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Magnetic Pumping in Accretion Disk Coronae
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Abstract Most microquasar models involve a hot plasma in a corona above the
disk or at the base of the jet. The Accretion-Ejection Instability (AEI) occurring
in magnetized disks leads to the growth of a spiral density wave which can explain
low frequency QPOs. It has already been shown to be very efficient in extracting
accretion energy from the disk and emitting it upward in the corona as Alfvén
waves. Here we present a simple mechanism which also allows the AEI to excite
coronal ions. This heating is due to magnetic pumping, i.e. a resonant process
occurring as the magnetic field lines emerging from the disk are periodically com-
pressed by the spiral wave. We show how it acts on a collisionless population of
ions, trapped above the disk by the joint action of gravity and magnetic stresses.
We discuss the efficiency of this mechanism in heating coronal particles and ex-
plaining observational evidence.
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1 INTRODUCTION

Several different features seem to indicate that accretion disks of microquasars and AGNs are
embedded in a gas of hot plasma called corona. A power-law extending to high energy (with a
cut-off at about 100 keV) is for instance observed in the spectrum of microquasars in the low-
hard state. In many models, this tail is interpreted as the Comptonization of soft photons from
the disk by a gas of hot electrons (Sunyaev and Titarchuk 1980). The structure and heating
mechanism of the corona remain unclear although numerous authors have developed different
models to fit the observations. However, many models assume that the corona extends above the
disk plane in a slab geometry (Malzac 2001) and some observations may indicate that it could
radially extend much further than what is thought (Church and Baluncińska-Church 2004). So
far, the main models do not include magnetic field at all (Chakrabarti et al. 1996, Rózańska
and Czerny 1996) or they have a magnetized, but very inhomogeneous corona, with magnetic
loops (Galeev et al. 1979, Merloni and Fabian 2002, Liu et al 2002). In the later models, a large
fraction of the gravitational energy is often assumed to be released in the corona by reconnection
events (Haardt and Maraschi 1991). They have strong magnetic fields (β ∼ 1) localized in small
regions but the net vertical magnetic flux through the disk vanishes. We use here a completely
different geometry, grounded on the results of jet models.
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YSO-, AGN- and microquasar jets are known to be very collimated. So far, the most favored
models that can explain this property in a consistent way have been MHD models of jets
(Blanford and Payne 1982, Pelletier and Pudritz 1980, Ferreira 1997). Their results give some
constraints on the magnetic field strength and topology:

– They require the magnetic field to be strong enough to redirect upward the matter radially
accreting and to load it at the base of the jet. Namely, the magnetic pressure has to be in
equipartition with the gas pressure: β ∼ 1

– Then, in order to accelerate the jet and collimate it efficiently, they constrain the magnetic
field to be large scale and structured with a strong poloidal component, at least close to
the disk. Contrary to the models mentioned above, the magnetic field varies on long time-
and length scales.

In section 2.1 and 2.2, we present two interesting elements that can be derived from these
conditions for the magnetic field. On one hand, the Accretion-Ejection Instability develops in
the disk and leads to the growth of a spiral MHD wave. And on the other hand, coronal particles
can be trapped in an oscillating motion along the poloidal field lines. In section 2.3 we show
that a resonant process can occur between the oscillating motion and the periodic perturbation
by the spiral wave. This mechanism, well known in plasma physics, is called magnetic pumping.
In section ??, we discuss the efficiency of magnetic pumping to heat coronal ions.

2 MODEL

The corona density is supposed to be very low, therefore the time between two collisions might
be long in comparison with other time scales. This means that kinetic effects have to be included
in the analysis. In the kinetic approach the usual fluid quantities as density, velocity, pressure,
temperature... have to be replaced by the distribution function F(x, v, t) that gives the number
of particles at time t and position x with the velocity v. Without collision, the evolution of the
system is then fully determined by the Vlasov equation which stands for the usual fluid ones
(continuity, Euler, energy...). It reads:

∂tF + v.∇F + Γ.∂vF = 0, (1)

where Γ is the total specific force applied to the particles. This equation cannot be analytically
solved in the most general case, and further assumptions have to be made.

