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Abstract We explore degeneracies in strong lensing model so to make time de-
lay data consistent with the WMAP (Wilkinson Microwave Anisotropy Probe) cos-
mology. Previous models using a singular isothermal lens often yield a time de-
lay between the observed multiple images too small than the observed value if we
“hardwire” the now widely quoted post-WMAP “high” value of the Hubble con-
stant (H0 ∼ 71 ± 4 km s−1 Mpc−1). Alternatively, the lens density profile (star plus
dark matter) is required to be locally steeper than r−2 (isothermal) profile near the
Einstein radius (of the order 3 kpc) to fit the time delays; a naive extrapolation of a
very steep profile to large radius would imply a lens halo with a scale length of the
order only 3 kpc, too compact to be consistent with CDM. We explore more sophisti-
cated, mathematically smooth, positive lens mass density profiles which are consistent
with a large halo and the post-WMAP H0. Thanks to the spherical monopole degen-
eracy, the “reshuffling” of the mass in a lens model does not affect the quality of the
fit to the image positions, amplifications, and image time delays. Even better, unlike
the better-known mass sheet degeneracy, the stellar mass-to-light and the H0 value
are not affected either. We apply this monopole degeneracy to the quadruple imaged
time-delay system PG1115+080. Finally we discuss the implications of the time delay
data on the newly proposed relativistic MOND theory.

Key words: cosmological parameters — dark matter — distance scale — gravita-
tional lensing

1 INTRODUCTION

Gravitational lensing is a powerful tool for probing dark matter and constraining the cosmological
model of our universe (e.g., Schneider et al. 1992; Wu 1996; Bartelmann & Schneider 2001; Chen
2004a, b). While image-splitting lenses provide mathematically rigorous and accurate constraints
on the dark matter halos of lens galaxies, this technique has suffered from two puzzling problems
for decades: (a) the anomalously large image flux ratio of adjacent pairs of images for any smooth
lens model and (b) the anomalously low Hubble constant to fit the time delays with isothermal or
other simple parametric models of dark halo. The first problem has recently been turned into a
bonus point for the ΛCDM cosmology, which predicts substructures and clumpy lensing potential
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(Metcalf & Zhao 2002 and references therein). Is the second problem a real problem for the ΛCDM
cosmology, or a hint to explore beyond the standard density profiles for the baryons and the halo
in ellipticals? This is the subject of this paper.

Almost from its infancy lensing has been promoted as the geometrical distance ruler for the
Hubble constant (Refsdal 1964), which became the major driver for monitoring quasar light curves
for time delays, i.e., the length difference of the gravitationally bended light paths between two
images of a background quasar. Gradually it becomes clear that the lens is far from being a point
mass deflector, there is perhaps more to be learned about the structure of the lens itself (usually
a ∼ L∗ E/S0 galaxy at redshift ∼ 0.5) than the universe. A reliable measure for H0 has been
hampered to some extent by intrinsic degeneracies, such as the mass-sheet degeneracy (Gorenstein,
Shapiro & Falco 1988), in the lens model, unbreakable by the strong lensing data alone (Williams
& Saha 2000; Saha 2000; Saha & Williams 2001; Zhao & Pronk 2001). So far predictions for H0

are model-dependent, and confirmation of lens models must wait a few years until dynamical data
(e.g., in Koopmans & Treu 2002) with sufficient spatial resolution are collected for a large sample
of high redshift lenses. Before that, some confirmation can come from a reliable “local template”
of the mass profile from the kinematics in nearby E/S0 galaxies. The recent surprising finding
of baryon-domination in the inner five effective radii from the PNe data of Romanowsky et al.
(2003), together with the lack of a CDM cusp in disk galaxies and dwarf galaxies (see Weinberg &
Katz 2003), highlights our gaps of knowledge about the inner halo, which is the region for strong
lensing images, and cautions against blindly applying standard profiles for light and dark matter
in ellipticals to lenses at high redshifts.

In recent years cosmological parameters are constrained more and more precisely by lensing-
independent methods, e.g., h0 ≡ H0/100km s−1 Mpc−1 = 0.71± 0.04 from the post-WMAP data
(Spergel et al. 2003) with the only assumption of a ΛCDM flat cosmology. The post-WMAP h0

value is also consistent with h0 = 0.72 ± 0.08 from the HST Key Project (Freedman et al. 2001).
These are two independent predictions which are based on very different data and assumptions. If
we accept these recent developments and the widely adopted values for h0, it would be interesting
to ask whether the lensing community should reverse the application of time delay and refocus
on systematic uncertainties of the lens potential and use the post-WMAP H0 as one additional
stringent constraint on the lens convergence (i.e., density) at the Einstein radius. First we would
like to understand whether the cosmological parameters from WMAP and the strong lensing data
could be made consistent with each other in a plausible model of the dark matter halo of the
lens; a plausible galaxy model should yield a circular velocity curve with a flatness consistent with
kinematic data of nearby luminous galaxies and weak shear measurements of low redshift galaxies.
Second we would like to understand the degeneracies in the lens halo models, whether the same
strong lensing data and cosmological parameters can yield very different lens models.

It is well-known that isothermal models and other simple smooth models of dark matter halos
of gravitational lenses often predict a dimensionless time delay H0∆t much too small. Fitting the
observed time delays ∆t with lens models with an extended halo or a flat-rotation curve tend
to yield an h0 ∼ 0.5 (e.g., Kochanek 2002a), too small to be comfortable with the HST Key
Project Hubble constant h0 = 0.72± 0.08 (Freedman et al. 2001) and the post-WMAP cosmology
h0 = 0.71 ± 0.04 (Spergel et al. 2003). The lensing predicted h0 values are in general model
dependent. Using general power-law lens models, Zhao & Pronk (2001) and Wucknitz (2002) found
h0 ∼ 0.5(2 − α), where α − 1 = d log V 2

cir
d log r is the power-law slope of the deflection curve (or circular

velocity curve) of the lens V 2
cir(r) as a function of the angular radius r from the lens center. So a

WMAP h0 ∼ 0.71 would mean α ∼ 0.6, a significantly falling circular velocity curve, somewhat
between a flat curve where α ∼ 1 and the Keplerian curve of a point mass where α ∼ 0.

