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Abstract The global structure of current flows in pulsar magnetosphere is inves-
tigated, with rough calculations of the circuit elements. It is emphasized that the
potential of the critical field lines (the field lines that intersect the null surface at
the light cylinder radius) should be the same as that of interstellar medium, and that
pulsars whose rotation axes and magnetic dipole axes are parallel should be positively
charged, in order to close the pulsar’s current flows. The statistical relation between
the radio luminosity and pulsar’s electric charge (or the spindown power) may hint
that the millisecond pulsars could be low-mass bare strange stars.
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1 INTRODUCTION

Since Hewish et al. (1968) discovered the first radio pulsar, more and more magnetospheric models
for pulsars have been proposed to explain their observed features. The vacuum inner gap model,
on the one hand, suggested first by Ruderman & Sutherland (1975, hereafter RS75) depends on
enough binding energy of charged particles on the pulsar surface (Wang et al. 2003). Qiao et al.
(2004a) noted that the pulsar polar region can be divided into two parts by the critical field line
(the field lines that intersect the null surface at the light cylinder radius, RS75) and suggested that
the conventional inner core gap (ICG) and the inner annular gap (IAG) could be formed above the
central and annular polar regions, respectively. The coexistence of both regions can well interpret
the “bi-drifting” phenomenon in PSR J0815+09 (Qiao et al. 2004b). The space charge-limited flow
model (e.g., Arons & Scharlemenn 1979; Harding & Muslimov 1998), on the other hand, is without
any binding energy. An outer gap near the light cylinder has also been proposed (e.g., Cheng, Ho
& Ruderman 1986), the existence of which may also reflect strong binding of particles on pulsar
surface (Xu 2003a). However, even as observational data in radio, optical, X-ray, and γ-ray bands
are being accumulated, there are still a great number of puzzles to be solved (e.g., Melrose 2004).
Nevertheless, the models depend obviously on the nature of the pulsars surface; one may wish to
draw conclusions on its interior structure (e.g., whether they are normal neutron stars or bare
strange stars, see, e.g., Xu 2003b) through investigating of pulsar emission models. Note that it is
almost impossible to concluded on the nature of pulsar via calculations in supranuclear physics.

The study of the pulsar magnetosphere is essential for us to understand various radiative
processes, hence the observed emissions in different bands. Goldreich & Julian (1969) argued that
a pulsar must have a magnetosphere with charge-separated plasma and demonstrated that a steady
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current would appear if charges can flow freely along the magnetic field lines from the pulsar
surface. Sturrock (1971) pointed out that such a steady flow is impossible due to pair formation,
and suggested that a simple electric circuit of the pulsar magnetosphere would be a discharge
tube connected with an electromotive source. RS75 proposed that sparking process takes place
in a charge-depletion gap just above the pulsar surface. The sparking points drift due to E × B,
which can naturally explain the drifting subpulse phenomena observed in radio band. Based on
the assumption that the magnetosphere has a global current loop which starts from the star,
runs through the outer gap, the wind and the inner gap, and returns to the star, Shibata (1991)
proposed a circuit including an electromotive source connected in series with two accelerators (the
inner and outer gaps) and a wind. Providing a fully general relativistic description, Kim et al.
(2005) studied the pulsar magnetosphere and found that the direction of poloidal current in a
neutron star magnetosphere is the same as that in a black hole.

In this work, assuming that the critical magnetic-field lines are at the same electric potential
as the interstellar medium (ISM) 1 (Goldreich & Julian 1969), we propose a circuit model for the
pulsar magnetosphere. For an aligned pulsar whose rotation axis is parallel to the magnetic axis,
we find that the pulsar should be positively charged on the surface under the condition of the close
circuit. The total electric field along the field line, E‖, in the magnetosphere is then composed of
two components: that due to charge-departure from the Goldreich-Julian density, and that due to
the charge of the pulsar.

This paper is arranged as follows. The model is introduced in Section 2. The total charges of
pulsar are estimated in Section 3. In Section 4, we discuss the charges of low-mass strange stars and
present observational evidence for low-mass millisecond pulsars. Section 5 presents our conclusions.

