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Abstract Using the Chebyshev-tau method, the generation of oscillatory non-
axisymmetric stellar magnetic fields by the α2-dynamo is studied in spherical ge-
ometry. Following the boundary conditions given by Schubert & Zhang, the spherical
α2-dynamo consists of a fully convective spherical shell with inner radius ri and
outer radius ro. A comparison of the critical dynamo numbers of axisymmetric and
φ-dependent modes for different thicknesses of the convective shell and different α-
profiles leads to the following qualitative results: (i) when the angular factor of α-
profile is sinn θ cos θ (n = 1, 2, 4) the solutions of the α2-dynamo are oscillatory and
non-axisymmetric, (ii) the thinner the convective shell, the more easily is the non-
axisymmetric mode excited and the higher is the latitudinal wave number, (iii) the
thickness of the outer convective shell has an effect on the symmetries of the magnetic
fields.
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1 INTRODUCTION

A dynamo process is recognized to explain the cyclic evolution of stellar magnetic fields in which
two basic processes are involved. The first one is Ω-effect which shears pre-existing poloidal fields by
differential rotation to produce a relatively strong toroidal fields; the second is α-effect which lifts
and twists toroidal flux tubes to regenerate poloidal fields (Parker 2001). Combination of the two
mechanisms at different relative magnitudes leads to three types of turbulent dynamo: α2-dynamo,
α2Ω-dynamo and αΩ-dynamo (Hoyng 1991).

However, both observations and theories indicate that during the evolution of typical magnetic
stars of spectral Type A or F, they pass through a fully convective Hayashi phase, and there are
some pre-main sequence (T Tauri, M dwarf, etc.) stars which are fully convective objects. For these
stars the type of dynamo is α2-dynamo produced only by the α effect.

Traditional solution of α2-dynamo is stationary and axisymmetric (Krause & Rädler 1980).
The oscillatory dynamo behavior is produced by a combination of the α-effect and differential
rotation. Cyclic variations of such activity indicators as area covered by photospheric spots, spots
latitudes and longitudes, strength of chromospheric emission lines, are expected to occur on active
stars (Cutispoto & Rodonó 1992). There have been pioneer works done in the search for oscillatory
solutions of α2-dynamo. Baryshnikova & Shukurov (1987) discussed a one dimensional α2-dynamo
in a thin disc of turbulent conducting fluid and demonstrated that oscillatory magnetic fields can be
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generated. These oscillations were suggested to be generated by boundary effects; Rädler & Bräuer
(1987) investigated axisymmetric spherical and disk models for pure α2-dynamo and pointed out
that the oscillations depended on the gradient of α.

Furthermore, observations of starspot distribution obtained by Doppler imaging showed non-
axisymmetric patterns of magnetic fields (Piskunov et al. 1990) in equatorial and high-latitude
spots (Hatzes 1995; Rice & Strassmeier 1996), and gave little indications of magnetic dipole field
geometry in T Tauri stars (Joncour et al. 1994). The famous non-axisymmetric feature, i.e., the
flip-flop phenomenon, occurs not only on the surface of rapidly rotating late-type giants FK Com
and RS CVn (Berdyugina & Tuominen 1998) but also in single young dwarfs (Rice & Strassmeier
1998). Therefore, further work is desirable to seek after non-axisymmetric and oscillatory dynamo
solutions of the α2-dynamo.

Rüdiger & Elstner (1994) concluded that, in the absence of differential rotation, when α-tensor
is highly anisotropic and its azimuthal component dominates over all the other components, non-
axisymmetric magnetic modes would be preferred. Moss et al. (1991) and Küker & Rüdiger (1999)
solved the nonlinear induction equation in three dimensions and found stable non-axisymmetric
solutions. Schubert & Zhang (2000) reported that oscillatory α2-dynamo behavior occurs when the
outer region of the dynamo action surrounds a large, less magnetically diffusive core. The solutions
were non-axisymmetric and expanded in terms of spherical harmonics Pm

l (cos θ)eimφ. Since only the
simplest case of a constant α was considered, the spherical harmonics were decoupled and only the
lowest order (l=1) was discussed by them. Rüdiger et al. (2003) showed the basic solution for α2-
dynamo was non-axisymmetric and always of quadrupolar parity when the α-effect is latitudinally
inhomogeneous and anisotropic. However, only the first non-axisymmetric modes (m = 1) were
considered.

