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Abstract Starting from a dipole field and a given distribution of footpoint displace-
ment of field lines on the photosphere, we find axisymmetric, force-free field solutions
in spherical coordinates that have the same distribution of normal field on the photo-
sphere and magnetic topology as the dipole field. A photospheric shear is introduced
in the azimuthal direction in a region that strides across the equator and ends at
latitude λs. The footpoint displacement has a sine distribution in latitude and a peak
amplitude of ϕm. The magnetic energy E, azimuthal flux Fϕ, and magnetic helicity
HT in the solar corona are then calculated for each force-free field solution. It is found
that for a given shear region range λs, all of the three quantities increase monotoni-
cally with increasing ϕm. In particular, both Fϕ and HT have a linear dependence on
ϕm. When ϕm reaches a certain critical value ϕmc, the force-free field loses equilib-
rium, leading to a partial opening of the field and the appearance of a current sheet
in the equatorial plane. At this point, E, Fϕ and HT reach their maximum values,
Ec, Fϕc and HTc. Ec increases, and Fϕc and HTc decrease with decreasing λs. It is
found that Ec is always smaller than the open field energy, in agreement with the
Aly conjecture. Of the three critical parameters, Ec has the weakest dependence on
λs. Therefore, if one is interested in the transition of a magnetic configuration from a
stable state to a dynamic one, the magnetic energy is probably the most appropriate
marker of the transition.
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1 INTRODUCTION

It is widely believed that solar active phenomena such as coronal mass ejections and solar flares
are generated by a sudden release of magnetic free energy stored in the corona (Forbes 2000; Low
2001). Photospheric shear motions may serve as one of the sources that cause the energy buildup
in the corona. However, Aly (1984) put forward a conjecture that in an infinite domain and for a
given distribution of normal field at the lower boundary, the maximum energy of force-free fields
with at least one end of each field line anchored to the lower boundary is the corresponding open
field energy. This conjecture was supported by many studies. For instance, Mikić & Linker (1994)
investigated the energy buildup of a dipole field through photospheric shear motions, and for a
special pattern of shear they found a maximum energy of 0.540 that is slightly (but definitely)
below the open field energy 0.554 in units of 4πB2

0R
3
⊙/µ, where B0 is the field strength at the
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equator, R⊙ is the solar radius, and µ is the vacuum magnetic permeability. Their results are
therefore in agreement with the Aly conjecture. Another example was provided by Antiochos et
al. (1999), concerning the energy buildup in a field of quadrupolar configuration, where the central
arcade is sheared. They argued that the energy of the sheared force-free field is bounded above by
the energy of the state in which all the flux in the central and overlying arcades opens, but the
flux of the bipolar fields at the flank remains closed. Such an argument was further quantified and
then used by Hu (2004) to extend the Aly conjecture from fully open force-free fields to partly
open ones in such a way that in the frame of ideal MHD, it is impossible to store more magnetic
energy in the corona by photospheric shear motions at the base of any part of the closed flux of
a force-free field than that of the field in which the sheared flux opens but the remainder remains
closed. Hu & Wang (2005, “Paper I” hereinafter) provided another example in support of Hu’s
extension.

It is expected the total shear flux confined by a force-free field also has a limit. For axisymmetric
force-free fields in spherical coordinates, for instance, the azimuthal flux confined by a fixed poloidal
flux must be finite. Flyer et al. (2004) found axisymmetric force-free field solutions, in which
the ratio between the two fluxes is around 1.7, being essentially independent of the shear field
distribution on the photosphere. These solutions have the same normal field distribution on the
photosphere as a dipole field has, but differ in magnetic topology from the dipole field: one or more
isolated magnetic islands may appear in the magnetic configuration. If a dipole field is sheared and
evolves in the frame of ideal MHD, the magnetic topology of the resulting force-free fields should
remain the same as the dipole field. In this situation, it is expected that the maxima of magnetic
energy, azimuthal flux and magnetic helicity depend on the pattern of the shear.

This paper starts with a dipole field and introduces a shear displacement along the azimuthal
direction in order to study the energy buildup, the confinement of shear flux and the accumulation
of magnetic helicity in the corona. It differs from Mikić & Linker (1994) in that the calculations
are made for more patterns of footpoint displacements so as to study their effect on the energy
buildup, the azimuthal flux confinement and the helicity accumulation. It also differs from Flyer et
al. (2004) in the following two aspects. First, the shear is implemented by specifying the footpoint
displacement on the photosphere rather than the azimuthal field as a function of the poloidal flux.
Secondly, our force-free field solutions preserve the magnetic topology of the dipole field without
any isolated islands. The physical model and solution procedures are given in Section 2. We describe
the numerical results in Section 3 and conclude our work in Section 4.

