
Chin. J. Astron. Astrophys. Vol. 6 (2006), No. 1, 52–60
(http://www.chjaa.org)

Chinese Journal of
Astronomy and
Astrophysics

The Relationship between the Rise Width and the Full

Width of γ-ray Burst Pulses and Its Implications ∗

Rui-Jing Lu1,2,3, Yi-Ping Qin1,2 and Ting-Feng Yi2

1 National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences,
Kunming 650011; luruijing@126.com; ypqin@ynao.ac.cn

2 Department of Physics, Guangxi University, Nanning, Guangxi 530004
3 Graduate University of Chinese Academy of Sciences, Beijing 100049

Received 2005 June 21; accepted 2005 September 7

Abstract We investigate the relationship between the rise width and the full width of
gamma-ray burst pulses. Theoretical analysis shows that either width is proportional
to Γ−2∆τθ,FWHM

Rc

c (Γ the Lorentz factor of the bulk motion, ∆τθ,FWHM a local
pulse’s width, Rc the radius of fireballs and c the velocity of light). We study the
relationship for four samples of observed pulses. We find: (1) merely the curvature
effect could reproduce the relationship between the rise and full widths with the same
slope as derived from the model of Qin et al.; (2) gamma-ray burst pulses, selected
from both the short and long GRBs, follow the same sequence in the rise width vs.
full width diagram, with the shorter pulses at one end; (3) all GRBs may intrinsically
result from local Gaussian pulses. These features place constraints on the physical
mechanism(s) for producing long and short GRBs.
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1 INTRODUCTION

Although the mechanism underlying gamma-ray bursts is still unclear, it is generally accepted that
the large energies and the short timescales involved require the gamma-rays to be produced in a
sort of fireball in relativistic expansion (see, e.g., Goodman 1986; paczynski 1986). An individual
shock episode gives rise to a pulse in the gamma-ray light curve, and superposition of many such
pulses creates the observed diversity and complexity of the light curves (Fishman et al. 1994).
Therefore, the temporal characteristics of these pulses hold the key to the understanding of the
prompt radiation of gamma-ray bursts. It is generally believed that some well-separated individual
pulses represent the fundamental constituents of the GRB time profile (light curve) and the pulses
are asymmetrical with a fast rise and an exponential decay (FRED).

What does result in the observed light curves? According to Ryde & Petrosian (2002), the
simplest scenario accounting for the observed GRB pulses is to assume an impulsive heating of
the leptons and a subsequent cooling and emission. In this scenario, the rising phase of the pulse,
which is referred to as the dynamic time, arises from the energizing of the shell, while the decay
phase reflects the cooling and its timescale. However, in general, the cooling time for the relevant
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parameters is too short to explain the pulse durations and the resulting cooling spectra are not
consistent with observation (Ghisellini et al. 2000). As shown by Ryde & Petrosian (2002), this
problem could be solved when the curvature effect of the expanding fireball surface is taken into
account.

The morphological diversity of gamma-ray light curves could be interpreted within the stan-
dard fireball model (Rees & Mészáros 1992), and the observed FRED structure was found to be
interpretable by the curvature effect as the observed plasma moves relativistically towards us and
appears to be locally isotropic (e.g., Fenimore et al. 1996; Ryde & Petrosian 2002; Kocevski et
al. 2003, hereafter Paper I). Several investigations on modeling pulse profiles have been made
(e.g., Norris et al. 1996; Lee et al. 2000a, 2000b; Ryde & Svensson 2000; Ryde & Petrosian 2002;
Borgonovo & Ryde 2001; Paper I), they derived several flexible functions to describe the profiles of
individual pulses based on empirical or semi-empirical relations. For example, as derived in detail
in Paper I, an FRED pulse can be well described by equations (22) or (28). Using this model, they
found that there is a linear relationship between the full width at half-maximum (FWHM) and the
rise width of the burst pulse detected by the BATSE instrument (see fig. 10 in paper I), and the
same result can be found in the gamma-ray burst pulses detected by the anti-coincidence shield of
the spectrometer (SPI) of INTEGRAL (see fig. 5a in Ryde et al. 2003).