In the present paper, the generation of oscillatory non-axisymmetric stellar magnetic fields is
examined for the α2-dynamo by using the Chebyshev-tau method. Both the toroidal and poloidal
magnetic fields are expanded in terms of Chebyshev functions for the radial dependence and spher-
ical harmonic functions for the angular dependence. The easiest excited modes are sought at the
onset of dynamo action for different thicknesses of the convective zone and different α-profiles.
The method is checked by analytic solutions with a simple α-profile. We attempted to answer the
following questions: (i) how do different α-profiles affect the spherical geometry of the dynamo ac-
tion?, (ii) can a spherical α2-dynamo generate a non-axisymmetric and oscillatory magnetic fields?
and (iii) what determines the equatorial symmetry of a spherical dynamo? The basic equations are
considered in Section 2. The numerical scheme is described in Section 3. We discuss our results in
Section 4 and give a summary in Section 5.

2 BASIC EQUATIONS OF OUR MODEL

Our model consists of a turbulent fluid spherical shell of inner radius ri surrounding a perfect
inducting radiative core and outer radius ro surrounded by insulator (vacuum). We use the usual
spherical polar coordinates (r, θ, φ) (see Fig. 1). The starting point of our model is the mean-field
dynamo equation without a flow field, governing the evolution of the large scale magnetic fields in
response to the α-effect and magnetic diffusivity,

∂B

∂t
= ∇× (αB) −∇× (β∇×B), (1)

where B is the mean magnetic field, β is the turbulent magnetic diffusivity. Since the anisotropic
β seems not strong (Kitchatinov 2002), we regard it as a constant. The overall structure of α is a
tensor and it represents the interaction of the anisotropic turbulence with the global rotation and
the magnetic fields. In order to simplify our model we use the following scalar expression for the
α-profile in which the nonlinear effect such as α-quenching is neglected,

α = α0f(r, θ), f(r, θ) = sinn θ cos θ sin
[ r − ri

ro − ri

]
, (2)

where α0 is the scale of the α-effect with the dimension of a velocity. The angular factor cos θ
comes from the angular dependence of Coriolis force. Here n is an adjustable parameter. The
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introduction of sinn θ guarantees the α-effect to have a distribution in latitude that is weak in the
polar area. The larger n is, the more the magnetic fields concentrate to the equator (see Fig. 2).
The r dependence of α satisfies α(ri, θ) = α(ro, θ) = 0.

Fig. 1 Geometry of the non-axisymmetric
spherical dynamo in a meridional plane. Its in-
ner radius is ri and outer radius ro. The radia-
tive core (r < ri) is a perfect electrical insulator,
outside of the shell (r > ro) is vacuum and the
magnetic field is potential.

Fig. 2 Angular dependence of α-profile
sinn θ cos θ for different n. The solid line corre-
sponds to n = 4, dashed line to n = 2, dotted
line to n = 1. The larger n is, the more is the
α-effect concentrated toward the equator.

We de-dimension length by the thickness of the shell ro−ri and time by the magnetic diffusion
time (ro−ri)

2

β , then Equation (1) becomes

∂B

∂t
= Rα∇× (f (r, θ)B) + ∇2B , (3)

where Rα = α0(ro−ri)
β is the magnetic Reynolds number, an important parameter in the dynamo

calculation that measures the relative importance of the α-effect to the diffusive effect. Since the
magnetic field is divergence-free, we expand B in term of two scalar functions, h and g, which
represent the poloidal and toroidal potentials, respectively (Chandrasekhar 1961; Moffat 1978;
Zhang & Liao 2003)

B = ∇×∇× rh(r, θ, φ, t) + ∇× rg(r, θ, φ, t), (4)

where r · B = L2h, r · (∇×B) = L2g, L2 = − 1
sin θ

∂
∂θ sin θ ∂

∂θ − 1
sin2

∂
∂φ2 .