2 PHYSICAL MODEL AND SOLUTION PROCEDURES

2.1 Basic Equations for Force-Free Fields

An axisymmetric magnetic field in spherical coordinates (r, θ, ϕ) may be expressed by

B = ∇×
(

ψ

r sin θ
ϕ̂

)

+Bϕ, Bϕ = Bϕϕ̂ , (1)

where ψ is the magnetic flux function and Bϕ is the azimuthal component of the magnetic field.
The unsheared field is a dipole field, of which Bϕ = 0 and

ψ =
sin2 θ

r
, (2)

where ψ is normalized by a constant flux ψ0 and r by the solar radius R⊙, so the field strength by
B0 = ψ0/R

2
⊙. The dipole field is then sheared at the coronal base so as to change into a force-free

field, whose ψ must satisfy the following partial differential equation:

∂2ψ

∂r2
+

sin θ

r2
∂

∂θ

(

1

sin θ

∂ψ

∂θ

)

+Q
dQ

dψ
= 0 , (3)

where
Q = r sin θBϕ = Q(ψ) (4)

being constant along each field line, and the boundary condition that ψ equals sin2 θ at the base.
The remaining problem is how to exert a shear of the field.
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2.2 Specification of Footpoint Displacement

Mathematically, there are two approaches to shear a field: one, called generating function method
in the literature, is to specify the pattern and amplitude of the shear field component, and the
other, to specify the footpoint displacement at the coronal base. Flyer et al. (2004) followed the
first approach and assumed that

Q =

√

2γ

n+ 1
ψ(n+1)/2 , (5)

where γ and n are two free parameters controlling the amplitude and the pattern of the shear.
On the other hand, many other authors (e.g., Mikić & Linke 1994; Antiochos et al. 1999; Hu &
Wang 2005) chose to specify the footpoint displacement at the base, which seems to be a more
appropriate way in modelling solar magnetic fields (Klimchuk & Sturrock 1989). We will take
the second approach and follow a special technique proposed by Hu & Wang (2005, “Paper I”
hereinafter) to accurately implement numerically a given footpoint displacement distribution at
the base.

For all numerical solutions in this study, the footpoint displacement at the base is limited to a
region that strides over the equator and ends at latitude λs:

δϕ(λ) =

{

ϕm sin(λπ/λs), |λ| ≤ λs,
0, otherwise,

(6)

where δϕ is one half of the footpoint displacement, ϕm is the amplitude, and λ is the latitude
(λ = π/2 − θ). For a sheared force-free field, δϕ is calculated by (Hu 2004; Paper I)

δϕ(ψ) = −
∫

ψ

Bϕdθ

sin θBθ
= Q(ψ)

∫

ψ

dθ

sin θ∂ψ/∂r
, (7)

where the integration is carried out along the field line from one footpoint to the apex, and Q is
defined by Eq. (4). Note that Mikić & Linker (1994) specified the azimuthal velocity at the base,
given by

v0
ϕ = v0Θ exp[(1 − Θ4)/4], Θ = (θ − 90◦)/20◦ ,

which is equivalent to a specification of the azimuthal displacement of footpoints. Figure 1 shows the
two specifications: they are essentially similar in shape. The colatitudinal profile of the footpoint
displacement is fixed in Mikić & Linker’s calculation, limited to a region ∼ 50◦−130◦, whereas
the range of shear here marked by λs is subject to change. In what follows, λs is determined by
ψs = sin2 θs, where θs = π/2 − λs, and the values of ψs are evenly spaced from 0.1 to 0.8 at
intervals of 0.1. Table 1 lists the values of θs and λs corresponding to the selected values of ψs.
Obviously, the range of shear increases with decreasing ψs or increasing λs.