Qin (2002) derived in detail the flux function based on the model of highly symmetric expanding
fireball, where the Doppler effect of the expanding fireball surface is taken to be the key factor,
and then with this formula Qin (2003) studied how emission and absorption lines are affected by
the effect. Recently, Qin et al. (2004) presented the formula in terms of count rates. This model
led to the unveiling of certain relations, a power law relationship between the observed pulse width
and energy (Qin et al. 2005a), an anti-correlation between the power law index and the local pulse
width (Jia et al. 2005), and correlations between spectral lags and such physical parameters as the
Lorentz factor and the fireball radius (Lu et al. 2005a). At the same time, some characteristics have
been found, such as a reverse S-feature curve in the decay phase (Qin et al. 2005b) and an inflexion
from concavity to convexity in the rising phase (Lu et al. 2005b) of the light curve determined by
equation (21) of Paper II. These findings, taken together, suggest a potential relationship between
the rise width and the full width of the observed pulse, which motivates us to investigate the
relationship found by Kocevski et al. based on Qin’s model and to explore its implications in terms
of the fireball model.

Although the origins of short GRBs and long GRBs are not yet clear, it is generally suggested
that short GRBs are likely to be produced by the merger of compact objects while the long GRBs,
by the core collapse of massive stars (see Zhang & Mészáros 2004; Piran 2005). The fact that the
long and short GRBs have many similar properties including luminosity, 〈V/Vmax〉, the angular
distribution, the energy dependence of the duration, the hard-to-soft spectral evolution, even the
pulse profile (e.g., Schmidt 2001; Ramirez-Ruiz & Fenimore 2000; Lamb et al. 2002; Ghirlanda et
al. 2004; Cui et al. 2005) indicates that the long and short GRBs may have the same emission
mechanism but possibly different progenitors. Motivated by this, we also investigate the temporal
structure of narrow pulses with durations shorter than 1 s (FWHM) from both short and long
GRBs.

This paper is organized as follows. In Section 2, we investigate the temporal characteristics of
the GRB light curves based on Qin’s model. In Section 3 we examine the relationship between the
rise width and the full width of observational pulses and explore its possible implication in terms
of the fireball model. A discussion and conclusions will be presented in the last section.

2 THE THEORETICAL ANALYSIS

As derived in detail in paper II, the expected count rate of the fireball within frequency interval
[ν1, ν2] can be calculated with

C(τ) =
2πR3

c

∫ τ̃θ,max

τ̃θ,min

Ĩ(τθ)(1 + βτθ)
2(1 − τ + τθ)dτθ

∫ ν2

ν1

g0,ν(ν0,θ)
ν dν

hcD2Γ3(1 − β)2(1 + kτ)2
. (1)

In above formula, τθ is a dimensionless relative local time defined by τθ ≡ c(tθ − tc)/Rc, where tθ is
the emission time in the observer frame, called local time, of photons emitted from the concerned
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differential surface dsθ of the fireball (θ is the angle to the line of sight), tc is a constant which
could be assigned to any values of tθ, and Rc is the radius of the fireball measured at tθ = tc;
the variable τ is a dimensionless relative time defined by τ ≡ [c(t − tc) − D + Rc]/Rc, where

D is the distance of the fireball to the observer, and t is the observation time; Ĩ(τθ) represents
the development of the intensity magnitude in the observer frame, called a local pulse function;
g0,ν(ν0,θ) describes the rest frame radiation mechanism, and k ≡ β/(1− β). The integration limits
τ̃θ,min and τ̃θ,max are determined by τ̃θ,min = max{τθ,min, (τ − 1 + cos θmax)/(1 − β cos θmax)} and
τ̃θ,max = min{τθ,max, (τ − 1 + cos θmin)/(1 − β cos θmin)}, where τθ,min and τθ,max are the lower

and upper limits of τθ confining Ĩ(τθ), θmin and θmax are determined by the concerned area of
the fireball surface, and then the radiation is observable within the range of (1 − cos θmin) + (1 −
β cos θmin)τθ,min ≤ τ ≤ (1 − cos θmax) + (1 − β cos θmax)τθ,max.