The equations for the poloidal and toroidal field components can be obtained by applying r·
and r · ∇× to Equation (3). Thus,

∂

∂t
L2h = Rα

( ∂f
∂θ

Bφ + f L2g
)

+ L2∇2h, (5)

∂

∂t
L2g = Rα

[
1

r

∂

∂r

(
r
∂f

∂r

)
L2h+

∂2f

∂r∂θ
Bθ − (∇L2h) ·∇f−L2h∇2f+

∂f

∂θ
(∇×B )φ − f ∇2L2h

]
+L2∇2g, (6)

where Bφ = 1
r sin θ

∂h
∂φ

+ 1
sin θ

∂2h
∂r∂φ

− ∂g
∂θ

, Bθ = 1
sin θ

∂g
∂φ

+ 1
r

∂h
∂θ

+ ∂2g
∂r∂θ

,

(∇×B)φ =
∂

∂θ
∇2h +

1
r

1
sin θ

∂g
∂φ

+
1

sin θ

∂2g
∂r∂φ

, ∇2 =
1
r2

∂

∂r
r2 ∂

∂r
− 1

r2
L2.

For the radial component Br, it is equal to L2h/r.
As is well known, boundary conditions play an important role in the solution of hydromagnetic

equations (see the discussion in Schubert & Zhang 2001). In the present paper, the boundary
conditions at r = ro and r = ri for Equations (5) and (6) are straightforward. We assume the
radiative core (r < ri) to behave effectively as a perfectly conducting inner core. The exterior
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(r > ro) is a vacuum and the magnetic field is assumed to be potential. Since both the magnetic
fields and tangential electric fields must be continuous at the two interfaces (Schubert & Zhang
2001; Ossendrijver 2003), we obtain

at r = ri, h(ri) = 0, − Rαrif (r, θ)
∂h
∂r

+
∂(rg)
∂r

= 0, (7)

at r = ro, g(ro) = 0, ro
∂h
∂r

+ (1 + l)h = 0, (8)

where l comes from the Legendre function Pm
l which is the expansion of the latitude dependence

of h and g (see Schubert & Zhang 2001 for details).

3 NUMERICAL SCHEME

Since the dynamo equations, Eqs. (5) and (6), are two coupled, linear homogeneous equations in
h and g, we can look for their eigen solutions in the form of

[h(r, θ, φ), g(r, θ, φ)] = [h(r, θ, φ), g(r, θ, φ)]est, (9)

where s is the generally complex eigenvalue, s = σ + iω. Real s means monotonic time-dependence
and complex s indicates oscillation. The real part of s gives the growth rate and its imaginary part,
ω, provides the frequency of the oscillatory mode. If the imaginary part of s is zero, the kinematic
dynamo is stationary.

According to the Chebyshev-tau method, we expand h(r, θ, φ) and g(r, θ, φ) in terms of
Chebyshev polynomials Tn(r̂) and surface harmonics Pm

l eimφ in the meridional circular sector
r ∈ [ri, ro], θ ∈ [0, π], where θ is the co-latitude and r̂ range from –1 to 1. The numerical solution
is fully resolved in r and θ, but is severely truncated in φ so that a single value of m is given. We
have

h =
∞∑

n=0

∞∑
l=m

ch
n,lTn(r̂)Pm

l (cos θ)eimφ, (10)

and

g =
∞∑

n=0

∞∑
l=m

cg
n,lTn(r̂)Pm

l (cos θ)eimφ, (11)

where r̂ = 2r − 1+η
1−η ∈ [−1, +1], η is the ratio of ri/ro and m is the azimuthal wave number. If

m �= 0, the solution corresponds to a non-axisymmetric mode. In contrast to the axisymmetric
mode (m = 0), the non-axisymmetric mode has the form of a wave propagating along the azimuth
(the cos(ωt−mφ) type wave) (Ivanova & Ruzmaikin 1985). Here ch

n,l and cg
n,l are the eigenvectors

and are complex in general. Equations (5) and (6) can be expanded in terms of Equations (10)
and (11) based on L2Y m

l = l(l +1)Y m
l . As to the four boundary conditions, they can be expressed

according to Equations (7), (8), (10) and (11) in detail as follows.