The problem of the lens circular velocity curve also manifests in a direct comparison with kine-
matic data irrespective of the expectations of CDM models. Recent progress in the sophistication of
the dynamical modelling of the mass distributions of nearby E/S0 galaxies allows us to gain control
over various degeneracies in the velocity space and the line of sight projection, and to derive a less
model-dependent mass distribution. It appears that the circular velocity curves of a large sample
of E/S0 galaxies are consistent with being nearly flat. The variation is only 10% between 0.2 to 2
effective radii Re (Gerhard et al. 2001), i.e., |α− 1| ≤ 0.1. The E/S0 lens galaxies at high redshift
should have a deflection/rotation curve that is flat to a similar extent within one Einstein radius
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unless galaxy potentials evolve strongly with redshift. Note that strong lensing probes the mass
distribution in the regions of one Einstein radius RE ∼ 2Re, which overlaps nicely with the region
0− 5Re for kinematic tracers in nearby E/S0 galaxies (Romanowsky et al. 2003). The comparison
between lensing-inferred circular velocity curve with kinematic data will become more direct once
we can measure velocity dispersion profiles of the lens galaxy, a task observationally difficult but
promising (Tonry 1998; Koopmans & Treu 2002).

There are many open questions about the lenses. For example, are the lensing data consistent
with other observations? Are lens models consistent with CDM? Is the post-WMAP H0 consistent
with lensing time delays? Are the mass distributions derived from dynamics and lensing consistent?
Are the circular velocity curves of lenses peculiar or very different from isothermal? What is the
baryonic fraction in lenses? Can lensing data be fit by a baryonic R1/4-law plus an NFW halo
(Navarro et al. 1997)? Or are there additional structures (e.g. nuclear disks, rings) and substructures
(e.g. satellites)? Is the dark matter density profile modified by baryons?

Here we discuss the role of the monopole degeneracy in strong lensing models in softening
the H0 problem for dark matter halos. We use PG 1115 as an example, which is one of the very
few quadruple systems that have been thoroughly studied observationally for decades. It has both
accurate time delay data and kinematic data, and the lens and its neighbouring galaxies are also
resolved. By fixing the h0 to 0.71 we break the mass sheet degeneracy as well.

Our aim is to check whether a post-WMAP cosmology with dark matter dominating baryons
and h0 ∼ 0.71 is consistent with several independent stringent observational constraints of the
quadruple PG1115: the image positions, time delays and the mean velocity dispersion of the lens.
Our main finding is that the lens models are non-unique: although the constraints are very tight
near the Einstein ring, the monopole degeneracy allows the lensing data to be fit by halos with a
wide range of profiles at very large and very small radii, from isothermal to constant M/L. This
degeneracy may soften the often seemingly conflicting constraints of the lenses. This degeneracy
is breakable statistically to some extent by dynamical data and weak lensing data. More data
generally helps, e.g., velocity dispersion data. A physical prior (such as equilibrium and positivity)
can also help to eliminate some unphysical mass model. However, some level of nonuniqueness
always exists because the coverage of the lensing data is patchy, and certain regions of the lens is
always underconstrained.

Rusin, Kochanek & Keeton (2003) showed that power-law-like lens models give satisfactory fit
to image positions of known lenses. They derive a best-fit lens, which is nearly isothermal with
α ∼ 1.07 ± 0.13 and h0 ∼ 0.55 − 0.60. Here we model the lens galaxy with nearly power-law mass
distribution, but the power-law index is allowed to vary with the radius. Unlike Rusin et al. (2003)
we do not derive h0 from the lensing data, instead we use the prior that h0 is at the post-WMAP
value ∼ 0.71 to constrain the lens power-law slope α. One powerful way of exploring degeneracies is
the pixelated numerical lens model of Saha & Williams (2001, 2004). It is very effective in showing
degeneracies due to lenses of different shapes or shear. So far as we know, the consequences and
importance of the monopole degeneracy have not been clearly demonstrated in the literature.

2 MASS-SHEET DEGENERACY BROKEN BY POST-WMAP H0

Consider fitting a general multi-imaged system with the background quasar images at radii Ri =√
X2

i + Y 2
i from the lens center, where i = 1, 2 for double-imaged system and i = 1, 2, 3, 4 for

quadruple imaged system. The images lie at the extremum points of the time arrival surface
following the Fermat principle. The background host galaxy of the quasar is also bent into an
Einstein ring, connecting the images. The deflection strength of the lens at any point (X, Y ) on
the lens plane can be modeled by taking derivatives of a lensing potential φ(X, Y ) with respect to
the coordinates (X, Y ). The lensing potential is proportional to the non-geometrical part of the
time arrival surface.

As a specific example, we consider PG1115+080, which is a quadruple system with a nearly
axisymmetric stellar lens at zl = 0.31, and the quasar source is at zs = 1.72. PG 1115 is the
most suitable system even though there are many two-imaged systems with observed time delay
and many four-imaged systems with well-constrained lens and image positions but no time delay
(e.g., Kochanek 2002a). The lens profile for a two-imaged system has too much freedom, and we
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really need quadruple systems with time delays and simple (isolated symmetrical lens galaxy)
configurations for a meaningful consistency study of the lens profile and h0. The stellar lens of
PG1115 is well-approximated by a de Vaucouleur profile with a half-light radius of Re = 0.75′′
(Treu & Koopmans 2002). We use the photometric data of Treu & Koopmans (2002) for the
images A1, A2, B, C, and the time delay tBC = 25 ± 1.7 days between the nearest B image
and the furthest C image (Schechter et al. 1997). There is an infrared Einstein ring of radius
RE = (0.9 − 1.5)′′ = (1.2 − 2)Re passing and surrounding the four images. We adopt a ΛCDM
cosmology with Ω = 1 − Λ = 0.3 and a post-WMAP H0,

