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Abstract We seek for self-similar solutions describing the time-dependent evolu-
tion of self-gravity systems with either spherical symmetry or axisymmetric disk
geometry. By assuming self-similar variable x ≡ r/at where a is isothermal sound
speed we find self-similar solutions extending from the initial instant t = 0 to
the final stage t → ∞ using standard semi-analytical methods. Different types
of solutions are constructed, which describe overall expansion or collapse, enve-
lope expansion with core collapse (EECC), the formation of central rotationally
supported quasi-equilibrium disk as well as shocks. Though infinitely many, these
self-similarity solutions have similar asymptotic behaviors which may impose di-
agnosis on the velocity and density structures in astrophysical systems.
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1 INTRODUCTION

Far away from initial and boundary conditions, dynamical evolution of fluid systems may lead
to self-similar phases with physical variable profiles shape-invariant and magnitudes properly
scaled (Sedov 1959; Landau & Lifshitz 1959). Similarity methods, which transform partial dif-
ferential equations (PDEs) to ordinary differential equations (ODEs), greatly simplify nonlinear
problems. For spherical systems, several well-known self-similar solutions were found to describe
the collapse of an isothermal cloud in the context of star formation (Larson 1969; Penston 1969;
Shu 1977; Hunter 1977; Whitworth & Summers 1985). The first is the LP solution independently
found by Larson (1969) and Pensten (1969); the second is the “expansion wave collapse” solution
(EWCS) found by Shu (1977), who also discovered other solutions with central point mass from
the initial instant t = 0 to the final stage t → +∞; Hunter (1977) discovered infinitely many
discrete analytic solutions within the pre-catastrophic period which share with the LP solution
that they are regular at x → 0− although some of these solutions can not be continued in the
post-catastrophic period from t = 0 to t→ +∞. Hunter’s results were extended by Whitworth
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& Summers (1985, hereafter WS), who allowed weak discontinuities across the sonic critical line
and hence constructed continuous bands instead of Hunter’s discrete solutions. But their solu-
tions with weak discontinuities were criticized by Hunter (1986) that are only of mathematical
interest and are physically unstable. Recently, Lou & Shen (2004, hereafter LS04) re-examined
this classic problem and derived new solutions in the ‘semi-complete space’ (0 < t < +∞), in
contrast to the ‘complete space’ (−∞ < t < +∞) taken by Hunter (1977) and WS.

The realistic situation may deviate from the spherical collapse. In essence, the presence
of rotation or magnetic fields will cause the collapsing system to be more and more flattened
(e.g., Nakamura, Hanawa, & Nakano 1995, hereafter NHN) so that the system will later evolve
disk-like. Models considering self-similar evolutions in a thin disk have been studied in many
papers (e.g., NHN; Li & Shu 1997; Saigo & Hanawa 1998; Krasnopolsky & Königl 2002) with or
with out rotation and magnetic fields. Axisymmetry is assumed in the above papers to simplify
the problem.

In this work, we plan to establish the whole solution structure for an isothermal fluid system
with either spherical symmetry or axisymmetric disk geometry within the period from t = 0
to t → ∞. In comparison with the previous solutions found by other authors, we particularly
emphasize the existence of such solutions that the innermost part (core) is collapsing towards
free-fall while simultaneously the outer part (envelope) is expanding and approaching constant
wind. However, the overall collapse region is expanding in a self-similar manner. These envelope
expansion with core collapse (EECC) solutions exist in the spherical and non-rotating disk cases
but not the rotating disk case (see Section 3.2). Furthermore, as an non-trivial extension we can
incorporate purely azimuthal magnetic fields in the disk cases (details are not discussed here).

2 SPHERICAL CASES

The basic formalism for the problem with spherical symmetry is well-established by many
authors. By the definition of self-similar variable x ≡ r/at where r, a, t are the radial coordi-
nate, isothermal sound speed and time coordinate respectively, the reduced ordinary differential
equations (ODEs) are as follows

[(x− v)2 − 1]
dv

dx
=

[

α(x − v) − 2

x

]

(x− v) , [(x− v)2 − 1]
1

α

dα

dx
=

[

α− 2

x
(x − v)

]

(x− v) ,

m = x2α(x − v) ,

(1)

where α(x), v(x), m(x) are the reduced density, radial bulk velocity and enclosed mass, respec-
tively. The physical density ρ, radial bulk velocity u and enclosed mass M are obtained by the
similarity transformation

ρ(r, t) =
α(x)

4πGt2
, u(r, t) = av(x), M(r, t) =

a3t

G
m(x). (2)

By expanding the solutions in power serials at large and small x; and with careful treatment
of the sonic critical line one may construct various types of self-similar solutions which are
present in LS04. In addition to the shock-free solutions present in LS04, we can also construct
shocked similarity solutions, which are applied to the star-forming regions and H II regions
(Shen & Lou 2004).