∞∑
n=0

∞∑
l=0

ch
n,l(−1)nPm

l (cos θ) = 0, (12)

∞∑
n=0

∞∑
l=0

ch
n,l[2(−1)n+1n2ri + (−1)n]Pm

l (cos θ) = 0 at r = ri, (13)

∞∑
n=0

∞∑
l=0

cg
n,lP

m
l (cos θ) = 0, (14)

∞∑
n=0

∞∑
l=0

ch
n,l[2n2ro + (1 + l)]Pm

l (cos θ) = 0 at r = ro. (15)
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After truncating the infinite set of equations at n = nmax and l = lmax, a finite system is
obtained. We set up a numerical scheme to determine the eigenvalues s and eigenvectors ch

n,l, c
g
n,l.

In general, if n > nmax and l > lmax, the eigenvalues apparently converge, nmax and lmax are
different for different model parameters. We seek the eigenvalues of Equations (5) and (6) for each
given m, i.e. we consider separately the evolution of each φ harmonic of the magnetic fields because
B is linear and the profile of α is axisymmetric (Ivanova & Ruzmaikin 1985). We consider only
those modes that neither grow nor decay, with the real part of s zero. The corresponding magnetic
Reynolds number Rα is the critical dynamo number Rαcr , which we also denote by Rα in the
following for simplicity. Each mode has its own critical dynamo number. The mode with the lowest
critical dynamo number is the preferred stable mode (Krause & Meinel 1988).

As pointed out by Ivanova & Ruzmaikin (1985), with boundary conditions (Eqs.(7) and (8)),
the system of Equations (5) and (6) can be decomposed into two subsystems. One is ch

n,l with l odd
(ch

n,1, c
h
n,3, c

h
n,5· · · · · ·) and cg

n,l with l even (cg
n,0, c

g
n,2, c

g
n,4· · · · · ·). The other is ch

n,l with l even and
cg
n,l with l odd. According to the symmetry of adjoint Legendre polynomial, if m is odd, the first

subsystem generates the magnetic fields with a radial component Br that is symmetric with respect
to the equatorial plane (θ → π − θ) and Bθ is antisymmetric and Bφ is symmetric . It is the so
called “quadrupole parity” solution, and we label it as S. The second subsystem generates the anti-
symmetric Br, symmetric Bθ and antisymmetric Bφ, i.e., “dipole parity” solution, labelled as A.

4 RESULTS

We first discuss the simple profile with α = constant, i.e. f(r, θ) = 1 as a test of our numerical
scheme with analytical results and then carry out an investigation of the characters of the α2-
dynamo.

4.1 Dynamo for Constant α-Profile

When α = constant, Equations (5) and (6) reduce to

(∇2 − s)L2h + RαL2g = 0, (16)

(∇2 − s)L2g − RαL2∇2h = 0, (17)

where ∂/∂t is replaced by s, and h and g are independent. The exact solution to Equations (16)
and (17) is

h = [a1jl(ξ1r) + b1nl(ξ1r) + a2jl(ξ2r) + b2nl(ξ2r)]Y m
l (θ, φ)est, (18)

g =
{ξ2

1 + s

Rα
[a1jl(ξ1r) + b1nl(ξ1r)] +

ξ2
2 + s

Rα
[a2jl(ξ2r) + b2nl(ξ2r)]

}
Y m

l (θ, φ)est, (19)

where jl(r) and nl(r) are spherical Bessel functions of the first and second kinds, respectively, and
ξ1 = 1

2 [Rα +
√

R2
α − 4s], ξ2 = 1

2 [Rα −√
R2

α − 4s]. For each mode m, exact analytic expression for
h and g in this case can be found according to the determinant of a 4 × 4 matrix obtained from
substituting Equations (18) and (19) into the four boundary conditions. Because the α-profile is
constant, the spherical harmonics in the solutions of equations (16) and (17) are decoupled. It is
convenient to discuss the lowest order (l = 1). We obtained the eigenvalues also by the numerical
method mentioned above. The dynamo number Rα is adjusted until onset of dynamo action takes
place ( i.e., the real part of the eigenvalue s is near to zero). With the critical dynamo number Rα

given by numerical method, we can find the analytical growth rate s by the dispersion relation,
Det[ci,j(Rα, s)] = 0.