H0 = 100hWMAP ∼ 71 km s−1 Mpc−1. (1)

Like most multi-imaged lens systems, PG 1115 can be fitted by a simple axisymmetrical power-
law model for the stellar and dark matter, plus a linear external shear. The amplitudes of the
power-law component and the shear component can be determined from the image geometry. The
power-law slope is determined by the input value of H0 and the observed time delay. A power-law
profile has a projected density κα(R) (convergence) and lensing potential φα(R) given by

φα(R) = α−1R2
E

(
R

RE

)α

, κα(R) =
d

2RdR

Rdφα(R)
dR

=
α

2

(
R

RE

)α−2

, (2)

where RE is the Einstein radius, and the enclosed lens mass Mα(R) is given by

Mα(R) ∝ 2
∫

κα(R)RdR = R2κα(< R) = R2
E

(
R

RE

)α

, (3)

where κα(< R) is the average convergence inside the projected radius R. Note the average conver-
gence inside Einstein radius κα(< RE) is unity by definition.

PG1115 is a member of a group of about 12 bright galaxies (Tonry 1998). For the shear we
compute the lensing potential of the other 11 galaxies

φsh(X, Y ) =
11∑

i=1

γifi

2
ln
∣∣(X − Xi)2 + (Y − Yi)2

∣∣ , (4)

where fi is the observed flux of the i-th galaxy, and γi is a free variable proportional to the mass-
to-light ratio of the i-th galaxy. The image positions and source positions satisfy the following lens
equation,

Xs = [1 − κ(< R)] X − ∂Xφsh, Ys = [1 − κ(< R)] Y − ∂Y φsh, (5)

where R =
√

X2 + Y 2. In total we have 15 free fitting parameters, with (Xs, Ys) the coordinates
of the source, and (RE, α, γ1, ..., γ11) for the lens model. Since a quadruple system provides in
general eight constraints from the image positions, and two or three measurements of relative time
delay, the fit to data is therefore underconstrained. To guard against spurious noisy solutions, we
minimize the variations of the mass-to-light ratio γi among the group members. A few models are
shown by the time delay contours in Figure 1a. The image positions are reproduced within 10
milliarcsec.

A nice property of power-law model is that at the Einstein radius

κα(RE) =
α

2
, κα(< RE) = 1. (6)

It is a well-known result (e.g., Kochanek 2003; Wucknitz 2002; Zhao & Pronk 2001) that the
dimensionless time delay

H0∆t ∝ 1 − κα(RE) =
2 − α

2
, (7)

where the proportionality constant is determined by the image separation and the redshifts of the
lens and the source. From the observed time delay tBC = 25 ± 1.7 days between images B and C
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Fig. 1 (panel a) Time arrival contours at intervals of 4 days of three different lens models,
whose differences are small in time arrival contours, but visible at very inside and very outside of
the Einstein ring. They reproduce the same image positions and time delay tBC = 25± 1.7 day
and the time delay ratio tAC/tBA = 1.13 ± 0.18 (Barkana 1997). (panel b) Very different
surface density profiles for these lens models, where the convergence κ(R) and its average κ(< R)
(multiplied by 100) are plotted as functions of the rescaled angular radius R/Re, where Re is
the half light radius of the lens. The middle curve (thin black line) is a model with a simple
steeper than isothermal power-law (α∞ = α = α0 = 0.6), the upper curve (thick red line)

is a model with nearly constant circular velocity u = 220
√

3 kms−1 at large and small radii
(α∞ = 0.9, α0 = 0.8), and the lower curve (thin dashed blue line) is a model with a sharply
falling density profile (α∞ = 0.4, α0 = 0.5). The shaded zones are typical strong lensing zones
0.4Re < R < 4Re. The predicted dynamical density using de Vaucouleur law assuming self-
gravity (circles), imbedded in an NFW halo (diamonds), and using the singular isothermal law
(boxes), all normalized by the overall velocity dispersion 220 ± 20 kms−1. All models adopt the
post-WMAP cosmology with H0 = 71km s−1 Mpc−1.

and the post-WMAP H0 we can determine the slope of the power-law lens.1 We find models with
α = 0.45 − 0.65 give acceptable fits. This is consistent with Treu & Koopmans (2002) who find a
best-fit halo model has a steep volume density cusp 3 − α = 2.35 ± 0.15 based on the kinematics
and lensing data of PG 1115. Hereafter we adopt the value α = 0.6.

Our power-law model has a steeper-than-isothermal density profile, hence a falling circular
velocity curve. Interestingly the mass density profile falls off more gradually than the constant
M/L de Vaucouleur model (see Fig. 1b), suggesting a moderate increase of M/L, or moderate
amount of dark matter at large radii (Fig. 1b). There is very little room to add a much larger
amount of dark matter via the mass-sheet degeneracy (i.e., by lowering α), since we must keep the
H0 value within the 4% error bar of the post-WMAP values, and the error of the time delay is
only 10%. So in agreement with Kochanek (2003), we also find models with moderately increasing
mass-to-light ratio (which have a non-flat circular velocity curve) are sufficient to reproduce the
image positions and the “high” value of the Hubble constant.

2.1 Flatten Rotation Curves with Monopole Degeneracy

While the mass-sheet degeneracy is broken by the post-WMAP H0 and the measurements of time
delay, there is still the monopole degeneracy to worry about. The monopole degeneracy maps a
lens model to another lens model with very different radial mass distribution but exactly the same

1 In general, a higher value for the H0 requires a smaller convergence κ at the Einstein radius, thus a
steeper density profile (bigger 2−α). For example, varying H0 from 50 to 100 would change the prediction
from an isothermal model to a point mass model.
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predicted image positions. Here we are interested in transforming a model with steep falling density
and Keplerian circular velocity curves to another model with a large halo and flattish circular
velocity curve. Gauss’ theorem in a 2-d space guarantees that we can add or remove any amount
of mass axisymmetrically outside the Einstein ring without perturbing the images (Schneider et
al. 1992). So in principle one has no information of the existence of the outer halo from the inner
images. In practice, there are additional physical constraints on the added component. For example,
it should keep the overall density positive, smooth and monotonic everywhere. It must not create
extra images either. This means that any added halo component must gently increase from zero
near the images to a significant mass at large radii.