Equation (1) suggests that, the light curves of the sources depend mainly on Γ, Ĩ(τθ) and
g0,ν(ν0,θ). Observation suggests that the common radiation form of GRBs is the so-called Band
spectrum function (Band et al. 1993) which was frequently, and rather successfully, employed to fit
the spectra of the sources (see, e.g., Schaefer et al. 1994; Ford et al. 1995; Preece et al. 1998, 2000),
therefore we take in this paper the Band function as the rest frame radiation form. Furthermore

the rise width and the full width of light curves depend on the two factors, Γ and Ĩ(τθ).
In this paper, we denote by τr and τFWHM the rise width and the full width of the light curve

corresponding to variable τ , and by tr and tFWHM, the same corresponding to variable t. In the
same way, we denote by ∆τθ,FWHM the FWHM of a local pulse corresponding to variable τθ, and
by ∆tθ,FWHM, that corresponding to variable tθ.

For the sake of simplicity, we first examine a local pulse with a power law rise and a power law
decay:

Ĩ(τθ) = I0

{ (
τθ−τθ,min

τθ,0−τθ,min

)µ (τθ,min ≤ τθ ≤ τθ,0)

(1 −
τθ−τθ,0

τθ,max−τθ,0
)µ (τθ,0 < τθ ≤ τθ,max)

(2)

with τθ,0 and µ constants. The FWHM of this local pulse is ∆τθ,FWHM = (1 − 2(−1/µ))(τθ,max −
τθ,min). The relationships between τr, τFWHM and Γ, and that between τr, τFWHM and ∆τθ,FWHM

for the light curves determined by Equation (1) are plotted in Figure 1. The correlation between
the τr and the τFWHM of the light curves is presented in Figure 2.

Figure 1 shows that τr and τFWHM decrease with the Lorentz factor following τr ∝ Γ−2 and
τFWHM ∝ Γ−2, and increase with ∆τθ,FWHM following τr ∝ ∆τθ,FWHM for every value of ∆τθ,FWHM,
and τFWHM ∝ ∆τθ,FWHM when ∆τθ,FWHM ≥ 1. Thus we obtain

τr = k1Γ
−2∆τθ,FWHM = k1p, (3)

τFWHM = kΓ−2∆τθ,FWHM = kp (∆τθ,FWHM ≥ 1), (4)

where p = Γ−2∆τθ,FWHM, k1 = 0.597 ± 0.006 and k = 1.335 ± 0.036 for this local pulse. It is
found that each of the two quantities, τr and τFWHM, is proportional to p, but independent of Γ
or τθ,FWHM.

Considering the relation between τ and t, we obtain from Equations (3) and (4),

tr = k1p
Rc

c
, (5)

and

tFWHM = kp
Rc

c
(∆τθ,FWHM ≥ 1). (6)

We find from the left panel of Figure 2 that τr increases linearly with τFWHM when we take
∆τθ,FWHM = constant and Γ = variable. So we perform a linear least square fit to the two quantities,
and have log(τr) = A + B log(τFWHM) for a certain value of ∆τθ,FWHM. The slope B almost the
same for different values of ∆τθ,FWHM, whereas the intercept “A” changes from –1.981 to –0.526
as ∆τθ,FWHM changes from 0.001 to 0.1. Also, there is an upper limit value of A≃ −0.40 when
∆τθ,FWHM ≥ 1, thus a dead line can be found when ∆τθ,FWHM ≥ 1, i.e., log(τr) = −0.404+1.00×
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Fig. 1 Relationships between τr, τFWHM and
Γ (left panel) and those between τr, τFWHM

and ∆τθ,FWHM (right panel) for the light
curves determined by Eq. (1), where a Band
function rest frame radiation form with α0 =
−1 and β0 = −2.25, within the frequency
range of 100 ≤ ν/ν0,p≤ 300, is adopted, and
we take 2πR3

cI0/hcD2 = 1, µ = 2, τθ,min = 0,
θmin = 0, θmax = π/2, ∆τθ,FWHM=1 in the
left panel, and Γ=100 in the right panel. The
solid and the dash line represent respectively
τFWHM and τr in both panels.