In a uniform and steady magnetic field, charged particles have a circular motion perpen-
dicular to the field lines. They rotate with the cyclotron frequency: Ωc = qB/m (where q is
the charge, m the mass and B the amplitude of the magnetic field). Forces perpendicular to
the field lines, like gravity, electric fields, non uniform or non steady magnetic fields, result in
perpendicular drift motions in addition to the circular one. Forces parallel to the magnetic field
have the usual effect on particle acceleration. A basic assumption is to consider that all time
scales of the problem are longer than the cyclotron period. In this limit, it is known that the
magnetic moment µ = v2

⊥/2B is conserved. In this case, the cyclotron motion can be neglected
and particles represented by their guiding center. The motion of the guiding center is then
governed by the perpendicular drift velocities and by the classical parallel forces, but to keep
information about the cyclotron motion and its effects, we have to add a new parallel force
called the mirror force:

F = µ∂‖B .

As the Lorenz force does not provide work, the energy has to remain constant when no other
force is involved: v2

⊥ + v2

‖ = cst. And since µ is invariant, v‖ has to decrease when B increases.
The mirror force is thus a repulsive force that pushes charged particles away from strongly
magnetized regions. This force is a kinetic effect and has not been used in previous models.



Magnetic Pumping in accretion disk coronae 45

B

g

Fc

FmωB

θc=30o

z

r

θ

Fig. 1 Simple picture of the local geometry of field lines and forces: gravity g, centrifugal
force F c and mirror force F m.

Assuming that µ is invariant makes the problem less complex, but it is still too hard to be
solved. Therefore it is necessary to consider the MHD wave as a small perturbation added to
the equilibrium described in introduction. All the quantities are thus written as the sum of an
equilibrium part and a small perturbed one: the distribution function F = F 0 + f , the forces
Γ = Γ0 + γ, the magnetic field B = B0 + b... The Vlasov equation to first order is:

∂tf + v.∇f + Γ0.∂vf = −γ.∂vF 0.

This gives the perturbed distribution function, from which, we can derive the evolution of the
perturbed system.

2.1 Equilibrium Periodic Motions

The first step in this perturbation method is to determine the equilibrium properties. To sim-
plify, let us assume that the magnetic field lines are straight, oblique and purely poloidal as
shown in Fig 1. In this geometry, the magnetic field decreases with radius and altitude and the
mirror force has to be taken into account. As the disk itself is much denser than the corona,
the effect of coronal currents on the field line topology can be neglected. The magnetic field is
imposed by the disk, rotates with it and coronal particles have to move along the field lines.
It means that all the perpendicular forces act together to keep particles on their field line and
we can consider the particles as beads that can freely move along them (Henrisksen 1971). The
parallel motion is then governed by the projections of gravity, centrifugal force and mirror force
(Fig. 1).

An analytical analysis of this system can be done by assuming that particles have low
altitude, precisely when:

h/ cos θ ≪ r,

where θ is the angle of the field lines with the vertical axis. This analysis leads to two different
particle behaviors with respect to θ. Two domains are found, separated by a critical angle
θc = 30◦ :
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– for θ > θc, the centrifugal force is stronger than gravity and the mirror force helps particles
to escape. As a consequence, all particles are ejected as in the MHD case.

– For θ < θc, the mirror force acts against gravity and we find that some coronal particles can
oscillate around an equilibrium position above the disk. If their magnetic energy is strong,
this position can be high enough so that the particles freely oscillate without crossing the
disk where they would otherwise collide dense matter. Particles can thus be trapped in a
so called periodic bounce motion.

This motion is one of the two ingredients for magnetic pumping. To further characterize it,
we can estimate its frequency. The bounce frequency varies with the angle of the field lines and,
in the limit where the magnetic energy µB is low in comparison with the gravitational one, it
is found to have the following dependence:

ω2
B/Ω2

K = 1 − 4 sin2 θ .

For vertical lines, this bounce frequency is the keplerian one: ωB = ΩK but then the mirror
force vanishes and there are no more trapped particles. And for critical lines, ωB vanishes.

The purpose of this paper is to estimate the efficiency of magnetic pumping. As a conse-
quence, we will now assume that the Vlasov equation, coupled with Maxwell equations and
possibly radiative transfer equations has been solved for the equilibrium, giving a consistent
solution for all fluid profiles (density, temperature...) and we will focus focus on the effect of
the perturbation on the equilibrium.

