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Abstract We present in this proceeding some aspects of a model that should
explain the spectral state changes observed in microquasars. In this model, ejection
is assumed to take place only in the innermost disc region where a large scale
magnetic field is anchored. Then, in opposite to conventional ADAF models, the
accretion energy can be efficiently converted in ejection and not advected inside the
horizon. We propose that changes of the disc physical state (e.g. transition from
optically thick to optically thin states) can strongly modify the magnetic accretion-
ejection structure resulting in the spectral variability. After a short description
of our scenario, we give some details concerning the dynamically self-consistent
magnetized accretion-ejection model (Ferreira 1997; Casse & Ferreira 2000) used
in our computation. We also present some preliminary results of spectral energy
distribution.
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1 INTRODUCTION

Microquasars are X-ray binaries that present clear signatures of transient or persistent jets.
These objects exhibit also different spectral states in X-ray. It is important to note that each
state is actually a stationary state in terms of dynamical time scales. Indeed, they last about
106 times longer. Thus any variation and sudden transitions we observe can only be understood
as slow (secular) variations. The mechanism of these transitions has still to be found.

As a preliminary step of a more detailed work presently in progress, we describe here the
main characteristics of the model that we propose to explain the spectral state changes observed
in microquasars. This model suppose the existence of a magnetized accretion-ejection structure
(hereafter MAES) that is developed in our group. These MAES well explain the jet formation
mechanism (e.g Ferreira 1997) but up to now the emission processes were not included in the
computation. We believe that changes in the MAES (for example transition from optically thick
to optically thin accretion disc) could explain the spectral state changes observed in galactic
black holes and we present here the first sketch of the radiative transfer treatment in such
structures.
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We present our scenario in Sect. 2. In Sect. 3 we give some details of the main characteristics
of MAES used in our computations. In Sect. 4, we show preliminary disc SEDs in order to
exemplify the effect of jet production on the disc emission.

2 OUR SCENARIO

Jets from microquasars share the property of an extreme collimation with AGN jets. Such a
collimation cannot be achieved by the outer pressure and requires therefore self-generation.
Only large scale magnetic fields that are carried along with the jet have been proved to provide
such a self-collimation. We assume therefore that a magnetic field is anchored onto the accretion
disk around the compact object giving birth to a MAES.

We aim to explain the two main microquasars spectral states, i.e. the low/hard and high/soft
states, in the MAES framework. Simple cartoons of our model are shown in Fig. 1. In both
states we suppose the existence of a MAES but the part of the accretion disc that ejects is
much smaller in the high/soft compared to the low/hard state. In this case, the disc emission is
strong and close to the standard one as observed in this state. Inversely, in the low/hard state
the disc emission is weak due to a strong jet emission (cf. next Sect.). The jet basis is expected
to be relatively hot and could explain the thermal Comptonized component observed in this
state. The strong jet also explain the strong radio emission associated with this state. As we
can see, one of the main parameter of the model is the radial extension of the ejection region
in the disc. We believe that it is controlled by some disc instabilities, and for instance part of
it may transit from optically thick to optically thin states.

In this model, we also assume the presence of a relativistic jet produced inside the MHD
one (the two-flow model, Pelletier 2004 and reference therein) and energized by plasma-MHD
waves interaction. This is the two-flow (outside MHD jet and inside relativistic one) model
developed in our team (Pelletier 2004 and references therein). A zoom of the central region of
the jet is also shown in Fig. 1. The two-flow model has been already applied with success to
explain the SEDs of AGNs with jets (e.g. Marcowith et al. 1998). In the case of microquasars,
the relativistic jet could explain the superluminal motions that can be observed in some cases.
It could also explain the presence of the high energy tail generally observed in both states (e.g.
Ling & Wheaton 2003), and which is not easily explained in the standard view.

We present below the general picture for handing the radiative transfer problem in MAES.

3 MAGNETIZED ACCRETION-EJECTION STRUCTURES

In a series of papers (e.g. Ferreira & Pelletier 1995; Ferreira 1997; Casse & Ferreira 2000) it has
been shown that, in MAES, the poloidal magnetic field must be close to equipartition with the
plasma thermal pressure in order to allow for steady ejection. Indeed, in any other situation, the
magnetic field would produce an overwhelming vertical compression and the plasma pressure
would not be strong enough to push out disk material and load the field lines with matter.

The presence of such an equipartition field has severe consequences on the disk dynamics
since it is very difficult to get rid of the poloidal magnetic flux. If this assumption is correct, then
every spectral state of microquasars should provide an observational evidence of its presence.