2 THE MODEL

As shown in Figure 1, the foot points of the lines ‘a’, ‘b’, and the rotation axis on the star surface
are denoted as Points ‘A’, ‘B’ and ‘P’. Point ‘P’ is also the magnetic pole of the star. We assume
that the potential of the critical field line b equals to that of ISM at infinity, φB = 0; otherwise,
a closed electric current in the two regions (i.e., Region I: bounded by lines “a”, and Region II:
between lines ‘a’ and ‘b’) of open field lines is impossible.2 Then for an aligned pulsar, the potential
φI < 0 (within Region I) and φII > 0 (within Region II) in the regime of φB = 0. Therefore, the
negatively charged particles should flow out along the open magnetic field lines within Region I
from the star, but positively charged particles flow out through Region II.

These flowing charged particles to the collimated direction form the current of a circuit. A
circuit model can be proposed to describe the pulsar magnetosphere. The relation between the
elements of the magnetosphere and circuit is as follows.

(1) The total inner radiation of the pulsar corresponds to an electromotive power connected in
parallel with a capacitor. Note that the resistance is negligible due to the perfect conductivity
of the star.

(2) The inner gaps which include the ICG and the IAG (Qiao et al. 2004a, 2004b) correspond to
a parallel connection of a resistor and a capacitor. When a spark takes place in the gap, it can
be represented by a resistor; if there is no spark, the voltage on the gap is so high that it can
be described by a capacitor.

(3) The outer gap and the pair-plasma wind correspond to a series connection of a inductor and a
parallel connection of a resistor and a capacitor.

The inner gaps (including ICG and IAG in this paper) and an outer gap may work in a
magnetosphere.3 There is no current in the circuit until a spark takes place in the inner gaps, so

1 We choose the potential of the ISM to be zero, φISM = 0.
2 For aligned pulsars, electric current flows outward in the two regions if one sets the potential of the

polar line to equal to that of ISM, φP = 0, since all the potentials of open-field lines, except the polar line,
are greater than zero. Also one can see that the current flows inward in those two regions if one chooses
the potential of the last open-field lines to be zero, φA = 0. Current flows can not be closed in both these
cases.

3 The inner annular gap and the outer gap might not exist simultaneously.
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Fig. 1 Sketch of the magnetic field line, electric field line, and magnetospheric charge distribu-
tion for an aligned pulsar. Line ‘a’ is the last open magnetic field line. Line ‘b’ is the critical field
line. Region ‘I’: with a boundary of lines labelled ‘b’, and Region ‘II’: between lines ‘a’ and ‘b’.
If the potential of line ‘b’ equals to that of interstellar medium, then the potential is positive
within Region ‘II’ and negative within Region ‘I’.

Fig. 2 An equivalent circuit of pulsar magnetosphere. An electromotive source connected with
other parts in series corresponding to the ICG, IAG, the outer gap (which is not essential in the
model and thus not shown in the figure) and the pair-plasma wind. The current is determined
by the power voltage V. “R” stands for plasma resistance effects if a spark happens, mainly the
losses of relativistic particles. “C” represents the gap capacitance effects if there is a potential
drop on the gap. “L” describes the electromagnetic characteristic of flow.

these gaps could be simulated by a parallel connection of a resistor and a capacitor, connected to
the other parts in series (as shown in Fig. 2).

In Figure 2, the power of the star is equivalently modelled by the voltage V and capacitance
Cstar. The star is magnetized and possesses an interior electric field, E, which satisfies

E +
Ω × r

c
× B = 0, (1)

where Ω is the angular velocity of the star rotating around the dipole rotation axis, related to the
rotating period P by P = 2π/Ω. The magnetosphere of a rotating isolated-pulsar is thus generally
concluded to be powered by an electric source with a certain potential drop between the polar
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angle θB and θ of

φ =
R2ΩB

2c
(sin2 θ − sin2 θB) ≈ 3 × 1016R2

6B12P
−1(sin2 θ − sin2 θB) Volts , (2)

where R6 = R/(106 cm), B12 = B/(1012 G), assuming the pulsar is magnetized homogenously.
According to the equation of dipolar field line, r = rd sin2 θ (rd is the maximum polar radius), and
the polar angle of null surface θn = cos−1(±1/