One way of constructing such models is to vary the power-law slope slowly with radius outwards
and/or inwards of the Einstein ring. For example, build a new lens potential

φu(R) = φα(R)
[
φ1,u(R)
φα(R)

] p(R)−α
1−α

, φ1,u(R) =
2πDlsu

2R

Dsc2
, (8)

which is a weighted geometric average of the original potential φα(R) (Eq. (2)) and an isothermal
potential φ1,u(R) with a circular velocity u. The new model behaves like a power-law model with

φu(R) ∝ Rp(R), (9)

except that the power-law slope p is a slow-varying function of the radius R. We require p(R) ∼ α
in the Einstein ring region, so that the new model φu(R) matches almost exactly the old model
φα(R) near the images. In the Appendix we give several plausible choices for p(R). One plausible
choice for the power-law slope p(R) is

p(R) = α +
(x − 1)8

(α∞ − α)−1 + (α0 − α)−1x8
, x =

R

1.5Re
, (10)

which is a U-shaped function of R with the node at a radius 1.5 times the half-light radius Re, a
typical value for the Einstein radius of quadruple lenses. The strong lensing images are typically
within a radius range 0.4Re ≤ R ≤ 4Re (e.g., Rusin et al. 2003). As a result, our final model φu

behaves like power-laws at large and small radii with the power slope α∞ and α0. However, in the
vicinity of the quadruple image radii Ri, we have

p(R) − α ∼ ±0.01, 0.4Re ≤ R ≤ 4Re, (11)

thanks to the power of eight dependence in Equation (10).
The main effect of replacing φα(R) with φu(R) by the monopole degeneracy is that the lens

density profile at very large radii and very small radii is now strongly modified. Models with α∞ ∼
α0 ∼ 1 behave like a singular isothermal halo with the deflection power dφu(R)

dR → dφ1,u(R)
dR = cst ·u2

at large and small radii, hence the circular velocity curve is constant asymptotically with a circular
velocity u. Unless specified otherwise, we set α∞ = 0.9 and α0 = 0.7, which yield nearly isothermal
models.

A nice property of our new model φu(R) is that its arrival time contours (see Fig. 1a) are
almost indistinguishable from the old lens model φα(R) near the images. This means that both
models have almost the same light-deflecting power in the region of interest, hence fit the observed
image positions and time delays with almost exactly the same accuracy; it is possible to make
the degeneracy exact by choosing an appropriate function for the slope p(R) but the expression
is somewhat lengthy (see Appendix). The image positions are reproduced to 10mas accuracy. All
models predict the time delays tAC = 12.5 d and tBA = 11.9d, in excellent agreement with the
observation results tBC = 25 ± 1.7 days (Schechter et al. 1997), and tAC

tBA
= 1.13 ± 0.18 (Barkana

1997).
The new and old lens models have also almost the same light focusing power (related to

the curvature of the time arrival surface), hence produce nearly the same amplification map in
the Einstein ring region. Varying u from 0 to a few hundred km s−1 makes only less than 0.01
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magnitude changes in the amplifications because the shear and convergence are barely perturbed
near the images. The predicted magnification ratios for the four images are

A1 : A2 : B : C = 3.2 : −3.6 : −0.61 : 1, (12)

where images A2 and B are saddle points, image C is a minima, and image A1 a maxima. These
are in good agreement with the observed infrared flux ratios

A1 : A2 : B : C = 3.8 : 2.6 : 0.64 : 1, (13)

apart from the well-known problematic flux ratio between the close pair A1 and A2. These two
close pairs near critical amplification should have nearly the same flux unless the lensing potential
is significantly grainy, e.g., due to either microlensing or lensing by substructures (e.g., Impey et
al. 1998; Barkana 1997; Metcalf & Zhao 2002) or a wiggle in density profile near the images A1

and A2 (which is in principle possible for extreme choices of p(R) and u).
In short, we have a whole sequence of lensing-data-degenerate models with a free parameter

u. In fact, we are not restricted to an isothermal model, because the asymptotic power-law slopes
α∞ and α0 are also changeable. A model with α∞ = 0.4, α0 = 0.5 is also shown in Figure 1, which
resembles a de Vaucouleur model. In general the final density κu(R) is smooth, monotonically
decreasing and positive everywhere (see Fig. 1b). The lens density model is not only mathematically
positive and smooth but also does not create extra images.

Note that the monopole degeneracies do not affect the determination of H0, because they do
not perturb the lens potential near the images, but they taper the mass distribution at small and
large radii to fit any central velocity dispersion of the lens and any weak shear at large radii.
This is very different from the mass-sheet degeneracy, which is well-constrained by the H0 value
determined by lensing-independent observations.