Table 1 Colatitude θs and latitude λs of the border of the shear region versus ψs = sin2 θs

ψs 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

θs(
◦) 18.4 26.6 33.2 39.2 45.0 50.8 56.8 63.4

λs(
◦) 71.6 63.4 56.8 50.8 45.0 39.2 33.2 26.6

2.3 Solution Procedures

Following Paper I, we take a relaxation method based on time-dependent ideal MHD simulations to
find axisymmetric force-free field solutions rather than to directly solve the boundary-value problem
of Eq. (2) as Flyer et al. (2004) did. We omit to list the 2.5-dimensional ideal MHD equations and
refer the reader to Paper I. In order to further reduce the side-effect of the boundary conditions at
the top, we take a rather large simulation domain that extends from the coronal base to 80 solar
radii, i.e., 1 ≤ r ≤ 80 and 0 ≤ θ ≤ π/2. The domain is discretized into 165×90 grid points. The
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Fig. 1 Colatitudinal profiles of the footpoint displacement given by (a) Eq. (6) and (b) Mikić
& Linker (1994). The dashed lines mark the range of the shear region.

grid spacing increases according to a geometrical series of common ratio 1.03 from 0.02 at the base
to 0.86 at r = 30 and further to 2.28 at the top (r = 80), whereas a uniform mesh is adopted in
the θ direction. The multistep implicit scheme (Hu 1989) is used to solve the 2.5-D ideal MHD
equations. For each set of shear parameters (ψs, ϕm), we gradually increase the shear amplitude
within 500 characteristic Alfvén transit times to ϕm, so the magnetic configuration undergoes a
quasi-static process. Then the simulation continues with ϕm fixed, until the magnetic field reaches
a stable state.

A current sheet-like structure may appear along the equatorial plane when the field lines are
extremely stretched because of shear with large values of ϕm, and numerical reconnections across
it may lead to a change of magnetic topology of the solution. It is easy to figure out a special
technique to prevent such reconnections, if one notices that ψ should decrease monotonically with
heliocentric distance in the equatorial plane for force-free fields with the same magnetic topology
as the dipole field. The approach is then to properly reassign the values of ψ along the equatorial
plane to maintain the monotonicity of ψ over there. As a result, the force-free fields obtained are
the same as the dipole field in topology.

2.4 Magnetic Energy

When a force-free field solution is obtained, we calculate the magnetic energy E, normalized by
4πB2

0R
3
⊙/µ, according to

E =
1

2

∫ 80

1

dr

∫ π/2

0

B2r2 sin θdθ +
803

2

∫ π/2

0

(B2
r −B2

θ)r=80 sin θdθ , (8)

where the first term on the right hand side is the magnetic energy in the simulation domain
(1 ≤ r ≤ 80, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π), and the second is that above the domain, having been
transformed into a surface integral over the top (cf. Low & Smith 1993).Br andBθ can be evaluated
from ψ with the use of Eq. (1), and B = (B2

r +B2
θ +B2

ϕ)1/2. Bϕ has been ignored in the integrand
of the surface integral of Eq. (8) because we are limited to solutions in which the sheared field
region lies entirely inside the simulation domain. The contribution of this term is within 10−5 for
all solutions obtained in this study, so it is our belief that the accuracy of the energy calculation
based on Eq. (8) is not affected by the finiteness of the simulation domain and the boundary
conditions at the top. For the dipole field and its corresponding open field, the magnetic energy is
found to be Ep = 0.333 and EAly = 0.554, respectively, with the use of Eq. (8), which agree with
those obtained by previous authors (cf. Low & Smith 1993).
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2.5 Azimuthal Magnetic Flux

The azimuthal magnetic flux in units of ψ0 may be evaluated from the force-free field solutions by

Fϕ =

∫ ∫

r≥1

Bϕrdrdθ . (9)

It is related to δϕ(ψ) by (Hu 2004)

Fϕ = 2

∫ 1

ψs

δϕ(ψ)dψ , (10)

where the factor of 2 in front of the integration sign comes from the fact that δϕ is one half of the
footpoint displacement (cf. eq. (17) in Hu 2004). Therefore, for δϕ given by Eq. (6) as a function
of λ, we may also calculate Fϕ, and the result is

Fϕ = kF (λs)ϕm , (11)

where

kF (λs) =
2πλs sin(2λs)

π2 − 4λ2
s

. (12)

This indicates a linear relation between Fϕ and ϕm and the slope depends on the footpoint displace-
ment distribution. For the distribution given by Eq. (6) the slope is a function of λs as expressed
by Eq. (12). Since we can also use Eq. (9) to calculate Fϕ as a function of λs from the numerical
solutions, the results obtained should be the same as given by Eqs. (11) and (12). This provides a
critical criterion in checking the accuracy of these solutions, and the criterion is reasonably fulfilled
as will be discussed in next section.