√
3), one can obtain sin2 θB = (2/3)3/2R/RL , where

the radius of light cylinder RL ≡ c/Ω = cP/(2π). The capacitance of the star with radius R is, in
‘cgs’ units,

Cstar = 9 × 10−21R Farads. (3)

The electric flow process in a magnetosphere can be equivalently mimicked by an antenna cable
with capacitance Cflow and inductance Lflow, with values estimated by

Cflow � 1
2
l
(

ln
r2

r1

)−1

(4)

and
Lflow � 2l ln

r2

r1
, (5)

respectively, l, r1, and r2 being the length, and inner and outer radius of the cable. The path
length of the electric current is l ∼ √

3/2rL = 5.8 × 107P m. Near the light cylinder, the ratio
r2/r1 ∼ (rL + rL/

√
2)/rL = 1.7; but on the stellar surface, the ratio r2/r1 = (3/2)3/4 = 1.4. Both

values are independent of P , B, or other parameters, and so we simply choose r2/r1 = 1.5 in this
paper. One therefore comes to

Cflow ∼ 7.2 × 107P Farads, (6)

and
Lflow ∼ 4.7 × 107P Henries. (7)

In case there is enough binding energy of charged particles on the star’s surface, an RS-type
(RS75) vacuum gap should exist near the polar cap, which can be the equivalent of a capacitor of
two parallel slabs, with

CRS =
r2
p

4h
= 5.3 × 104R3

6Ph−1
3 Farads, (8)

where rp = R sin θp = 1.45 × 104R
3/2
6 P 1/2 cm is the radius of the polar cap, the gap height h is

a model dependent parameter, h3 = h/(103 cm). From the above definition of ICG and IAG, we
obtain the total values of CICG and CIAG, by a simple replacement.

For the curvature-radiation-induced and the resonant inverse-Compton-scattering-induced cas-
cade models, the gap heights h could be (e.g., Zhang, Harding & Muslimov 2000)

hcr = 5.4 × 103ρ
2/7
6 B

−4/7
12 P 3/7 cm, (9)

and
hics = 2.79 × 104ρ

4/7
6 B

−11/7
12 P 1/7 cm, (10)

where ρ is the radius of curvature of the field line, ρ6 = ρ/(106 cm). In Zhang et al. (2000) the
surface temperature, Ts, is treated self-consistently (i.e., self-sustained polar cap heating), and the
gap parameter is thus not dependent explicitly on Ts.

If the field lines which cross the light cylinder can not co-rotate, then the active region on
the surface of the star is the polar cap, from polar angle 0 to θp � √

2πR/(cP ) = 1.45 ×
10−2(R6/P )−1/2. In this case, the potential difference of the electrical source is

Vcap = −6.58× 1012R3
6B12P

−2 Volts. (11)
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Since the dominant source of rotation energy dissipation is through Rwind, we can estimate
Rwind with

Rwind � V 2
cap

Ėrot

= 11M−1
1 R4

6B
2
12Ṗ

−1
15 P−1 Ohms, (12)

where the rotation loss rate Ėrot = −4π2IṖ /P 3, I ∼ 1045M1R
2
6 g·cm2 is the moment of inertia for

a neutron star with mass ∼ M1M�, radius ∼ R6 × 10 km, and period derivative Ṗ15 = |Ṗ |/10−15.
Compared with Rwind, the stellar resistance Rstar is negligible due to the perfect conductivity of
the star.

The potential drop of the outer gap, where no spark happens, corresponds to a resistor, which
is presumed to be combined with the wind dissipation into the Rwind in Figure 2. In the magnet
dipole radiation model, the field B and the spindown Ṗ is connected by (e.g., Manchester & Taylor
1977) B12 = 3.2 × 107

√
PṖ , we then have

Rwind = 11M−1
1 R4

6 Ohms. (13)

For the potential drops of the inner gaps (ICG and IAG), when sparking provides the necessary
charge to close the circuit, they should correspond to the resistors (RIAG and RICG, shown in Fig. 2).
When there is no sparking, the gap grows and they can be described by the capacitors (CIAG and
CICG, shown in Fig. 2).