Among various solutions, we are particularly interested in such solutions, for which the
innermost part (core) is collapsing and approaching free-fall towards the center while simulta-
neously the outer part (envelope) is expanding and approaching a constant wind. The core-mass
accretion rate is constant. The shock which connects the inner part and the outer part is prop-
agating outward at a constant speed.
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3 AXISYMMETRIC DISK CASES

For axisymmetric disk cases we introduce similarity transformation:

x =
r

at
, Σ(r, t) =

aα(x)

2πGt
, u(r, t) = av(x) , CA = aq(x) ,

M(r, t) =
a3t

G
m(x) , j(r, t) = βa2tm(x) , Φ(r, t) = a2φ(x) ,

(3)

where

φ(x) = − 1

2πx

∫ ∞

0

X (ξ/x)α(ξ)ξdξ , X (X) =

∮

dψ

(1 +X2 − 2X cosψ)1/2
, (4)

and α, v, q, m, φ are reduced quantities which are dimensionless functions of similarity
independent-variable x and Σ, u, CA, M , j, Φ are surface mass density, radial bulk velocity,
Alfvénic speed, enclosed mass, specific angular momentum and gravitational potential respec-
tively. The specific angular momentum is proportional to the enclosed mass because their ratio
is assumed to be spatially uniform at the initial instant t = 0 and conserved during the succes-
sive evolution (Li & Shu 1997; Saigo & Hanawa 1998). Using these reduced variables we derive
the ordinary differential equations (ODEs) as

[(x− v)2 − 1 − q2]
dv

dx
=

(

f − β2m2

x3
− 1

x

)

(x− v) +
q2

2

(
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, (5)
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dq
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f

2
− β2m2

2x3
+

q2 − 2

4(x− v)
+

v
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, (7)

where f ≡ dφ/dx together with the following auxiliary equations:

m = xα(x − v) , (8)

and equation (4). Equations (4)–(8) are the full set of ODEs to be solved. In particular, equations
(5)–(7) are simultaneously solved for reduced density, reduced radial velocity and Alfvénic Mach
number. In the monopole approximation, the reduced gravitational force is approximated as
f ∼ m/x2.

There exists one exact solution for the ODE set, which is the rotational equilibrium state
of a (magnetized) singular isothermal disk (MSID):

v = 0 , α =
1 +D2 −Q2/2

x
, f =

1 +D2 −Q2/2

x
, m = (1 +D2 −Q2/2)x ,

β =
D

1 +D2 −Q2/2
, q ≡ constant = Q .

(9)

Without magnetic fields (q = 0) and in the monopole approximation, we reduce the basic
equation set (4)–(8) into

[(x− v)2 − 1]
dv

dx
=
α(x − v)[1 − β2α(x− v)] − 1

x
(x− v) ,

[(x− v)2 − 1]
1

α

dα

dx
=
α[1 − β2α(x − v)] − (x− v)

x
(x− v) , m = xα(x − v) ,

(10)

with the asymptotic solution when x→ +∞ as

v → V +
1 −A+ β2A2

x
+
V (1 − β2A2)

2x2
+

2V 2 + (A− 1 − β2A2)(A− 4)

6x3
,

α→ A

x
+
A(1 −A+ β2A2)

2x3
, m→ Ax .

(11)

For non-rotating disks we simply set β = 0 in the above equations.
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Fig. 1 Example solutions in non-rotating disks without magnetic fields. Left: Example so-
lutions of v(x) versus similarity variable x. The dash-dotted line is the sonic critical line
x − v = 1. The light solid line is one of the Shu-like solutions and the heavy solid line is the
disk-EWCS. The dotted line is one of the disk-EECC solutions which do not cross the sonic
critical line. The dashed line is the disk-LP solution. Right: Example solutions of α(x) versus
similarity variable x. Notations and line-types are the same as left.