2.6 Magnetic Helicity

Similarly, we may calculate the magnetic helicity of force-free fields in two ways. For two-
dimensional force-free fields, Hu et al. (1997) defined a magnetic helicity that is a conserved quantity
in the frame of ideal MHD. In spherical coordinates, the newly defined helicity in units of ψ2

0 is
given by

HT = 2π

∫ ∫

ψBϕrdrdθ . (13)

Inserting Eqs. (9) and (10) into Eq. (13) leads to

HT = 4π

∫ 1

ψs

ψδϕ(ψ)dψ = kH(λs)ϕm , (14)

where kH(λs), with the use of Eq. (6), reads

kH(λs) = π2λs

[

2 sin(2λs)

π2 − 4λ2
s

+
sin(4λs)

π2 − 16λ2
s

]

. (15)

Also, a linear relation exists between HT and ϕm, and the slope is a function of λs given by
Eq. (15).

3 NUMERICAL RESULTS

As mentioned above, we have two parameters, ψs and ϕm, which control the range and amplitude of
the shear at the base. Force-free field solutions are obtained for different combinations of (ψs, ϕm).
It is found that for each given ψs there exists a critical value ϕmc such that when ϕm reaches ϕmc,
the field lines in the outer part of the shear field region are so extremely stretched that a current
sheet appears along the equatorial plane and keeps getting longer upward until the stretched field
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Fig. 2 Magnetic configurations for ψs = 0.8 and four values of ϕm. Panels (a-c) represent the
eventual force-free fields, whereas panel (d) is only an intermediate state. A thick dashed curve
in each panel delineates the border of the shear field region.

lines arrive at the top of the simulation domain. To illustrate this process, we show in Figure 2
the magnetic configurations of the series of solutions for ψs = 0.8 and ϕm = 0.5, 1.5, 2.5 and
2.54. In the first three cases with ϕm < ϕmc, shown in panels (a), (b) and (c), the force-free field
reaches a stable state and all field lines remain closed. For the fourth case with ϕm = 2.54, however,
the system loses equilibrium, leading to a partial opening of the field. Figure 2(d) shows only an
intermediate state of the field, in which the current sheet is clearly discernible. As the simulation
continues, the current sheet keeps extending and the field becomes partly opened. The value of ϕm
= 2.54 is then identified as the critical amplitude ϕmc. After the current sheet is fully developed,
the magnetic energy, azimuthal flux and magnetic helicity become almost independent of time at
values Ec, Fϕc and HTc. For this special case, we have ϕmc = 2.54, Ec = 0.541, Fϕc = 0.64 and
HTc = 3.65.

3.1 Energy Buildup in the Corona

As expected, for a given ψs, the magnetic energy E of force-free fields increases monotonically with
increasing ϕm. Figure 3(a) shows E as a function of ϕm for ψs = 0.1, 0.6 and 0.8. Each profile
has a termination point at which E = Ec. Ec increases monotonically with increasing ψs, from
0.514 for ψs = 0.1 to 0.541 for ψs = 0.8, as shown in Figure 3(b). The maximum magnetic energy
0.541 in our numerical examples is very close to the value of 0.540 obtained by Mikić & Linker
(1994). The range of the shear region at the base shrinks as ψs increases, so we conclude that the
more the shear is concentrated to the equator, the larger the maximum energy to be stored in the
corona will be, a conclusion similar to that obtained by Hu & Wang (Paper I). The dashed line in
each panel of Figure 3 denotes the Aly limit (EAly = 0.554), showing that the maximum magnetic
energy of these force-free fields are below this limit. This is in agreement with the Aly conjecture.

3.2 Confinement of Azimuthal Magnetic Flux

Flyer et al. (2004) solved Eq. (3) numerically with Q given by Eq. (5), and obtained force-free field
solutions with the same distribution of ψ at the base as that of a dipole field. For each sequence
of solutions corresponding to a fixed parameter of n, they found that there exists a maximum to
the amount of azimuthal magnetic flux confined by a poloidal field of a fixed flux anchored rigidly
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Fig. 3 (a) Magnetic energy E as a function of amplitude ϕm of footpoint displacement for ψs

= 0.1, 0.6 and 0.8, (b) Maximum energy of the force-free fields versus ψs. The dashed line marks
the Aly limit (EAly = 0.554).