Let us analyze the circuit in Figure 2. Although the electric power has a fixed potential supply,
the current is changing due to the inner gap sparks. In this sense, the equivalent circuit description
in this paper is not a simple DC circuit. Because of the erratic sparking, the resistance RRS could be
taken as the sum of many sinusoidal functions of time, RRS = Σ∞

n=0Rn sin nωt. The electric current
between arbitrary points M and N in the circuit can also be in this form, IMN = Σ∞

n=0In sinnωt.
According to the Kirchhoff’s current and voltage laws, the complex impedances of parallel

connection circuits composed of RICG and CICG, RIAG and CIAG, Rwind and Cflow are zICG =
RICG/(1 + iωRICGCICG), zIAG = RIAG/(1 + iωRIAGCIAG), zwind = Rwind/(1 + iωRwindCflow) +
iωLflow, respectively, where i =

√−1, ω the angular frequency of electric current modulation.
Defining z′ ≡ zICG + zIAG + zwind, one obtains the total complex impedance to be

ztotal =
z′

1 + iωz′Cstar
Ohms. (14)

Let ω = ω0 when |ztotal| is the smallest value. In this case, the potential drop between the
inner vacuum gap is the highest. It is possible that there exists an oscillation with time scale ω−1

0
in the circuit. We expect that some of the variations of radio intensity on different timescales could
be hints of such circuit oscillations.

In case of CICG = CIAG = Lflow = Cflow = 0, one has the total impedance z = RICG + RIAG +
Rwind. Physically this result represents a DC circuit model (Shibata 1991), where the total energy
loss is generally assumed to be Ėrot � 2πr2

pcρGJ ·Vcap, with ρGJ the Goldreich-Julian density. This

energy loss leads to a formula of calculating the pulsar magnetic field, B �
√

c3IP Ṗ /(π2R6) (e.g.,
Manchester & Taylor 1977; Xu & Qiao 2001) .

3 ARE PULSARS CHARGED ELECTRICALLY?

If the charged particles follow the Goldreich-Julian density distribution, ρGJ, they will be in balance
with the electrostatic force. The equivalent “Poisson” equation in comoving frame then is (e.g.,
Beskin, Gurevich & Istomin 1993)

∇ · E = 4π(ρ − ρGJ). (15)

As mentioned by RS75, the electric field, EGJ, on the star’s surface due to lack of charge density
relative to the Goldreich-Julian density (e.g., for vacuum outside the star, ρ = 0) is normal to
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Fig. 3 An illustration of the total electric field E as a function of polar angle θ. EGJ is due
to the charge-separation in the pulsar magnetosphere, provided that the potential of line a is
the same as the ISM. Emo is induced by the charges of the star. The total electric field (middle
solid thick curve), EI and EII within the corresponding regions, could be a combination of EGJ

(lower solid thin curve) and Emo (upper solid thin straight line).

the surface. The solution of RS75 (see its appendix I.b) for the electric field on the surface is
Es = −2ΩBh/c < 0, which is equivalent to choosing the potential of the field line a to be the same
as that of the ISM, φA = 0. From Equation (15), one can also find generally the surface electric
field EGJ < 0 in both Regions I and II, as shown in Figure 3.

When the potential of the line b is zero, as mentioned above, the direction of the electric
field vector within Region I, EI, is inward while that in Region II, EII is outward. How can one
understand consistently this picture? Why should this be reasonable if one choose φB = 0, rather
than φA = 0? The answer could be that there must be positive charges on the star surface which
increases the potential of the star. These charges provide a monopole electric field Emo, which
combines with EGJ to form the total electric field, as the shown by EI and EII in Figure 3.

The electricity induced by the charges on the star’s surface is so high that the electric field
is reversed across Region ‘II’ when the electric field of the star itself and the field caused by the
charged particles are combined. Therefore, current can flow out and come back in he magnetosphere
to close the pulsar’s generator circuit. Reversing the argument, the increased electric field supports
our assumption that the potential of line ‘b’ is zero.