2.2 Compare Strong Lensing with Dynamics and Weak Lensing of Ellipticals

The circular velocity curve in ellipticals can be constrained from the stellar velocity dispersions. It
is generally a difficult task to carry out a reliable measurement of the dispersion profile for a faint
lens surrounded by four bright quasar images. Nevertheless, Tonry (1998) measured a dispersion of
281 ± 25 km s−1 of PG1115 in an 1-arcsec aperture under 0.8 arcsec seeing. This is effectively the
mean 1-dimensional velocity dispersion of the perhaps spherical stellar component of the galaxy.
Apply this dispersion in the virial theorem we can normalise the overall mass distribution in the lens
galaxy. Assuming the lens galaxy potential has a flat rotation curve Vcir, then stars inside should
have a mean dispersion σobs = Vcir/

√
3. For a self-gravitating de Vaucouleur model the effective

rms velocity is
√

GMdV

Reσ2
obs

∼ 3.0, where MdV is the total mass. Note that Tonry’s measurement is

subject to possible contamination of the quasar light. However, the dispersion σobs ∼ 281 kms−1

is surprisingly high as noted in Tonry (1998). If PG 1115 were a typical L∗ elliptical galaxy on the
fundamental plane, it should have a dispersion ∼ 180km s−1 (Treu & Koopmans 2003). Tonry’s
dispersion of PG1115 is nearly as big as the dispersion ∼ 270±70km s−1 of the galaxy group, which
means that the other members of the group are within the gravitational influence of or nearly bound
to PG1115, which is clearly not the case. The center of light is in fact near the brightest group
member (G1) 20 arcsec away. Perhaps a more reliable estimate for PG1115’s dispersion is to rescale
the dispersion of G1 with the Faber-Jackson relation given that PG1115 is a scaled-down version
of G1, and G1’s measurement is presumably reliable and free from problems of contamination from
the quasar images. G1 is about 1.8 times as luminous as PG1115, so if we take Tonry’s dispersion
for G1 256± 20 km s−1, and scale down by a factor 1.8−0.25, we have 220km s−1 for the dispersion
of PG 1115. Hereafter we take σobs = 220 ± 20 km s−1 as a conservative estimate of the dispersion
of PG1115.

The mass profile of the lens mass is very model dependent, and there is no direct dynamical
measurement. Still one can use either CDM simulations or the ellipticals in the local universe as
templates to the expected circular velocity profile. Based on a sample of 21 nearby ellipticals,
Gerhard et al. (2001) suggested that the circular velocity curves in ellipticals are consistent with
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being nearly flat (only 10% variation) in the inner two effective radii. This suggests a model
for L∗ ellipticals with a large halo of a characteristic circular velocity ∼ 250km s−1 dominating
at large radii, a picture which is also consistent with satellite galaxy dynamics, X-ray density
and temperature profiles, and weak lensing of ellipticals (Prada et al. 2003; Lowenstein & White
1999; Guzik & Seljak 2002). However, a recent study of PNs in three ellipticals by Romanowsky
et al. (2003) found a rapidly falling velocity dispersion at five effective radii, consistent with a
constant M/L de Vaucouleur model, suggesting a model with nearly Keplerian star-dominated
mass distribution at large radii.

The CDM halos are not rigorously isothermal. In these models an elliptical galaxy roughly
consisted of a de Vaucouleur model imbedded in an NFW halo, if we assume the opposing effects
of adiabatic contraction and dynamical feedback due to the baryonic component cancel each other.
A typical (or M∗) NFW halo has a virial velocity Vvir ∼ 200 km s−1, a virial radius about 10 core
radii, and a mass of about 10 times the baryonic component. If we superimpose such an NFW halo
on our baryon-only model (de Vaucouleur model), we obtain a model density profile (diamonds)
intermediate between isothermal (boxes) and de Vaucouleur model (circles), as shown in Figure 1b.

Comparing the dynamical model with the lens models shows some interesting results. The pure
power-law lens model (thin black line) with u = 0 resembles the CDM dynamical models but with
somewhat lower dark matter content, the lens model with α∞ = 0.9 and α0 = 0.8 (thick red line)
resembles the isothermal dynamical model at small and large radii, and the lens model with a
steep slope α∞ = 0.4, α0 = 0.5 (thin dashed blue line) resembles the constant M/L de Vaucouleur
dynamical model. These results apply to both the density (see Fig. 1b) and the average density
(see Fig. 1b). One can compute the logarithmic slope of the mass profile α(R) = d log M

d log R . All models
are between a uniform mass-sheet α = 2 and Keplerian (α ∼ 0), and they have the same slope
α = 0.6 at the strong lensing zone.

It might appear surprising that both lens models with and without a large cuspy halo can
be made consistent with the lensing position, the time delay data and the post-WMAP H0. It
shows the flexibility of the monopole degeneracy. We do not find a conflict between lens models
with a large dark halo and the post-WMAP H0. Neither do we find a conflict between the mass
profile of the lenses and the dynamical mass profile of nearby ellipticals given the uncertainties of
the dynamical models. Instead we find that the new mass degeneracy prevents us from drawing a
robust conclusion about the dark halo on the basis of the image positions and time delays alone.

3 DISCUSSION

Here we have demonstrated a specific way to construct non-unique models for fitting the same
strong lensing data, including time delays. We lift the well-known mass-sheet degeneracy by hard-
wiring the H0 to the post-WMAP value. We build models with positive, smooth and monotonic
surface densities. We find the strong lens data of PG1115 can be explained to the same accuracy
by models with nearly constant M/L and by models with nearly flat circular velocity curve; the
latter models are preferred only when galaxy-galaxy weak lensing shear at large radii is considered.
The ambiguity is further compounded by the surprising kinematics of PNs at five effective radii
in a few L∗ elliptical galaxies (Romanosky et al. 2003), which does not confirm the expectation
of a flat circular velocity curves as suggested by earlier studies of a larger sample with velocity
data within about two effective radii (Gerhard et al. 2001). The models shown in Figure 1b are
consistent with velocity dispersion profile ranging from nearly flat (isothermal, red thick curve vs.
box symbols) to steeply falling (blue dashed curve vs. circles). This shows the range of degeneracy
in modeling the lens.

It is difficult to say whether PG 1115 is a representative case for strong lenses, and to what ex-
tent we can generalize our conclusions here. PG1115 appears to be an unremarkable L∗ E0 galaxy.
It is one of the quadruple time delay systems with the simplest geometry and maximum lensing
constraints. These properties might have made it too good for modelling to be representative, but
still the data are not good enough to remove the monopole degeneracy, and one has to rely on sta-
tistical arguments based on the flatness of circular velocity curves from dynamics and weak lensing
of nearby ellipticals of comparable luminosity. In an extensive review on known degeneracies in
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the mass modelling of strong lenses by Saha (2000), there is only a brief mentioning of monopole
degeneracy as a mathematically trivial point.