Fig. 4 Colatitudinal profiles of Q = r sin θBϕ at tha coronal base for (a) Flyer et al. (2004) and
(b) our solutions.

to the coronal base, and that the ratio between the two fluxes is around 1.7, being essentially
independent of the value of n in Eq. (5).

As seen from Eq. (5), Q is proportional to sinn+1 θ at the base, where ψ = sin2 θ. Figure 4(a)
shows the colatitudinal profiles of Q for the cases of n = 5, 7 and 9 discussed by Flyer et al. (2004).
For comparison, we calculate Q at the base from our numerical solutions and plot the profiles of
Q in Figure 4(b) for ψs = 0.1, 0.5 and 0.8. Our profiles are slightly narrower near the equator but
similar to theirs as a whole.

Although the distributions of shear field component at the base are similar, our solutions differ
from those obtained by Flyer et al. (2004) in the confinement of azimuthal magnetic flux. For each
force-free field solution, we calculate Fϕ with the use of Eq. (9). Figure 5(a) shows Fϕ as a function
of ϕm for all values of ψs taken in this study. The filled circles represent the numerical values of
the examples we have treated, while the straight lines are their optimum least-squares fittings. The
linear relation between Fϕ and ϕm are well reproduced by our solutions. More quantitatively, we
list in Table 2 the slopes of the fitting straight lines and those evaluated from Eq. (12) for different
values of ψs; the deviations (numerical - analytical) are always negative, and within 0.014 in size.
In fact, such deviations can be mostly attributed to the coarseness of the mesh at the base, the
spacing being about one degree. The border labelled by λs (= arccos(

√
ψs)) is not exactly at the

grid point, so the numerical border is displaced somewhat inward to a slightly smaller latitude
than λs. This results in a smaller numerical slope than its analytical counterpart.
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Table 2 Slopes of the fitting straight lines in Figures (5) and (6) and
evaluated from Eqs. (12) and (15) versus ψs.

ψs 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

kF (numerical) 1.290 1.108 0.951 0.797 0.656 0.520 0.386 0.250
kF (analytical) 1.298 1.120 0.961 0.811 0.667 0.527 0.391 0.259
kH (numerical) 4.855 4.549 4.223 3.770 3.288 2.747 2.142 1.430
kH (analytical) 4.861 4.595 4.246 3.822 3.328 2.772 2.162 1.499

Fig. 5 (a) Azimuthal magnetic flux Fϕ as a function of amplitude ϕm of footpoint displacement
for different values of ψs, (b) Maximum azimuthal magnetic flux Fϕc versus ψs. The filled circles
in panel (a) represent the numerical values of the examples treated, and the straight lines are
their optimum fittings obtained by the least squares method.

At the termination point of each profile in Figure 5(a), Fϕ takes a critical value of Fϕc as
mentioned above. This serves as the maximum azimuthal magnetic flux confined by the poloidal
field of unit flux, and it depends on ψs. The result is shown in Fig. 5(b), where Fϕc decreases
monotonically with increasing ψs, from 1.93 for ψs = 0.1 to 0.64 for ψs = 0.8. In other words, the
more the shear is concentrated to the equator, the smaller the maximum azimuthal flux confined
by the poloidal field will be. This forms a striking contrast to the conclusion reached by Flyer
et al. (2004) that the maximum azimuthal flux confined by the poloidal field is around 1.7, and
is almost independent of the parameter n which controls the pattern of the distribution of the
shear field component at the base (see Eq. (5) and Fig. 4(a)). The reason for this discrepancy is
briefly explained below. All force-free field solutions in this study have been obtained by shearing
the dipole field at the base and preserving the magnetic topology invariant. No magnetic islands
appear in the solutions. However, in the solutions presented by Flyer et al., the magnetic topology
is allowed to be different from the dipole field: one or more isolated magnetic islands appear across
the equatorial plane (see figs. 4 and 7 of Flyer et al. 2004). A certain amount of azimuthal flux is
trapped in these islands, and this plays a compensating role for the reduction of azimuthal flux
caused by the concentration of the shear to the equator. For the case that the sheared field is the
same as the unsheared in topology, the confined azimuthal flux should depend on the pattern of
the distribution of the shear field component at the base, as demonstrated by our solutions.