Fig. 2 Relationships between τr and τFWHM

for the light curves determined by Eq. (1).
Left panel: We take Γ=2 to 1000 for dif-
ferent values of ∆τθ,FWHM. The solid lines
from the bottom to the top represent
∆τθ,FWHM=0.001, 0.01, 0.1, 1, 10, 100, and
1000, respectively (note: when ∆τθ,FWHM ≥
1, their corresponding lines overlap each
other). Right panel: the dead lines of the six
local pulse forms: the solid lines from the
bottom to the top represent local exponen-
tial rise and exponential decay pulse, local
Gaussian pulse, local power law pulse µ=3,
2, 1 of Eq. (2) and local rectangle pulse, re-
spectively. Other parameters are the same as
those adopted in Fig. 1.

log(τFWHM) (for all the fittings, the correlation coefficient R > 0.999 and the number of data points
N = 27).

According to equations (6) and (7) of Paper II, one could find that the photons that observer
receives at different observation times τ were emitted from different surface of the fireball when
∆τθ,FWHM < 1, so that the profiles of the light curves determined by Equation (1) are affected
by ∆τθ,FWHM. Whereas when ∆τθ,FWHM ≥ 1, the photons reaching the observer at different times
τ come from the same whole surface of the fireball. In this case the profiles of the light curves
do not change with ∆τθ,FWHM. This analysis is supported by the fact that τr is sensitive to the
∆τθ,FWHM, while τFWHM is not significantly affected by ∆τθ,FWHM. When ∆τθ,FWHM < 1, τFWHM

slightly decreases with ∆τθ,FWHM, and in fact when ∆τθ,FWHM → 0, the local pulse becomes
a δ function, and τFWHM would be determined by equation (44) in Paper II. However, when
∆τθ,FWHM ≥ 1, each of the two quantities, τr and τFWHM, linearly increases with ∆τθ,FWHM with
the same slope (see the right panel of Fig. 1), which naturally explains why one could find a dead
line in the τr–τFWHM panel when ∆τθ,FWHM ≥ 1.

Changing the frequency interval from 100 ≤ ν/ν0,p≤ 300 to 25≤ ν/ν0,p≤50, or to other fre-
quency interval, and repeating the same work as above, we find that the results do not change
significantly: the dead line is not sensitive to the frequency interval used.

We studied other forms of local pulses, such as µ = 1, 3 of Equation (2), an exponen-
tial rise and exponential decay pulse, a Gaussian pulse, and a rectangle pulse, and so on, and
found that Equations (3)–(6) hold for all the local pulses we investigated, and there are dif-
ferent values of k1 and k for different local pulse forms (see Table 1). For every form of lo-
cal pulse, a dead line could be found when ∆τθ,FWHM ≥ 1. The dead lines of the six lo-
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cal pulses, log(τr) = (−0.563 ± 0.005) + (1.015 ± 0.002) log(τFWHM) for the local exponen-
tial pulse, log(τr) = (−0.520 ± 0.009) + (1.027 ± 0.003) log(τFWHM) for the local Gaussian
pulse, log(τr) = (−0.450 ± 0.003) + (1.005 ± 0.001) log(τFWHM) for µ = 3 in Equation (2),
log(τr) = (−0.404 ± 0.006) + (1.007 ± 0.001) log(τFWHM) for µ = 2 in Equation (2), log(τr) =
(−0.318 ± 0.005) + (1.011 ± 0.001) log(τFWHM) for µ = 1 in Equation (2), and log(τr) =
(−0.221 ± 0.011) + (1.027 ± 0.003) log(τFWHM) for the local rectangle pulse, are displayed in the
right panel of Figure 2.