Parametric models in the literature typically make use of only a narrow class of smooth profiles,
e.g., NFW profile, or more generally the double power-law halo profiles in Zhao (1996). However,
in principle the halo densities could have been compressed or depressed at a few effective radii
due to dynamical feedbacks from the baryonic component. One can derive less model-dependent
information about the lens if one uses a looser parametrization for the density models, as is done
here using power-law model with a slow-varying slope.

Nevertheless, the drawback of our proposed density models for PG 1115 is that these models
are somewhat contrived. While they are not obviously unphysical given their positive densities
everywhere, and their mathematical details cannot yet be linked to real physical processes in
galaxy formation. It is not obvious how to fix this obvious drawback of our halo model while still
keeping the lensing model analytical, which is the spirit of this paper in addressing the apparent
conflict of lensing data with CDM cosmological parameters. A study from a different angle is
perhaps needed.

In short, it seems safe to conclude on a few general points: (i) The significance of the
mathematically-trivial monopole degeneracy has not been well appreciated before, particularly
its role in softening the H0 vs time delay crisis. (ii) Deriving the halo inner and outer profiles from
lensing generally involves an unreliable extrapolation from a measurement of power-law slope at
the Einstein ring. (iii) Hardwiring the H0 breaks the mass-sheet degeneracy of lenses, and observed
time delays yield a slope d log M

d log R ∼ 2(1 − h0) ∼ 0.6, significantly below isothermal at about 1.5
effective radii if the post-WMAP h0 ∼ 0.7 is taken. (iv) Spatially well-resolved dynamical data in
the inner five effective radii in high redshift lenses or their local template ellpticals are in urgent
need for breaking the monopole degeneracy in lenses, and constraining the nature of the dark
matter.

4 LENSING IN RECENT RELATIVISTIC VERSION OF MODIFIED
NEWTONIAN DYNAMICS

Finally, we note that dark matter models are not the only models for galaxies, and there have been a
revival of interests in modified gravity recently. In particular the MOND theory by Milgrom (1983)
explains galaxy circular velocity curves very well (Sanders & McGaugh 2002), in particular, they
could explain the velocity dispersion profiles of low-redshift elliptical galaxies (Milgrom & Sanders
2003), in particular the recent PNe data (Romanowsky et al. 2003). MOND predicts slightly
falling velocity dispersion curves out to five effective radii for high surface brightness ellipticals,
and it becomes flat at larger radii. In these models, there is no dark matter, but gravity from
the baryonic matter is modified from Newtonian or General Relativity (GR). The non-relativisitic
MOND theory has gained a relativistic counterpart recently, called TeVeS. It passes standard
local and cosmological tests used to check GR (Bekenstein 2004). The TeVeS theory is so named
because it contains a conformal GR-like metric tensor, one new vector field, two new scalar fields to
preserve general covariance. Following Bekenstein (2004), a number of other works have appeared
studying galaxy dynamics (Ciotti & Binney 2004; Baumgardt et al. 2005; Read & Moore 2005),
galaxy cluster dynamics (Pointecouteau & Silk 2005), cosmological model (Hao & Akhoury 2005),
and large-scale structure of the universe (Skordis et al. 2005) in the relativistic TeVeS. Here we
comment on its application to the gravitational time delay in PG1115.

It is becoming possible to predict lensing in the MOND theory (Qin et al. 1995; Chiu et al. 2005;
Zhao et al. 2005). Interestingly, the bending angle in TeVeS or MOND has the standard form as in
GR. The only difference is that the lens gravitational potential is related to the baryonic matter
distribution by a modified Poisson’s equation with an effective dielectric constant depending on
the strength of the gravity. In fact, the bending angle is uncunningly the same as presented in Qin
et al. (1995). For a light path with impact parameter b = Dlθ from a spherical lens, the bending
angle (cf. equation in the abstract of Qin et al. and eq. (109) of Bekenstein)

α =
∫ ∞

−∞
2g⊥

dx

c2
, g⊥ =

Dlθ

r
g(r), x =

√
r2 − (Dlθ)2, (14)
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where we integrate the perpendicular impulse along the line of sight length x, the factor of two is
due to relativity, and g⊥ is the perpendicular component of the gravity g(r) at radius r from the
spherical lens galaxy. The MONDian gravitational field around a spherical stellar distribution of
the total mass M∗ is given by

g =

{
gN = GM∗

r2 � a0 ∼ 1 × 10−8cm s−2 r � r0,√
gNa0 = v2

0
r r 	 r0,

(15)

where

r0 =
√

GM∗
a0

, v0 = (GM∗a0)1/4, (16)

are the radius of the so-called “Newtonian bubble”, and the asymptotic circular velocity. As a
result a test particle well outside the Newtonian bubble will reach a flat circular velocity curve
of Vcirc(r) = v0 ∝ M

1/4
∗ . This is the main reason behind the MOND’s success, i.e., why rotation

curves of spiral galaxies are flat and satisfy the Tully-Fisher relation L ∝ v4
0 . We refer the interested

readers to Zhao et al. (2005) for an overview of dynamics, cosmology and lensing in MOND/TeVeS.
For PG 1115 at zl = 0.3 the lens has an I-band magnitude of I = 18.92. Assume a baryonic

open cosmology with a cosmological constant term as in Zhao et al. (2005), and use a Hubble
constant of h0 = 0.7, we find

Dl = 0.88 Gpc, Ds = 1.7 Gpc, Dls = 1.2 Gpc,
DlsDl

Ds
= 0.65 Gpc = 0.65 × 1012 light days. (17)

For an old single burst model for the early-type lens the K-correction and evolution correction
cancel approximately in I-band at intermediate redshift, and the mass-to-light at the restframe
I-band is about M/L = 4. So the stellar mass of the lens is found to be (Zhao et al. 2005)

M∗ = 1011 M�, (18)

which is typical for an L∗ galaxy. If we take the standard value for a0, MOND would predict an
asymptotic circular velocity for the galaxy

Vcirc(� r0) = (GM∗a0)1/4 = 200 kms−1, r0 ≡
√

GM∗
a0

= 12 kpc. (19)

Observationally the images are near the Einstein ring RE = 1′′ = 4.4 kpc, and inside it the average
velocity dispersion is σobs = 281± 25km s−1 (Tonry 1998). The fact that r0 > RE and Vcirc < σobs

suggest two interesting points.
(i) The asymptotic circular velocity appears too low compared to the observed dispersions.