Provided that two conditions are satisfied (first, the star has positive charges on the surface;
secondly, the potential of the line ‘b’ is zero), the increase of the star’s potential relative to that of
ISM can be estimated to be of the order of the potential drop between ‘A’ and ‘B’ (from Eq. (2))

Vstar ∼ φA − φB =
3 × 1016R2

6B12

P
(sin2 θA − sin2 θB) ≈ 3 × 1012R3

6B12

P 2
Volts. (16)

From Equations (3) and (16), the total charge Q on the star’s surface is

Q = Vstar × Cstar ≈ 3 × 10−3R4
6B12

P 2
Coulombs. (17)

Since the magnetic field B ∼
√

PṖ , one has Q ∼
√

Ṗ /P 3 ∼ Ė
1/2
rot , where the rotation energy

loss rate Ėrot ∼ ΩΩ̇. Observationally, the X-ray luminosity can be a function of the spin-down
energy loss for all rotation-powered pulsars, Lx ∼ Ėrot (Becker & Trümper 1997); but the γ-ray
luminosity Lγ ∼ Ė

1/2
rot (Thompson 2003). One can also note that the energetic γ-ray luminosity is

proportional to the electric charge Q, rather than to Ėrot.
Three quantities (mass M , angular momentum L, and charge Q) are used to describe com-

pletely a black hole. The collapse of an evolved massive star might form temporally a rotating
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magnetized pulsar, and then a black hole. It is possible that a pulsar would be charged with Q
before a Kerr-Newman black hole forms finally. The black hole charge depends on the way of its
formation, and may be proportional to B/P 2. This scenario could be tested if Kerr-Newman black
holes are discovered.

One thinks conventionally, according to Equation (15), that no acceleration (e.g., E‖ = 0)
occurs if ρ = ρGJ in pulsar magnetosphere. We note, however, that this conclusion is valid only if
no solenoidal force field appears. In other words, E‖ �= 0 though ρ = ρGJ if one adds any solenoidal
force field in the magnetosphere. A charged pulsar contributes a solenoidal electric field, which
results in an acceleration near the pulsar (which decays as 1/r2). In the close field line region,
this electric field causes a re-distribution, so that E‖ = 0. In the open field line region, this field
accelerates particles (for aligned pulsars, to accelerate negative particles in Region I, and positive
particles in Region II; see Fig. 1). Certainly, an extra acceleration due to ρ �= ρGJ exists too. As
demonstrated in Figure 3, a very large acceleration may exist near the last open field lines, which
could be favorable to the high energy emission in the caustic model (Dyks & Rudak 2003). An
outer gap may not be possible if particles can flow out freely either from the surface (for negligible
binding energy) or from the pair-formation-front (for enough binding energy) of a charged pulsar.

4 LOW-MASS BARE STRANGE STARS

From above analysis, a pulsar’s charge can be estimated through Eq.(17) if the quantities R, B
and P are known. What is the implication of charged pulsars? It is found in this section that
millisecond pulsars may have small radii if the radio luminosity is proportional to the charge.
Pulsars can be bare strange stars, and some of them can be of low-mass (Xu 2005). Due to the color
self-confinement of quark matter, the density of low-mass bare quark star is roughly homogeneous,
and its mass would be

MQS =
4
3
πR3(4B̄) = 0.9R3

6B̄60M�, (18)

where the bag constant B̄ = 60B̄60 MeV fm−3 (i.e. 1.07×1014g cm−3). For a star with pure dipole
magnetic field and a uniformly magnetized sphere, the magnetic moment is

µ =
1
2
BR3. (19)

If the magnetized momentum per unit mass is a constant µm = (10−4 ∼ 10−6)G · cm3 · g−1, the
magnetic moment is (Xu 2005)

µ = µmM. (20)

Combing Equations (18)–(20), one can obtain the magnetic field strength

B = 1.8 × 10−18µmB̄60M�. (21)

Therefore, for a low-mass bare strange star, if the values of its period P , radius R (or the mass
MQS), and the polar magnetic field B (or the parameter µm) are all known, the total charges on
the surface can be obtained from Equation (17).