Table 1 Coefficients for Equations (3) and (4)

Local pulse forms k1 k

µ = 1 of Equation(2) 0.412 ± 0.003 0.827 ± 0.022
µ = 2 of Equation(2) 0.597 ± 0.006 1.335 ± 0.036
µ = 3 of Equation(2) 0.717 ± 0.009 1.718 ± 0.041
An exponential rise and decay pulse 0.306 ± 0.001 2.006 ± 0.122
A Gaussian pulse 0.650 ± 0.007 2.782 ± 0.149
A rectangle pulse 0.149 ± 0.001 0.318 ± 0.013

Our study showed that, for all forms of local pulse, the dead lines in the τr–τFWHM panel
always have slopes 1.0, but the intercepts are different. The intercept could therefore serve as an
indicator of the local pulse form. We also note that the dead line of the local rectangle form is the
upper limit of all local pulse forms (i.e., the intercept of the dead line for any local pulse form would
never exceed –0.20), which might be a criterion to check if the temporal behaviors of gamma-ray
burst pulses do result from the contributions from the Doppler effect.

3 RELATIONSHIP BETWEEN THE OBSERVED RISE TIME AND WIDTH OF
PULSES

Kocevski et al. (2003) found that there is a linear correlation between the rise width and the
full width of gamma-ray burst pulses observed by the BATSE instrument on board the CGRO
(Compton Gamma Ray Observatory) spacecraft. For the sake of convenience of comparison with
the results obtained theoretically above, unlike Kocevski et al., we here investigate the temporal
structures of the light curves of the 2nd and 3rd channels based on their sample, respectively, which
we call sample 1. As they pointed out that a power-law rise model can better describe the majority
of the FRED pulses, so we measure tr and tFWHM of the pulses by fitting with equation (22) of
their paper. The results are presented in Figure 3.

Figure 3 shows that tr increases linearly with tFWHM of the observed pulses. We perform
a linear least square fit to the two quantities and obtain, at the 1σ confidence level, for the
2nd channel, log(tr) = (−0.531 ± 0.022) + (1.045 ± 0.029) log(tFWHM) with a linear correlation
coefficient of 0.973 and a chance probability of p < 10−4, and for the 3rd channel, log(tr) =
(−0.492 ± 0.029) + (1.031 ± 0.024) log(tFWHM) with a linear correlation coefficient of 0.980 and a
chance probability of p < 10−4. The results show that the two sequences in the tr–tFWHM panel
have almost the same intercepts and slopes within their errors. Intriguingly, one can find that the
slope is equal to the one obtained theoretically above, which indicates that the observed results
are well consistent with those predicted by Qin’s model.

We thus may come to the following conclusions: (1) merely the curvature effect can produce
the relationship in the tr − tFWHM panel which is independent of any frequency interval; (2) the
gamma-ray burst pulses most probably arise from local Gaussian form because the sequences in
the tr − tFWHM panel is closed to the dead line of local Gaussian form. Note that the differences
between the two panels, τr-τFWHM and tr–tFWHM, do not affect the comparison (see Sect. 4).

To further demonstrate these conclusions, we choose another sample, called sample 2, based
on gamma-ray burst pulses detected by the instrument HETE-2. Like Kocevski (2003), we select
pulses from the HETE-2 burst home page (http://space.mit.edu/HETE/Bursts/) with the simple
criterion that pulses show clean, well distinguished FRED-like form: this resulted 12 pulses in our
sample 2. We measure tr and tFWHM of these pulses with the same methods as above, and the



Relationship between the Rise Width and the Full Width and Its Implications 57

results are presented in Figure 4. We perform a linear least square fit to the two quantities with
the same methods adopted in Figure 3, and obtain, for the band B, log(tr) = (−0.494 ± 0.065) +
(1.012 ± 0.087) log(tFWHM) with a linear correlation coefficient of 0.960 and a chance probability
of p < 10−4 and for for the band C, log(tr) = (−0.504± 0.059) + (1.088± 0.078) log(tFWHM) with
a linear correlation coefficient of 0.976 and a chance probability of p < 10−4 . The results are
entirely consistent with those obtained from Figure 3, which further testify that the sequences in
the tr–tFWHM plane is independent of any frequency interval.