Considering that the observational error might be underestimated given very bright quasar images
within 0.5′′ of the lens galaxy, it is helpful to have an indirect measurement. Now, PG 1115 belongs
to the same group as G1, and G1 is the brightest group member (1.8 times as luminous as PG 1115)
and has a measured dispersion 256± 20 km s−1 by Tonry. If we scale down 256km s−1 by a factor
1.8−0.25 according to the Faber-Jackson relation, we have 220 km s−1 for the dispersion of PG1115,
which is barely consistent with what MOND predicts. A larger a0 or M∗ could help to improve the
fit. A cautionary note: the terminal circular velocity is non-trivially related to the central velocity
dispersion by the Jeans equation in MOND. MOND predicts slightly falling velocity dispersion
curves out to five effective radii for high surface brightness ellipticals, and it becomes flat at larger
radii. Although for many models one expects a central dispersion lower than the terminal circular
velocity, the prediction is not unique depending on the velocity anisotropy and baryonic mass
profile (Sanders & Milgrom 2003).

(ii) All images on the Einstein ring must have a path intersecting with the “Newtonian bubble”.
As a light ray goes from infinity to the lens and then to the observer, the gravity increases from
very weak to some significant value and then drops to nearly zero again. For a light path with a
large impact parameter b, the gravity could be weak all the way (see solid light path, Fig. 2). This,
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Fig. 2 A schematics of bending of light. The radius r0 =
√

GM∗
a0

is the radius outside which

the gravity of a galaxy of stellar mass M∗ is weaker than the critical value of a0 ∼ 10−8cm s−2;
generally r0 ∼ 10 kpc for L∗ galaxies, such as the lens galaxy PG1115. The Einstein rings and
the images of most lenses all lie within the radius r0 (in fact the images are at about 1-2 times
the effective radius Re ∼ 3 kpc), hence at the image positions the gravity is in the strong regime.

however, is not the case for many lensed images. As also found by Zhao et al. (2005), the ray must
always cross the strong gravity regime for a duration of

x0

c
=

√
r2
0 − R2

i

c
∼ 11 kpc

c
∼ 107 days, (20)

where Ri is the image separation from the lens in the lens plane, the innermost and outermost
images B and C of PG1115 are at Ri = 0.8′′ = 3.5 kpc and Ri = 1.6′′ = 7 kpc, respectively.
During this 107 days the space-time metric is slightly curved, and can be written in rectangular
coordinates as

−c2dτ2 = −
(

1 +
2Φ
c2

)
dt̃2 +

(
1 − 2Φ

c2

)
(dx2 + dy2 + dz2), Φ(r) ≈ −GM∗

r
, (21)

where Φ(r) is the gravitational potential of the Newtonian dynamics. This potential creates a so-
called Shapiro time delay ∆tShap. Since we are in the strong gravity regime, GR applies without
any modification, hence we can use the usual expression for time delay

∆tShap = −1 + zl

c

∫ x0

−x0

2Φ(r)
c2

dx ≈ 4(1 + zl)GM∗
c3

ln

(
r0

Ri
+

√
r2
0

R2
i

− 1

)
, (22)

where the factor (1 + zl) corrects for time dilation. Substitute in the positions of images B and
C we find the relative Shapiro delay ∆tBC

Shap = 21 days. A similar calculation can be done for the
segments of the light path in the weak regime using a modified potential. Its contribution turns out
to be less than 1 day, hence can be neglected. The geometrical time delay can also be calculated
in the usual way, and we find ∆tBC

geo = 12 days. So the total delay can be ∆tBC = 33 days. The
observed time delay tBC

obs = 25 ± 2 days. This means that a simple application of MOND/TeVeS
can explain the observed time delay to a factor of two, and some adjustment of M∗ or a0 or h0

might be necessary to fit the data on time delay and velocity dispersion exactly.
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Appendix A: PLAUSIBLE FUNCTIONAL FORMS FOR THE POWER-LAW
INDEX p (R)

Here are a few examples for p(R) based on slightly different considerations. We can make p(R) a piecewise
function of R, so that p(R) = α is constant over the entire Einstein zone.

p(R) = α, 0.4 <
R

Re
≤ 4 (A1)

= α + (α0 − α)
(

R

0.4Re
− 1
)8

,
R

Re
< 0.4 (A2)

= α + (α∞ − α)
(

R

4Re
− 1
)−8

.
R

Re
> 4 (A3)

Or we can make p(R) = α only at the image positions. Let p(R) = α + w(R), and

w(R) =

∏i=N

i=1
(R − Ri)

2

R2N (α∞ − α)−1 + (α0 − α)−1
∏i=N

i=1
R2

i

, (A4)

which is a smooth wavelike function with N-nodes at images R1...RN , i.e., w(Ri) = dw(Ri)
dRi

= 0.

Or we can make p(R) ∼ α on the entire strong lensing zone. The expression for it is given in Eq. (10).

Be ware not to confuse p(R) with the mass profile slope α(R) ≡ d log M
d log R

. The two are the same only

for simple power-law models.