Can we find evidence for low-mass millisecond pulsars? The pulsar’s radius was assumed to
be a constant in above sections. In fact, the radius should vary according as we are dealing with
a normal neutron star or a strange quark star. The radius of bare strange stars can be as small
as a few kilometers (even a few meters). Could one find any observational hints about the star
radius? It is suggested that normal pulsars might be bare strange stars with solar masses, whereas
millisecond pulsars are of low masses (Xu 2005). Can we show evidence for low-mass millisecond
pulsars in the bare strange star model for pulsars? These are investigated, based on the observed
pulsar data.4 There are 1126 pulsars with P, Ṗ and radio luminosity L1400 (mJy kpc2) at 1400MHz
all known. The numbers of millisecond and normal radio pulsars are 35 and 1091, respectively, if
their dividing line is at P = 15 ms. Here we refer the 35 millisecond radio pulsars (P < 15 ms) as
Sample I and the 1091 normal radio pulsars (P > 15 ms) as Sample II.

4 http://www.atnf.csiro.au/research/pulsar/psrcat/
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Fig. 4 Left: Observed luminosity L1400 (mJy kpc2) at 1400 MHz as a function of ζ for 1126

radio pulsars, where ζ ≡ Ṗ
P3 . The solid squares represent the millisecond radio pulsars (Sample I)

with P < 15 ms while the empty circles are the normal ones (Sample II) with P > 15 ms. The
solid line is the best least squares fit for Sample II, and the dash line is that for Sample I, with
the slope assumed to the same as Sample II. Right: Normalized number distribution of L1400/ζ
for Sample I (dash step line) and Sample II (solid step line). L1400/ζ is only a function of pulsar
radius according to Eqs. (22)–(25).

Assuming the pulsar radius is a variable, from Equation (17), one can obtain the pulsar’s charge
Q ∼ R4 B

P 2 ∼ R4( Ṗ
P 3 )1/2 since the magnetic field strength B ∼

√
PṖ . Defining ζ ≡ Ṗ

P 3 , one comes
to

log Q ∼ 4 logR +
1
2

log ζ. (22)

At the same time, the rotation energy loss rate Ėrot � IΩΩ̇ ∼ R5ζ, where the rotational inertia
of the star I � 2

5MR2 ∼ R5 (the star is assumed to be a homogeneous rigid sphere), i.e.,

log Ėrot ∼ 5 logR + log ζ. (23)

The correlation between L1400 and ζ and the normalized number distribution of L1400/ζ are
shown in Figure 4. One can see that, for a certain value of ζ, the luminosity of a millisecond pulsar
is lower than that of a normal pulsar.5 For showing evidence for low-mass millisecond pulsars by
this relation and distribution, we first give the best fit line by the least square method for the larger
Sample II. Next, we assign the slope of fitting line for the smaller Sample I to be the same as that
of Sample II. Third, we check the relation L ∼ R separately on two assumptions, L = L(Q) (i.e.,
L is only a function of Q) and L = L(Ėrot) (i.e., L is only a function of Ėrot). Finally, through
comparing the intercepts of two fit lines, we can obtain the ratio of radius of Sample I to that of
Sample II.

From the left panel in Figure 4, we find that the best fit line for Sample II is

log L1400 = 2.86 + 0.11 log ζ. (24)

Assigning the same slope for Sample I and defining the radius ratio of Sample I to Sample II as
Ratio I, we find that the intercept of fit line for this sample is 1.56.

5 A low-mass normal neutron star can not spin rapidly at a period of ∼ ms. The inertia of a low-mass
neutron star is ∼ MR2 ∼ M1/3. Therefore, this observation may not be explained by the suggestion that
millisecond pulsars are low-mass normal neutron stars.



Current Flows in Pulsar Magnetospheres 225

Table 1 The radius and mass ratios with assigned slope of Sample I (Ratio I) and with assigned
slope of Sample II (Ratio II). Radius ratio, RI/RII; Mass ratio, MI/MII; suffix I referring to
millisecond pulsars; II, normal pulsars.