Fig. 3 Relationships between tr and tFWHM for the observed pulses based on sample 1. The
left and the right panel present the pulses of the 2nd channel and the 3rd channel, respectively.
The two solid lines are the fit lines of their data.

Fig. 4 Relationships between tr and tFWHM for the observed pulses based on sample 2. The
left panel and the right panel present the pulses of the band B (7–40 keV) and C (30–400 keV),
respectively. The two solid lines are the fit lines of their data.
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The first two smaller standard deviations of the four intercepts in the two sample from the ones
of the six dead lines obtained above theoretically are 0.043 for local Gaussian pulse and 0.120 for
local exponential pulse, indicating that these four sequences are very close to the dead line of the
local Gaussian pulse and that these observed pulses may have arisen from local Gaussian pulses.
However, the conclusion is only preliminary which needs to be confirmed by larger samples in the
future.

As shown in Figures 3 and 4, all the pulses, which are selected from long bursts, are longer
than 0.5 s. Norris et al. (2001) pointed out that short bursts with T90 < 2.6 s have different
temporal behaviors from the long bursts. Do short and long pulses follow the same sequence in the
tr–tFWHM plane and have the same temporal behavior? Motivated by this question, we select six
short pulses from the 64 ms count data of 532 short GRBs (and call them sample 3) and 23 short
pulses (shorter than 1 s) from long GRBs with the same criteria adopted in sample 2 (and call
them sample 4). These short and long GRBs are detected by the BATSE instrument. We repeat
the same calculation as above, and the results are plotted in the left panel of Figure 5.

We find from the left panel of Figure 5 that all the pulses (selected from short and long GRBs)
follow the same sequence in the tr − tFWHM plane, with the shorter pulses at the end of this
sequence, showing that short pulses (or bursts) have the same temporal behaviors as the long
pulses, the only difference is that the quantity p (see Eqs. of (3) and (4)) is smaller for the short
pulses.

Fig. 5 Relationships between tr and tFWHM for the observed pulses. Left panel presents the
observed pulses of the 3rd channel based on samples 1, 3 and 4. The open circle, open rectangle
and cross present the pulses of sample 1, 3 and 4, respectively. Right panel is a combination of
the left panel and the right panel in Fig. 2, where we take Rc = 3 × 1015cm.

4 DISCUSSION AND CONCLUSIONS

All the analyses in this paper are based on Equation (1), which is for a fireball expanding isotropi-
cally with a constant Lorentz factor, Γ > 1. Equation (1) is suitable for describing the light curves
of spherical fireballs or uniform jets. When considering a uniform jet and taking θmax = Γ−1 in
Equation (1), we measure the τr and τFWHM of the resulting light curves. They show no difference
from those of spherical geometry, indicating that the relationships in the τr–τFWHM plane are the
same whether the gamma-ray burst pulses come from spherical fireballs or uniform jets.
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It is an ubiquitous trend that the spectral indexes of many GRBs are observed to vary with
time (see Preece et al. 2000). We wonder how the relationship would be if the rest frame spectrum
evolves with time. As Preece et al. (2000) pointed out, the typical fitted value is 1.5 ∼ −0.3 for
the low energy spectral index α, and is −2 ∼ −3 for the high energy spectral index β. Therefore,
sets of typical values of the indexes such as (–1.5, –2), (–0.3, –3) and (–0.8, –2.5) could be used
to investigate the relationship. Calculations show that the two quantities, τr and τFWHM, are not
significantly affected by the form of the rest frame radiation.

We find that, owing to the Doppler effect of the fireball surface (or the curvature effect), for
any local pulse form, the width of the light curve would always be tFWHM = kΓ−2∆τθ,FWHM

Rc

c
(with different values of k for different local pulse forms, see Table 1). As derived in detail in

Paper II, the width of the light curve of the local δ function pulse would be τFWHM ≃
√