Table 1 shows the numerical result snum and the analytical result sexa for different ri/ro (η)
ratios. The real parts of all s in Table 1 are less than 10−3 (not shown in the table), so they cor-
respond to the onset of the dynamo action. The agreement between exact and numerical solutions
is better than 0.1% and the results, η = 0.6 and η = 0.8, are the same as the corresponding parts
in Schubert & Zhang (2001).
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Table 1 Exact solutions sexa and numerical ones snum and
the corresponding dynamo number Rα for constant α-profile
with the lowest order (l = 1). The agreement between them
is better than 0.1%.

η Rexa
α sexa Rnum

α snum

0.4 4.78 i1.319 4.78 i1.319
0.6 4.38 i2.979 4.38 i2.979
0.8 4.14 i3.358 4.14 i3.358

Fig. 3 Dynamo number Rα for modes m = 0 − 5 with ri/ro = 0.4 for latitudinally inhomoge-
neous α-effect (α ∼ cos θ sin[π r−ri

ro−ri
]). The axisymmetric mode m = 0 is the stable mode.

Table 2 Dynamo numbers Rα and frequencies ω for modes m = 0 − 4 with different ratios of
ri/ro (η).

η m = 0 m = 1 m = 2 m = 3 m = 4

0.4 Rα=6.06, ω=0 Rα=7.01, ω=0 Rα= 8.49, ω=0 Rα=10.03, ω=0 Rα=11.62, ω=0
0.6 Rα=5.60, ω=0 Rα=6.09, ω=0 Rα=6.71, ω=0 Rα=7.476, ω=0 Rα=8.311, ω=0
0.8 Rα=5.38, ω=0 Rα=5.51, ω=0 Rα=5.71, ω=0 Rα=5.798, ω=0 Rα=6.025, ω=0

4.2 Latitudinally Inhomogeneous α-effect (α ∼ cos θ sin[π r−ri

ro−ri
])

We adopt the angular dependence of α-effect as cos θ, being the simplest form of antisymmetry
across the equatorial plane. The radial dependence satisfies α = 0 at the two interfaces r = ro and
r = ri, and the maximal value of α occurs at the halfway point of the spherical shell. For a giving
m, when nmax and lmax −m are larger than 12 in Equations (10) and (11), all the eigenvalues will
converge. We first take ri/ro = 0.4 for a test. Figure 3 shows the dynamo numbers Rα for different
modes. As m increases, the dynamo number Rα increases too. The axisymmetric mode (m = 0)
corresponds to the lowest Rα. Calculations for other ratios of ri/ro give the same trend (seen
Table 2). Since the mode with the lowest dynamo number is the preferred stable mode (Krause &
Meinel 1988), we say all the solutions with this simply α-profile are axisymmetric. Furthermore,
the imaginary parts of the eigenvalues s, i.e., the frequency ω, are zero. So all the modes are
stationary. So we conclude, just as in the conventional wisdom on α2-dynamo solution, all the
modes are stationary and axisymmetric. We note that Rα decreases with increasing ri/ro ratio,
that is, the thinner the shell is, the easier is the axisymmetric mode excited.