3.3 Magnetic Helicity Accumulation

It is instructive to examine the maximum magnetic helicity of the force-free fields and its depen-
dence on the shear range parameter ψs, since a ceaseless accumulation of helicity in the corona was
suggested as a possible mechanism for solar flares and coronal mass ejections (Wang 1992; Low
1994). For each force-free field solution, we calculate HT with the use of Eq. (13). Figure 6(a) shows
HT as a function of ϕm for all values of ψs. Again, the filled circles represent the numerical values
of the examples we have treated, while the straight lines are their optimum least-squares fittings.
The linear relation between HT and ϕm is well reproduced by our solutions, too. The numerical
slopes, kH , and their analytical values, given by Eq. (15), are also listed in Table 2. The two sets
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Fig. 6 (a) Magnetic helicity HT as a function of amplitude ϕm of footpoint displacement for
different values of ψs, (b) Maximum magnetic helicity HTc versus ψs. The filled circles in panel
(a) represent the numerical values of the examples treated, while the straight lines are their
optimum least-squares fittings.

of slopes are very close to each other, and the deviations, less than 0.07 in size, stem from the
indefiniteness of the border of the shear region, caused by a coarse mesh at the base, as mentioned
above.

The value of HT at the termination point of each profile in Figure 6(a) is the maximum
magnetic helicity HTc of the force-free field, and it depends on ψs, as shown in Figure 6(b). HTc

decreases monotonically with increasing ψs, from 7.24 for ψs = 0.1 to 3.65 for ψs = 0.8. That
is, the more the shear is concentrated to the equator, the smaller will be the maximum magnetic
helicity of the force-free field.

4 CONCLUDING REMARKS

Using a relaxation method based on 2.5-dimensional, time-dependent ideal MHD simulations in
spherical coordinates, we have obtained axisymmetric, force-free field solutions which have the
same distribution of normal field component at the coronal base and the same magnetic topology
as a dipole field does. Each solution corresponds to a specific sine distribution in latitude of the
footpoint displacement at the base, characterized by the latitude λs of the border of the shear
region and the amplitude ϕm of the displacement. The magnetic energy E, azimuthal flux Fϕ, and
magnetic helicity HT are then evaluated from these solutions. The main conclusions are as follows.

(1) For a given λs, all of the three quantities increase monotonically with increasing ϕm. In particu-
lar, both Fϕ and HT have a linear dependence on ϕm, as proved analytically and demonstrated
by the numerical results. The slopes have profiles that depend on the pattern of the footpoint
displacement distribution at the coronal base.

(2) For each given λs, there exists a critical amplitude ϕmc such that when ϕm reaches it, the
force-free field loses equilibrium, leading to a partial opening of the field and the appearance
of a current sheet in the equatorial plane. At the same time, the magnetic energy, azimuthal
flux and magnetic helicity of the force-free field reach their maximum values.

(3) As the shear region shrinks toward the equator, the maximum energy increases, but it is always
below the Aly limit. This is in agreement with the Aly conjecture.

(4) The maximum azimuthal flux confined by a poloidal field of unit flux depends on the range
of the shear region: it is the less, the more the shear is concentrated to the equator. This
differs from Flyer et al.’s (2004) conclusion that the maximum azimuthal flux confinable is
almost independent of the shear field distribution. The difference comes from the fact that our
solutions have the same magnetic topology as the dipole field, whereas theirs do not.

(5) The maximum magnetic helicity to be accumulated in the corona also depends on the range of
the shear region: the more the shear is concentrated to the equator, the less magnetic helicity
is allowed to accumulate in the corona.
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(6) Of the three critical parameters, the magnetic energy has the weakest dependence on the shear
range: it changes from 0.514 to 0.541 when λs increases from 0.1 to 0.8. In comparison, the
azimuthal flux changes from 1.93 to 0.66, and the magnetic helicity from 7.24 to 3.65. Therefore,
if one is specifically interested in the transition of a magnetic configuration from a stable state
to a dynamic one, the magnetic energy is probably the most appropriate parameter to mark
the transition.

Finally, it should be stressed that both Flyer et al.’s (2004) solutions and ours belong to sub-sets
of force-free fields. Flyer et al.’s solutions were obtained in terms of a given pattern of distribution
of the shear field component at the base, allowing for a free change of magnetic topology of the
field. If one starts from a dipole field, not only a footpoint shear at the base but also a magnetic
reconnection somewhere in the corona must be invoked to achieve these solutions. On the other
hand, our solutions are implemented through a pure footpoint shear at the base, and consequently,
neither magnetic reconnections nor detached flux ropes exist in the corona. The conclusions reached
above are then limited to this particular set of force-free field solutions that are formed by a pure
shear at the base and do not contain any detached magnetic flux ropes.
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