2−1
2 Γ−2∆τ

(see eq.(48) in Paper II), where ∆τ is the the observed time interval of the local δ function
pulse, i.e., ∆τ = 1 + βτθ,0. Considering the correlation between τ and t, and taking τθ,0 = 0,

we obtain tFWHM ≃
√

2−1
2 Γ−2 Rc

c ≃ 2 s( Rc

1015cm)( Γ
102 )−2, which would be the lower limit of the

width of the light curve for any local pulse form. Because of the relativistic beaming of the moving
radiating particles, only the emission from a narrow cone with an opening angle of Γ−1 is observed.
Ryde & Petrosian (2002) obtained that the curvature timescale resulting from relativistic effects
is τang = 1.7 s ( Rc

1015cm)( Γ
102 )−2 (see eq.(5) in their paper). Even as they pointed out, this is a lower

bound for the observed duration of a pulse. Thus it can be seen that the curvature timescale and
the lower limit of the width of light curves are comparable.

From Equations (3) and (6) we know that the only difference between the two panels, tr−tFWHM

and τr − τFWHM, is that different observed pulses, corresponding to the same Γ and ∆τθ,FWHM but
different values of Rc, would correspond to one point in the τr − τFWHM plane while to different
points in the tr − tFWHM plane, as they come from different values of Rc, and these different points
must be on a line with slope B = 1.0. However, the intercepts of the light curves in the two panels
depend only on the form and width of the local pulses.

It is widely accepted in the scenario of standard fireball model that gamma-ray bursts arise from
internal shocks at a distance of Rc ∼ 1013 − 1017 cm (see Rees & Mészáros 1992, 1994; Mészáros &
Rees 1993, 1994; Mészáros 1995; Katz 1994; Paczynski & Xu 1994; Sari & Piran 1997; Piran 1999;
Spada et al. 2000; Ryde & Petrosian 2002; Piran 2005). To compare theoretical conclusions with
the observed results in the tr − tFWHM plane, we merge the left panel of Figure 5 into the right
panel of Figure 2 by applying Equations (5) and (6) and taking Rc = 3 × 1015 cm. The results
are plotted in the right panel of Figure 5, which are in good agreement with those predicted by
Qin’s model. We notice that the all observed pulses are below the dead line of local Gaussian form
within their errors.

As shown above, for most of the observed pulses we have local pulse widths ∆τθ,FWHM ≥ 0.1.

Applying the relationship between τθ and tθ, we obtain ∆tθ,FWHM≥ 0.1Rc

c . As we take τθ,min = 0
(i.e., tθ,min = tc) in the above analysis, Rc is thus the radius of the fireball measured at tθ,min. That
is the time the pulse concerned begins to emit, which is generally assumed to be the stage that
the fireball becomes optically thin and the photons created inside it can freely escape. Moreover,
the fact that ∆τθ,FWHM ≥ 0.1 indicates that the local pulse width is not more than one order of
magnitude less than the time scale for the fireball to become optical thin for most of observed
pulses. Its implication is not clear now because we do not know what results in the local pulses
yet.

In fine, we come to the following conclusions: (1) the observed relationship between tr and
tFWHM could be produced merely the curvature effect; (2) both long and short pulses follow the
same sequence in the tr–tFWHM plane. If all observed pulses come from the same radius of the
fireball (especially for the pulses in a burst), the shorter pulses have smaller value of p (here
p = Γ−2∆τθ,FWHM), which might imply that short pulses come from narrower local pulses of larger
Γ, and short bursts come from even narrowest local pulses of even largest Γ. This is a reasonable
result if short GRBs are likely to be produced by the merger of compact objects while long GRBs
result from the core collapse of massive stars; (3) all GRBs may arise intrinsically from local
Gaussian pulses, which would have widths ∆τθ,FWHM not less than 0.1, in agreement with the
findings of Qin et al. (2005b); (4) the observed pulses that fall below the dead line of the local
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Gaussian pulse would arise from the narrower local pulses (i.e., smaller than 1), and the shorter
the pulse, the greater the deviation. However, we suspect that no observed pulses will fall far above
the dead line of the local Gaussian pulse in the tr−tFWHM plane if they arise from a local Gaussian
pulse in terms of the fireball model.

These features above may provide constraints on the intrinsic emission mechanism responsible
for the GRBs.
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