4.3 Latitudinally Inhomogeneous α-effect (α ∼ sin2 θ cos θ sin[π r−ri

ro−ri
])

In this subsection we adopt the profile, sin2 θ cos θ sin[π r−ri

ro−ri
]. Figure 4 displays the values of the

dynamo number Rα for the modes m = 1− 4, separately for two values of of the ratio ri to ro, 0.4
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Fig. 4 Dynamo number Rα for latitudinally inhomogeneous α-effect profile (α ∼
cos θ sin2 θ sin[π r−ri

ro−ri
) for ri/ro ratio of 0.4 (left) and 0.6 (right). The dashed line

links the symmetric solutions and the dotted line, the anti-symmetric ones with
respect to the equatorial plane.

Fig. 5 Contours of the toroidal field Bφ in
a meridional plane for the α ∼ sin2 θ cos θ
sin[π r−ri

ro−ri
] profile, Rα=14.986 and ri/ro=0.4 at

t=0. Dashed contours indicate for Bφ < 0, and
solid contours for Bφ > 0. The field is anti-
symmetric with respect to the equatorial plane.

Fig. 6 Contours of the toroidal field Bφ in
a meridional plane for the α ∼ sin2 θ cos θ
sin[π r−ri

ro−ri
] profile, Rα=13.61 and ri/ro=0.6 at

t=0. Dashed contours indicate for Bφ < 0, and
solid contours for Bφ > 0. The toroidal fields are
symmetric with respect to the equatorial plane.

and 0.6. The dashed line links the quadrupole parity solutions and the dotted line, the dipole parity
solutions. When ri/ro = 0.4 the dipole parity solutions lie somewhat lower than the quadrupole
parity solutions, the latter are excited somewhat more easily than the former. The second harmonic
m=2 corresponds to a minimum Rα (we only check the modes 0–5, which could be enough). Thus,
the solution for the model with α-profile sin2 θ cos θ sin[π r−ri

ro−ri
] and ri/ro=0.4 is non-axisymmetric

with azimuthal wavenumber m=2. For the poloidal fields, Ch
n,3 and Ch

n,5 are much larger than
the other coefficient of Ch

n,l according to the eigenvector, and the latitudinal distribution of Br

is mainly dominated by the adjoint Legendre polynomials P 2
3 and P 2

5 . Moreover, P 2
2 and P 2

4 are
dominant for the toroidal magnetic fields. So, Br is symmetric with respect to the equatorial plane,
Bθ is antisymmetric and Bφ is symmetric. So the fields have “dipole parity”. Figure 5 presents the
Bφ contour which is anti-symmetric respect to the equatorial plane in a meridional plane at t=0.
For this stable anti-symmetric mode, the imaginary part of s is 0.2198. Given the values of the
magnetic diffusion β and the radius of the stellar radius, we can obtain the star’s magnetic cycle.
The variation of the total magnetic field energy is cyclic too.
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The right panel of Figure 4 shows the case of ri/ro = 0.6. Contrary to the case of ri/ro=0.4,
Rα for the quadrupole parity solutions are to some extent lower than the dipole parity ones.
So in this case the quadrupole parity solutions are more easily excited. The solution for this
model is oscillatory with non-axisymmetric mode m=2 too. However, because the adjoint Legendre
polynomials P 2

2 and P 4
2 dominate the poloidal field, and P 2

3 and P 2
5 , the toroidal field, the field

is symmetric respect to the equatorial plane. Figure 6 shows the corresponding Bφ contours in a
meridional plane at t=0.

To sum up, when we adopt the α-profile sin2 θ cos θ sin[π r−ri

ro−ri
], all the solutions are oscillatory

and non-axisymmetric. Whether the dipolar or quadrupole parity solutions are excited depends
on the ratio of ri/ro. When the convective shell is thin the symmetric solutions are easier to be
excited. Otherwise the anti-symmetry ones will be excited. This conclusion will be further clarified
in the following subsection.

4.4 Results from Varying n and ri/ro

In the following, we shall discuss the equatorial antisymmetric α-profile sinn θ cos θ sin[π r−ri

ro−ri
] with

n=1, 2 or 4, describing the latitudinal profile of the α-effect. The term sinn θ plays an essential role
in producing non-axisymmetric oscillatory solutions. We investigate the solutions for the profile
with different values of n and ri/ro with the numerical method mentioned in Section 3. Tables 3–5
list the results for the critical dynamo number Rα and the frequency ω for the different parameter
values. Here Am denotes a solution that is anti-symmetric with respect to the equatorial plane
(dipolar parity solution) and with azimuthal wave number m, while Sm denotes a symmetric
solution (quadrupole parity solution).

