic deviation Eqs. (10)–(13). To test
the efficiency of the FLI, in Figure 2 we plot some curves showing the decrease of FLI with proper
time τ for the same ordered and chaotic orbits as in the right of Figure 1. As is expected, there
are two features : (i) the overgrowth of the geodesic deviation vector is much greater without
post-stabilization of the constraint (15) than with (note the different vertical scales of the two
panels) for both the regular orbit and the chaotic orbit; (ii) the geodesic deviation vector for the
chaotic orbit G increases much faster than that of the ordered orbit F when τ reaches 105. In this
time, the FLI of orbit F drops down to about −3 (i.e. ‖ξ‖ ≈ 1000), while the FLI of G decays
exponentially and reaches −11, that is, eight orders of magnitude smaller. In Figure 1, both curves
F and G evolve in a similar way up to proper time τ 3×104 and so do both curves (B) and (D). In
Figure 2, after that point the FLI of orbit G decreases sharply and becomes −8 after proper time
about 7×104, while the FLI of orbit F continues to follow the same power law of decrease. So, it is
certain that orbit G is chaotic after integration time 7× 104. However, the Lyapunov exponent of
orbit G did not tend to the stable limit until integration time reaches 106 (see curve (D) in Fig. 1).
In brief, it is cheaper to detect a significant feature using the FLI given by Eq. (25).

In the following, we use the FLI to explore the dynamics of the fixed points α (or β and γ),
H and K of the Poincaré map (Figure 1). In particular, we are interested to know what effects on
the dynamics are produced when we change some of the dynamical parameters.
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Table 1 Classification of orbits for starting point α with O = 7.25×10−7 , L = 3.8 and different
values of E

Interval of E [0, 0.96] [0.961, 0.9671] 0.9672 [0.9673, 0.9677] 0.9678 [0.9679, ∞)

type of orbit no orbit single torus 2 loops 3 islands chaos unstable

4.2 Effects of Distinct Parameters on Dynamical Features

As was stated in the above, the fixed points α (or β and γ), H and K each correspond to some
closed periodic trajectories with resonant motion. Moreover, this implies the existence of more than
three isolating integrals including Eqs. (5)–(7). Here we provide a rough illustration. In principle,
the system (4) is equivalent to a superhamiltonianH(r, θ, pr, pθ) (Misner et al. 1970). Although the
system is not globally integrable, for some special orbit one can find a canonical transformation from
(r, θ, pr, pθ) to the action-angle variables (J1, J2, θ1, θ2) such that J̇i = 0 and θ̇i = ωi (i = 1, 2).
If the fundamental frequencies ωi are incommensurate, the trajectory is quasi-periodic and not
closed, and will densely cover the entire (θ1, θ2)-plane after an infinite time. However if the two
frequencies are commensurate, then the motion is resonant and the orbit is closed and periodic 1.
As far as the chain of q islands is concerned, there is a mean motion resonance of the form (p+q) : p
with an integer p (Murray & Dermott 1999). Of course, the tori or chains close to these fixed points
are viewed as forming the resonance regions. In spite of these facts it is very difficult to know p and
resonance regions since it is not easy to express the system (4) in action-angle variables. Similarly,
although we know that the resonance regions and locations of fixed points will change when we
vary the dynamical parameters E, L and O, we have some difficulties in finding them. So we want
to understand what happens to the dynamical features at these invariant points of Figure 1.

Let E (=0.9675) and L (=3.8) be fixed but let O vary. The geodesic deviation equations with
post-stabilization and the FLI are adopted, and numerical integration for each orbit does not stop
till integration (proper) time reaches 105. Figure 3 shows the variation of the FLI with O for various
orbits with the starting point α. It is clearly shown that all the FLI is greater than −5 for arbitrary
O not exceeding 6.89 × 10−7. This means the existence of many quasi-periodic orbits. Seen from
the surface of section each of these quasi-periodic orbits is a single torus. When the octopolar
parameter O increases from 6.89 × 10−7 to 6.97 × 10−7, the FLI undergoes a sharp drop down
to -17 or so, singnalling the onset of chaos. However, when O is inside the interval [6.98 × 10−7,
7.47 × 10−7], a chain of three loops appears. When O is close to the critical value 7.48 × 10−7,
then a set of chains involving multiple islands is produced. After this point, a new chaotic region
appears. When O > 7.64× 10−7, the trajectory becomes unbounded. In short, the appearance of
ordered or chaotic motion is very apparent from the variation of the FLI with O. In other words,
for a given E and L, we can successfully identify intervals of the octopolar parameter where the
orbits are all regular or all chaotic. Here, an important point is that a chain with multiple loops
is a necessary stage in the dynamical transition from ordered to chaotic. Of course, we also used
the Poincaré surface of section as a check of the torus and island. We now fix O = 7.25 × 10−7

and L = 3.8, and examine how the FLI varies with E. Table 1 lists some of the results obtained.
Different types of orbits result from different values of E. An interesting point is that chaos occurs
only when E is close to the value 0.9678. Of course, in a similar way we can study the case in
which E and O are fixed and L varies.

The above operation was repeated for the starting pointH in Figure 1, specifically, we examined
the case when O changes but E = 0.9675 and L = 3.8 are fixed. As is shown in Figure 4 (top left
panel), the FLI is larger than −6 in general, corresponding without doubt to regular orbits. As
exceptional cases, chaos may occur near three points, labelled A, B and C, with O at 4.81× 10−7,
6.43×10−7 and 8.22×10−7, respectively. More information is displayed by the orbits corresponding

1 For a dynamical system with n degrees of freedom, the motion is resonant if there are more than n
independent isolating integrals. The resonant orbit is not closed generally, but it is so when the system
holds 2n− 1 independent isolating integrals. For more information, see the references (Binney & Tremaine
1987; Carpintero & Aguilar 1998; Merritt 2001) where the orbits are shaped by their isolating integrals.
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Fig. 3 Variation of the dynamical behavior with the octopolar parameter O for fixed parameters
E (=0.9675), L (=3.8) and the starting point α.