L ∼ Q relation Radius Ratio I Mass Ratio I Radius Ratio II Mass Ratio II

L = lQm 0.35 0.04 0.03 2 × 10−5

L = kĖn
rot 0.18 6 × 10−3 0.004 5 × 10−8

If L = lQm, with (l, m two constant parameters), then from Equations (22) and (24), we
obtain the Ratio I, at 1400MHz, shown in the second column, first line of Table 1. In the same
way, if L = kĖn

rot with k, n constant parameters, then from Equations (23) and (24), we obtain
the Ratio I, shown in the second column, second line, of Table 1. In addition, the best fit line for
Sample I is

log L1400 = 4.73 + 0.35 log ζ. (25)

Assigning the same slope as for Sample II, we find that the intercept of the fit line for this
sample is 6.04. Then, for L = lQm or L = kĖn

rot, one obtains the ratios of RI/RII (Ratio II) shown
in the fourth column of Table 1. The ratios of the mass of millisecond pulsars to that of normal
pulsars, MI/MII, can also be calculated from Equation (18); the results are also shown in Table 1.

From the right panel in Figure 4, it is evident that the values of L1400/ζ, as a function of
pulsar radius, include two peaks, the higher one (larger radius) for normal pulsars, and the lower
one (smaller radius) for millisecond pulsars.

In sum, the radii of Sample II are always larger than those of Sample I, which gives evidence that
millisecond pulsars have smaller radii and masses than those of normal radio pulsars. Especially,
from the right panel in Figure 4, we see that the normalized distributions of L1400/ζ for Sample I
and Sample II are separately clustered around about 13 and 15. This two-peak structure gives
roughly the same result and supports the evidence for low-mass millisecond pulsars. If one thinks
that normal pulsars are bare strange stars with mass ∼ M�, the mass of millisecond pulsars can
be as low as ∼ 10−2M�, or even more lower.

5 CONCLUSIONS AND DISCUSSION

We assume the pulsar magnetosphere to have a global current which starts from the star, runs
through the inner core gap, the wind, the outer gap and the inner annular gap, and returns to the
star. Moreover, we study the characteristics of the four circuit elements: the electromotive source,
inner core gap, inner annular gap, and the outer gap and wind. It is emphasized that the potential
of the critical field lines is equal to that of interstellar medium. We find, in this case, that an aligned
pulsar, whose rotation axis and magnetic dipole axis are parallel, should be positively charged for
the pulsar’s generator circuit to be closed. The current flows out through the light cylinder and
then flow to the stellar surface along the open magnetic field line. One can extend this study for
oblique pulsars. For an orthogonal pulsar, Beskin & Nokhrina (2004) have argued that the current
may flow between the regions of closed and open field lines.

There are five independent parameters to describe completely the dynamics of a pulsar mag-
netosphere with a dipole field and a uniform density of the star. They are the radius R, the mass
M(� 16πB̄R3/3 in case of bare strange stars, with B̄ the bag constant), magnetic strength B (or
magnetic moment µ ∼ BR3), period P , and the inclination angle α. Typical parameters for radio
pulsars are: R ∼ 106 cm, M ∼ 1.4M�, P ∼ (10−3 − 1) s, and B ∼ 108 − 1012 G. There is no solid
observational evidence for these parameter values being really typical. In case that pulsars are bare
strange stars (probably with low masses), some of the above values may not be representative,
and some parameters may be related to each other (Xu 2005). The statistics between the radio
luminosity and pulsar’s electric charge (or the spindown power) may hint that millisecond pulsars
could be low-mass bare strange stars.

We have only modeled the magnetospheric circuit for aligned pulsars. However, this does not
mean that our model would not be applicable to the more general case of oblique pulsar. In a
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previous calculation (fig. 2 of Qiao et al. 2004), it is shown that the geometry of the annual region
is not changed quantitatively when the inclination angle varies from 0◦ to 75◦. We may expect that
the results presented in this paper will not change significantly for oblique rotators, but detailed
considerations on the issues are necessary in future work.
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