Appendix B: OTHER WAYS OF CREATING DEGENERACY

A more general model can be built from the following linear decomposition, i.e.,

φ(R) = (1 − δ0)φ0(R) + δ0U0(R) + δ1U1(R) + δ2U2(R), (B1)

where δ’s are non-zero coefficients of additional dark components U(R). These are distortions or deviations
on top of any dark matter already implied in the constant mass-to-light model. The question here is, what
are the allowed functional forms for U(R)? More specifically, how can we add a dark halo distortion to the
constant mass-to-light model φ0(R) with vanishing perturbation to the image positions? First of all, there
is the well-known mass-sheet degeneracy. Such a constant density lens component has a potential of the
form δ0

2
R2, where δ is the constant convergence of the mass sheet. Since real galaxy density typically falls

sharply at large radii, and has a nearly isothermal cusp at small radii, we should taper the simple mass
sheet potential smoothly inwards and the outwards of the Einstein ring. If the images and the Einstein
ring are bracketed by an inner radius Rin and outer radius Rout with

Rin < Ri < Rout, i = 1, 2, 3, 4, (B2)

then one can add, for example, a tapered mass-sheet (dark) component ∆φh(R) = δ0U0(R), where

U0(R) =
R2 − R2

out

2
, Rin ≤ R ≤ Rout (B3)

= R2
out ln

(
R3

3R3
out

+
2

3

)
, R > Rout (B4)

=
[
b0 + b1R

1+β + b2βR1/β
]
. R < Rin (B5)

It is easy to verify that the potential, mass and density are continuous across Rout. By choosing the
coefficients b0, b1 and b2 we can ensure that the potential, mass and density are continuous across Rin

as well. Note this construction of the halo has a finite mass 3δ0R
2
out at large radius, and an isothermal

density at small radius for β ∼ 0. It is well-known that the image positions are invariant if we decrease the
mass-to-light ratio of the φ0(R) model by a factor η = 1− δ0 at the same time (cf. Eq. (B1)). Nevertheless,
adding the above component has an effect measurable by time delays. The dimensionless image time delay

H0∆tobs → (1 − δ0)H0∆tobs. (B6)

Now that H0 can be well-determined by other distance ladders (e.g., H0 = 72 ± 8 from the HST Key
Project) greatly restricts the leverage of any mass-sheet degeneracy. Are there any other more subtle ways
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of modifying the constant mass-to-light models? Can we add dark matter in a way by-passing the time-
delay and all other strong lensing data? Certainly, there is the monopole degeneracy, which is so simple
that it is seldom considered. For example, we can add a large amount of halo mass beyond a radius Rout

and nothing inside. As long as Rout is outside the images and Einstein ring, there would be no effect on the
images inside because of the Gauss theorem. The real challenge is to avoid creating unrealistic discontinuity
or negative density regions in the galaxy, particularly at the transition region. This is certainly possible,
for example, with a potential ∆φh(R) = δ2U2(R), where

U2(R) =
R2

out

2

[
1 + ln4

(
R

Rout

)] 1
2 − R2

out

2
, R > Rout (B7)

= 0. R ≤ Rout (B8)

It is easy to verify
∆φh = 0, ∆φ′

h = 0, ∆φ′′
h = 0, at R = Rout . (B9)

This means that this dark component does not contribute to the density and the deflection at Rout

or within. At large radii, however, the system mass diverges as ∝ ln(R), resembling the CDM models
(Navarro et al. 1997). There should not be extra images anywhere unless δ2 is very big. Since there is no
halo inside Rout, there is no effect on strong lensing. The effect is only in the weak lensing at large radii.
What about the inner mass distribution? The same monopole degeneracy allows us to move mass around
inside a radius Rin without any imprints on strong lensing as long as Rin is within all the images and
Einstein ring. For example, we can turn some stellar mass into dark matter, the latter can have a potential
∆φh(R) = δ1U1(R), where

U1(R) =

[
c0 + c1R

1+β + c2βR1/β − R2
in

α
ln
(
1 +

Rα

Rα
e

)]
, R < Rin (B10)

= 0, R ≥ Rin (B11)

where the constants c0, c1 and c2 must satisfy the implicit relation

∆φh(Rin) = 0, ∆φ′
h(Rin) = 0, ∆φ′′

h(Rin) = 0. (B12)

These fix the exact expressions for the coefficients ci. Effectively this halo component has no net mass and
density at radius Rin and outside, hence it does not influence the images because of Gauss theorem. By
adjusting the amplitude 0 ≤ δ1 ≤ 1 and the power-law slope β ∼ 0, however, we can modify the inner
rotation curve to a flat rotation curve, or whatever the observations require. We choose the value of α
such that the stellar distribution has a cusp slope 2 − α; here we choose 2 − α = 0 for the R1/4-law since
this profile has no projected cusp. In short, we have shown a specific way to construct non-unique models
for fitting the same strong lensing data. 2 In particular, the component δ1U1(R) + δ2U2(R) can keep the
convergence κ, shear γ, the components of the amplification matrix µ and the time delay between images
unchanged at the radii of the (e.g., four) images R = Ri. In fact it has a vanishing contribution to the
arrival time surface near the images. The only dynamical effect is that they modify the rotation curve of
the lens galaxy. Thus we have found a general method to separate the observational constraints of strong
lensing from constraints of galaxy dynamics. Together with a adjustable tapered mass-sheet component,
we can create mass models of various rotation curves consistent with the lensing data. The time delay
surface is

τ (X, Y ) =
(X − Xs,0η)2 + (Y − Ys,0η)2

2

− ηγ1(X
2 − Y 2) + 2ηγ2XY

2

− ηm0

α
ln
(
1 +

Rα

Rα
e

)
− ηU0(R) − δ1U1(R) − δ2U2(R). (B13)

Hence when we vary the parameter δ1 and δ2 the time arrival surface τ (X,Y ) yields the same extrema, or
images. This means models with different halo will have goodness of fit to all strong lensing data (the time
delay, the image positions and even the amplifications and parity of the images). It only alters the mass
distribution of the lens, e.g., the total mass of the lens and the spatial extent of the lens. Hence it creates
a degeneracy in lens modeling, making it problematic to draw unique conclusions on lens halo mass from
image modeling.

2 In an earlier preprint, we also show a way to construct a halo with non-zero density everywhere except
at the images.
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