Fig. 4 Top left panel shows the variation of the FLI with the octopolar parameter O for the
initial point H , with fixed E (=0.9675) and L (=3.8). The other three panels display the three
orbits, A, B and C, on the Poincaré surface of section .
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to the three cases in the Poincaré surface of section (the other three panels of Figure 4). Orbits
A and B seem to give us the impression of regular motion. However, by convention, such “figure-
of-8” orbits should mean chaotic motion in general. In fact, this is another characteristic of the
stickiness phenomenon— the impression of ordered motion for long periods of time. Detection of
this type of chaotic motion is difficult using the generic methods, but is easy with the FLI, showing
again that the FLI is a very sensitive tool. As to orbit C, although the FLI drops down to about
−7 it is still a regular orbit with two islands. Now, 8.22 × 10−7 is a critical value for O because
once O ≥ 8.23× 10−7, the particles will run to infinity. Indeed there exist more and more islands
belonging to the same trajectory if O goes across the critical value and increases slightly. In this
way, the onset of chaos is possible when O arrives at a certain value no greater than 8.23× 10−7.
Perhaps this is a reason why the FLI falls obviously at the point C. Another possible interpretation
is that the geodesic deviation vector grows rapidly when the particles are staying at the edge of
some unstable region. We also examined the cases with the starting point K in Figure 1 as the
octopolar parameter increases from zero. We found that the orbits remained bounded and ordered
up to O = 1.6492× 10−6.

In sum, of the three fixed points α (or β and γ), H and K in Figure 1, point K is the most
stable, while point α is the most unstable. It is extremely easy for chaos to arise in this kind of
fixed point out of some perturbing factors.

5 SUMMARY

First, we presented the geodesic equations and the geodesic deviation equations for the Weyl
spacetime in detail. We also gave some details on the implementation of post-stabilization in
general relativity. The geodesic deviation vector with the post-stabilization of the constraint (15)
can be used to calculate the Lyapunov exponents and the fast Lyapunov indicators with coordinate
gauge invariance. Then, together with the Poincaré surface of section we made a more detailed
study of the dynamics in a static axisymmetric spacetime comprising a Schwarzschild black hole
plus a purely octopolar shell. Some of the results obtained in the present paper are summarized as
follows.

(i) It is again found that the geodesic deviation vector without post-stabilization by the con-
straint (15) leads to overestimation of the Lyapunov exponents and fast Lyapunov indicators.
Post-stabilization plays an important role in working out the problem.

(ii) An important point is that, by means of the fast Lyapunov indicator, we explored suc-
cessfully the effects of different parameters on the dynamics at the fixed points α (or β and γ),
H and K of the Poincaré map in Figure 1. Indeed, the fast Lyapunov indicator is a very fast and
highly sensitive tool to discriminate between ordered and weak chaotic motions (the “stickiness”
phenomenon). Using the fast Lyapunov indicator and the Poincaré surface of section, we can ex-
plore the different types of orbits as one of the three dynamical parameters E, L and O varies
while keeping the other two fixed. In other words, we can easily identify intervals of the varying
parameter that correspond to ordered or chaotic orbits. By specific examples, a chain with multiple
islands is seen to be a necessary stage in the dynamical transition from ordered motion to chaotic
motion.

We plan to use the fast Lyapunov indicator to describe the global phase space structure of the
system and discuss the related resonance phenomena in detail in a future work.
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APPENDIX

Christoffel Symbols and Their Corresponding Partial Derivatives

For the Weyl spacetime (4), all the non-vanishing Christoffel symbols are listed as follows:

Γ0
01 = Γ0

10 = −1
2

(1
r
− 1
r − 2

− ∂P

∂r

)
, Γ0

02 = Γ0
20 =

1
2
∂P

∂θ
,

Γ1
00 =

1
2

(
1− 2

r

)
e2P−Q

[ 2
r2

+
(
1− 2

r

)∂P
∂r

]
; Γ1

11 = −
[ 1
r(r − 2)

+
1
2

(∂P
∂r
− ∂Q

∂r

)]
,

Γ1
12 = Γ1

21 =
1
2

(∂Q
∂θ
− ∂P

∂θ

)
, Γ1

22 = −(r − 2)
[
1 +

r

2

(∂Q
∂r
− ∂P

∂r

)]
,

Γ1
33 = −1

2
(r − 2)e−Q sin2 θ ·

(
2− r∂P

∂r

)
; Γ2

00 =
1

2r2
(
1− 2

r

)
e2P−Q ∂P

∂θ
,

Γ2
11 = − 1

2r(r − 2)

(∂Q
∂θ
− ∂P

∂θ

)
, Γ2

12 = Γ2
12 =

1
2

(2
r

+
∂Q

∂r
− ∂P

∂r

)
,

Γ2
22 =

1
2

(∂Q
∂θ
− ∂P

∂θ

)
, Γ2

33 = −1
2
e−Q sin θ

(
− ∂P

∂θ
sin θ + 2 cos θ

)
;

Γ3
13 = Γ3

31 = −1
2

(∂P
∂r
− 2
r

)
, Γ3

23 = Γ3
32 = −1

2

(∂P
∂θ
− 2

cos θ
sin θ

)
.

On the other hand, their partial derivatives are of the forms
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