2.2 Perturbation: Periodic excitation

In the conditions described previously for magnetic topology and strength, namely a poloidal
magnetic field in equipartition with the gas pressure, we know that the Accretion-Ejection
Instability (AEI) can develop in the disk and perturb the equilibrium described in the last
section 2.1. The AEI leads to the growth of a MHD wave which rotates through the disk. It was
worked out by Tagger and Pellat 1999 for a disk in vacuum and is now one of the best candidates
to explain the low frequency QPOs (see Rodriguèz et al. 2002). This MHD wave couples the
hydrodynamic and magnetic properties of the fluid and appears as a spiral wave, both in density
and magnetic intensity: where the matter is denser, the magnetic field is stronger. Numerical
simulations show that, in the disk, the perturbed magnetic field is about b/B ∼ 0.1 (Caunt
and Tagger 2001). Varnière and Tagger 2002 started to studying effects of the AEI for a disk
surrounded by a low-density corona, as for instance the strong emission of Alfvén waves from
the corotation radius to the corona. But the main point for us is that the magnetic perturbation
induced by the AEI extends far above the disk (as e−qz where q is the wave number in the disk
plane) and can therefore affect the behavior of coronal particles. For radii smaller than the
corotation radius, the spiral wave rotates more slowly than the gas. In the frame moving with
the gas, coronal particles experience a periodic compression of the field lines and therefore a
periodic perturbation of the mirror force with the frequency:

ω̃ = ω − mΩK ,

where ω is the wave frequency in the rest frame, m is the arm number of the spiral (typically,
m = 1) and ΩK is the keplerian frequency. The corresponding perturbed force is:

γ‖ = µ∂‖b‖ cos ω̃t.

2.3 Magnetic Pumping

The latter periodic force excites a periodic equilibrium motion. Where the frequencies are equal:
ωb ∼ ω̃, a resonance occurs. When the bounce motion is due to the mirror force, this resonance
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is the magnetic equivalent of Landau damping and is called transit-time damping or magnetic
pumping. Indeed it pumps energy from the magnetic perturbation to the excited particles. The
corresponding power is:

P =

∫
v‖γ‖f(x, v, t)dxdv .

From the last section 2.2, by performing a Laplace transform for time and a Fourier series
decomposition on the bounce frequency for the parallel dimension, we find the perturbed dis-
tribution function and it eventually yields:

P =

+∞∑

n=−∞

∫
n2ωBµ2|bn|

2δ(ω̃ − nωB)∂JF 0.

The first result is that the electrons oscillate much too fast to interact with the wave. As
ωe−

B ≫ ω̃, there is no resonance for the electrons and they cannot be heated directly by magnetic
pumping. On the contrary, coronal ions move slowly enough for the pumping to become efficient.
The magnetic perturbation exponentially decreases with altitude: b(z) = bz=0e

−qz with qr ∼ 1.
The Fourier components bn can thus be calculated and, in the small altitude approximation
(z ≪ r), we find for the first resonance n = 1:

b1 =
1

2
qhcbz=0,

where hc is the maximal altitude of coronal ions. Since the energy of the particles is mainly in
their perpendicular (cyclotron) motion, we have 〈µB0〉 ≈ T/mi, where the brackets note the
average over the trapped ion population. We find the following heating time scale:

ΩKτ =

(
ωB

ΩK

)2 (
hc

r

)−2 (
bz=0

B0

)−2

.

The reference time is the keplerian period and we see that the stronger the perturbation, and
the hotter the corona, the quicker the heating and so the more efficient the pumping.

3 DISCUSSION AND CONCLUSION

Going further and giving reliable figures for a consistent coronal model is a very difficult task.
The corona is indeed very poorly constrained in the literature. Our goal is not to get global
results yet. This would indeed need a full model with a precise description of many other features
as cooling mechanisms... Here, we rather do a first attempt to estimate the typical heating time
scale understand the significance of magnetic pumping.

For typical microquasars, we have b/B ∼ 0.1, T = 50keV, hc/r ∼ .1. The frequency ratio
varies between 0 and and 1 respectively for vertical and critical field lines. This means that
for critical lines, the pumping can be infinitely efficient. By choosing an angle of 25◦ , we find
τ ∼ 1s. This time scale is comparable with the time for ions to collision the electrons and give
their energy, but it is much smaller than the Compton cooling time. Some assumptions made
to simplify the analytic resolution could increase the efficiency, when relaxed. This has to be
checked, but this kinetic heating is likely to be unable to fight the Compton cooling.

Nevertheless, we can mention that if coronal ions are not collisional, the electron collision
time is about the rotation time. As a consequence the kinetic approach becomes less valid
for coronal electrons. Such a plasma, between the collisional and the non collisional regime, is
known to experience the Braginskii viscosity 1965. For microquasar coronae, this viscosity is
quite strong and could result in a high dissipation rate and thus a corona heating. This will be
discussed in a future publication.
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