Tables 3, 4 and 5 show that with the sinn θ dependence, we obtain the same conclusion as in
Subsection 4.3, i.e., all of them have non-axisymmetric oscillatory solutions. Although the oscilla-
tory axisymmeric solutions may occur in our test, they do not correspond to the lowest dynamo
numbers. We try to find the most easily excited mode for different n and different η. Comparing
results for different ratios of inner radius to outer radius (η = 0.2, 0.4, 0.6 and 0.8) for the same
parameter n in each of the three tables, it is obvious that as η increases, i.e., as the thickness of the
shell decreases, the critical dynamo numbers Rα decreases and the mode number m that are the
most easily excited increases. So, we have obtained the same conclusion as Rüdiger et al. (2003):
“The thinner the (outer) α-shell, the higher is the latitudinal mode number m of the modes excited
with the lowest dynamo number Rα.” On the other hand, all the critical dynamo numbers Rα cor-
responding to dipole parity solutions are smaller than the quadrupole parity ones for η=0.2 and
η=0.4. For η=0.6 and η=0.8, however, we have the contrary result. So we can conclude that when
a sinn θ factor is included in the α-profile, all the solutions are oscillatory and non-axisymmetric.
Whether the solutions are symmetric or anti-symmetric respect to the equatorial plane depends on
the thickness of the convective shell. Further computation indicates that when the convective shell
is relative thick (ri/ro < 0.56) the anti-symmetric solutions are somewhat more easily excited, and
that, when the convective shell is thin (0.56 < ri/ro < 1) the symmetric ones are dominant.

5 CONCLUSIONS AND DISCUSSION

In this paper, we have investigated the characteristics of linear kinematic spherical α2-dynamo.
With the boundary conditions given by Schubert & Zhang(2001), we use Cheyshev-tau method
to find the solutions of the dynamo equation, for which the radial dependence of the poloidal and
toroidal magnetic fields is expanded in terms of the Chebyshev function Tn(r̂) and the angular
dependence in terms of spherical harmonic Y m

l (θ, φ). It does not need much computation time and
the convergence is fast. Another merit of the method is that the characteristic parameters of all the
azimuthal modes, m=0, 1, 2 and 3 · · ·, for certain parameters can be sought and the modes that
are the most easily excited can be identified. The code has been checked by the analytic solution
with the simplest α-profile that is decoupled for each mode. Other numerical method to solve the
eigenvalue problem has also been used to test the code. It is found they give consistent results.

Our calculation indicated that if the angular dependence of α is simply taken as cos θ (the
effect mainly concentrated in the polar area), the solution is stationary and axisymmetric, just
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Table 3 Dynamo number Rα and the frequency ω of symmetric (S) and anti-

symmetric (A) solutions α ∼ sin θ cos θ sin[π r−ri
ro−ri

] profile for four values of η=ri/ro,

0.2, 0.4, 0.6 and 0.8. The number following S or A is the mode number of the most

easily excited mode.

η = 0.2 η = 0.4 η = 0.6 η = 0.8

(S1)Rα ω (S1)Rα ω (S2)Rα ω (S5)Rα ω

13.29 0.749 11.68 0.069 10.52 0.135 10.228 0.09

(A1)Rα ω (A1)Rα ω (A2)Rα ω (A5)Rα ω

13.048 0.233 11.61 0.338 10.567 0.074 10.228 0.09

Table 4 The same as Table 3 but for the profile α ∼ sin2 θ cos θ sin[π r−ri
ro−ri

]