3.1 Non-rotating Disks Without Magnetic Fields

For non-rotating β = 0 cases, we have asymptotic solutions when x→ 0 as either

v → −
(

2m0

x

)1/2

, α→
(

m0

2x

)1/2

, m→ m0 , (12)

which stands for free-fall, or else

v → x

2
, α→ B , m→ Bx2 , (13)

which stands for core-expansion. And the expansions of solutions near the sonic critical line
x− v = 1 are

v = x∗ − 1 + C∓(x− x∗) + ... , α = 1 + (C∓ − 1/x∗)(x− x∗) + ... , (14)

where

C∓ =
1 ∓

√

1 + 2(1/x2
∗ − 1/x∗)

2
, (15)

with -minus and -plus signs denoting type 1 and type 2 solutions in reference to the spherical
case (Hunter 1977; WS; LS04). Figure 1 shows several example solutions for the non-rotating
case.

3.2 Rotating Disks Without Magnetic Fields

For rotating β > 0 cases, notice from equation (5) that the term of centrifugal force diverges as
x−3 if m → m0, faster than other terms. So for rotating disks the material will not fall freely
to the center as indicated by (12). Instead, we have asymptotic solutions when x→ 0 as either

v(x) → x
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(16)
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or the quasi-equilibrium asymptotic solution

v(x) → D2 − 1

(1 +D2)(1 +D2 + λ)
ηxλ+2 , α(x) → 1 +D2

x
+ ηxλ , m(x) → (1 +D2)x , (17)

where

λ =
−3 +

√
4D2 − 3

2
> −1 , D =

1 +
√

1 − 4β2

2β
> 1 , (18)

and η is a constant parameter. Asymptotic solution (17) is actually the quasi-equilibrium state
with the leading order as the exact equilibrium SID solution and is rotating supersonically with
rotational Mach number D exceeds unity.

By the isothermal shock jump condition (Tsai & Hsu 1995; Saigo & Hanawa 1998; Shu et
al. 2002)

(vd − xs)(vu − xs) = 1 ,
αu

αd
= (vd − xs)

2 , (19)

we can connect the inner quasi-equilibrium solution to the outer envelope which approaches
constant winds or inflows or breezes. In the above equations xs is the shock location fixed in
the similarity coordinates which suggests that the shock moves outward at constant speed xsa,
i.e., the physical radius of the shock discontinuity increases linearly with time.

4 DISCUSSION

The major difference of our self-similar solutions from those by other authors is that our so-
lutions include not only those with constant inflow speeds or being quasi-static at large radii
but also those with constant winds at large radii. Spatially, the novel solutions describe both
collapsing part and expanding part, connected with or without shocks. Temporally, the fluid
element at all radii is decelerated from expansion to collapse and the stagnation points as well
as shock fronts propagate outward at constant speeds. The density and velocity profiles at
large or small radii have well-defined power-law behaviors on radius, which thus can be used
as useful input parameters in numerical radiation transfer codes. Another important aspect of
these self-similar solutions is the core-mass accretion rate, which is constant. So the mass of
the central object (either a proto-star or a black hole) increases linearly with time. We have
extended the range of the core-mass accretion rate, which is only of specific values for several
known self-similar solutions (i.e., for the EWCS, the core-mass accretion rate m0 = 0.975).

The astrophysical applications of these self-similar solutions may appear in various circum-
stances: systems involving accretions and outflows. To be more specific, the evolution of young
stellar objects (YSOs), H II regions around OB stars and planetary nebulae (PNe) may expe-
rience certain stages which can be described by these self-similar solutions (Shen & Lou 2004).
By incorporating more realistic ingredients such as the polytropic equation of state, the toroidal
environment and even general relativity, these solutions originally derived in isothermal spheres
can be generalized to describe more complicated cases (e.g., core-collapse supernovae). In ref-
erence to our novel EECC solutions, we may propose the following scenario: the envelope at
large radii is initially expanding due to external heating (i.e., from supernovae or evolved stars
near star-forming regions); while the core region begins to collapse due to gravitational insta-
bilities; the successive evolution of the core-envelope system may evolve into a self-similar state
described by one of the EECC solutions. Such a situation may be applicable to the protostellar
evolution where core accretion and large-scale outflows may concur. For planetary nebulae, it is
interesting to note that in the classic interacting stellar wind (ISW) model, a much faster stellar
wind from the core catches up with a slower dense wind–the remnant of the asymptotic giant
branch phase–and together they form shocks; while our shocked EECC solutions imply that
while the shocked expanding envelope is creating the observed planetary nebula, the core (i.e.,
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the proto-white dwarf) is continuously accreting material. If it can accrete enough material to
exceed the Chandrasekhar limit, there might be the possibility of igniting a Type Ia supernova
explosion, without the requirement for a companion star!
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