η = 0.2 η = 0.4 η = 0.6 η = 0.8

(S1)Rα ω (S2)Rα ω (S2)Rα ω (S4)Rα ω

17.68 0.587 15.265 0.119 13.61 0.387 13.60 0.546

(A1)Rα ω (A2)Rα ω (A2)Rα ω (A4)Rα ω

17.124 0.163 14.986 0.219 13.734 0.241 13.60 0.546

Table 5 The same as Table 3 but for the profile α ∼ sin4 θ cos θ sin[π r−ri
ro−ri

]

η = 0.2 η = 0.4 η = 0.6 η = 0.8

(S2)Rα ω (S2)Rα ω (S3)Rα ω (S5)Rα ω

25.25 0.509 20.76 0.099 18.456 0.106 18.275 0.459

(A2)Rα ω (A2)Rα ω (A3)Rα ω (A5)Rα ω

24.642 0.25 20.014 0.206 18.65 0.154 18.29 0.457

as in the traditional solution of α2-dynamo. However, if we apply different angular α-dependence
sinn θ cos θ sin[π r−ri

ro−ri
] with n a positive integer (concentrating the α-effect closer to the equator),

different results will be obtained. The eigenvalues and the corresponding critical dynamo numbers
Rα for different ratios ri/ro can be summed up as follows. First, all the solutions are oscillatory and
non-axisymmetric; secondly, the thinner the convective shell is, the easier are the non-axisymmetric
modes excited and the higher is the azimuthal wave number; thirdly, for n not equal to zero, the
smaller n is, the more easily are the non-axisymmetric modes excited; fourthly, whether the solution
is symmetric or anti-symmetric respect to the equatorial plane depends on the thickness of the
convective shell: if the core is large enough (> 0.56ro), the solution is almost symmetric, but if it
is smaller than 0.56ro, it will be of anti-symmetric.

The results are useful for explaining some observed features of some of the fully convective
stars listed in Section 1, such as the cyclical variation of magnetic activities, non-axisymmetric
patterns of the magnetic fields and non-dipole field geometry in T Tauri stars. They maybe also
apply to earth and the planets.

The inclusion of angular dependence α-profile sinn θ plays an important role in finding non-
axisymmetric and oscillatory solutions. However, the box simulations do not prove an angular
dependence that deviated from the cos θ-law (Ossendrijver et al. 2001). So it may be only of
academic interest (Rüdiger et al. 2003) and is introduced artificially to reduce the strength of the
toroidal field at high latitudes (Chatterjee et al. 2004) although several authors have adopted it,
e.g., Dikpati & Charbonneau(1999) used the angular factor sin θ cos θ, while Küker et al. (2001)
and Chan et al. (2004) used sin2 θ cos θ. However, it may be reasonable to deduce the α-effect in
the polar area, and we can obtain a non-axisymmetric and oscillatory solution for such α-profiles.

It seems too early to apply the solution to the observed stellar magnetic fields. However, the
present approach does shed some light on understanding stellar magnetism. The relative thick-
ness of convective zone and the α-dependence on the latitudes appear to be the key factors in
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determining the behavior of stellar dynamo. Further studies will be undertaken, Particularly, by
taking α as a tensor and by considering only the αφφ-component in spherical coordinate in this
paper, we may have lost some information. In this paper we neglected the differential rotation,
but for checking what value the inverse Rossby number will reach the differential rotation must be
taken into account. Also, what different actions will occur in different models? All of these will be
included in our further work.
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Cutispoto G., Rodonó M., 1992, In: K. L. Harvey, ed., ASP Conf. Ser. Vol. 27, The Solar Cycke., San

Francisco: ASP, p.465
Dikpati M., Charbonneau P., 1999, ApJ, 518, 508
Hatzes A. P., 1995, ApJ, 451, 784
Hoyng P., 1991, In: Schmelz J. T., Brown J. C. eds., The Sun: A Laboratory for Astrophysics, Scotland:

Kluwer Press, p.99
Ivanova T. S., Ruzmaikin A. A., 1985, Astron. Nachr., 306, 177
Jetsu L., Pelt J., Tuominen I., 1993, A&A, 278, 449
Joncour I., Bertout C., Menard F., 1994, A&A, 285, L25
Kitchatinov L. L., 2002, A&A, 394, 1135
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