Two major characteristics of MAES are:

– Jet torque: Magnetically driven jets produce a torque on the underlying accretion disc

such that Λ =
jet torque

viscous torque
∼

r

h
> 1. As a consequence, for the same accretion rate,

discs driving jets are always less dense than standard/ADAF discs.
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– Energy budget: The released accretion energy is shared between the jet power and the disc

emission, i.e Pacc = 2Pjet+2Pdisc with
2Pjet

Pacc
=

Λ

1 + Λ
≃ 1. Thus, jets carry away most

of the accretion power and discs producing jets are weakly dissipative (Ferreira
& Pelletier 1995). This is a key point in our scenario (cf. Sect. 2) since it gives an
alternative to conventional ADAF models, the accretion energy can be efficiently converted
in ejection and not advected inside the horizon. Thus no (or weak) disc emission does not
necessarily mean disc disappearance but more likely matter ejection! Such result can only
be catched by solving the complete set of MHD equation of the disc-jet configuration.

A vertical cross-section of a MAES is shown in Fig. 2. The main parameters in the equations
controlling the MAES are ǫ = h/r where h is the disc half-height, µ = B2/µ0Ptot and macc =
Macc/MEdd ∝ rξ where the ejection efficiency ξ can vary between 0.01 up to 0.4. These values
are not guessed (like in the ADIOS model) but were obtained by solving the full set of MHD

The Two-Flow Model

Fig. 1 Upper left: the high/soft state is characterized by a weak jet (weak radio emission) and
strong disc emission. Upper right: the low/hard state is characterized by a strong jet (strong
radio emission) and thus weak disc emission. In both state we also suppose the existence of
a relativistic jet, produced inside the MHD one (the two-flow model, lower left. cf. Pelletier
2004 and reference therein for more details) and energized by it trough plasma-MHD waves
interaction. This relativistic jets would produce, first the superluminal motion observed in
some conditions in microquasars, and second it would produces the high energy power law
tail observed in these states (Ling & Wheaton 2003).
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equations and scanning the parameter space (Casse & Ferreira 2000). For example, as already
noted above, a stationary disc + jet solution corresponds to µ ≃ 1 i.e. equipartition between
magnetic field and plasma pressure. As a result, we obtain the self-consistent spatial distribution
of the main physical quantities. An example of such distributions along the line field is plotted
in Fig. 3.

Fig. 2 Cross-section of an accretion disk driving cold jets (Ferreira 1997). Colors are density
contours, streamlines are black solid lines, while white dashed lines show isocontours of total
velocity.

Fig. 3 Quantities along a field line for a Self-Similar solution that crosses all three critical
points SM, Alfven and FM (Ferreira & Casse 2004). Density, pressure, temperature and
magnetic fields are normalized to their values at the disk mid plane, velocity to the Keplerian
speed at the anchoring radius. This solution recollimates at z ∼ 200h, where h is the disc half-
height. Our theory of steady jet formation from Keplerian accretion disks has been confirmed
by numerical MHD simulations (Casse & Keppens 2004).
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4 SEDS: PRELIMINARY RESULTS

As already said, we aim to develop a code that computes the total SEDs emitted by the disc+jet
structure. Thus we need to combine the stationary solutions obtained for MAES (as shown in
the previous section) with the energy equations followed by electrons and protons. This is a
work in progress and at the moment, we compute only the SED produced by the disc alone,
with or without jet emission, for different sets of parameter values i.e. the energy equation
systems is still not solved self consistently.

Synchrotron

Bremsstrahlung

Compton (very weak)

Disc with Jet

Fig. 4 Two examples of disc SEDs produced by our model with (right) and without (left)
jet. When there is a jet, the disc density strongly decreases (cf. Sect. 3). Consequently, and
since in this example we assume a fixed electron temperature, the global disc flux weakens
with a strong decrease of the bremsstrahlung and Compton emissivity. The parameters are
reported in the text. Red: synchrotron, blue: bremsstrahlung, green: Compton. Black: total

We take into account the main radiative processes for the electron i.e synchrotron,
bremsstrahlung (including self-absorption) and Compton effects. The disc is divided in a large
number of rings and the different emissivities are computed at each ring, using for the electron
density and magnetic filed the expression consistent with a stationary MAES. We then sum
over the disc surface to obtain the total emissivity. The figure below shows two examples of
SEDs for an electron temperature Te = 109 K, ǫ = h/r = 0.3, macc = 0.01, M = 10 M⊙ located
at 10 kpc. For these parameter values, the disc is optically thin. We note that, when the energy
equations for electrons and protons will be solved self-consistently, the values of Te and ǫ will
be naturally fixed.

The left plot corresponds to the case with jet and the right plot to the case without jet.
Clearly, the presence of a jet strongly modified the disc SED! Indeed, when there is a jet the
disc density strongly decreases (cf. Sect. 3). Consequently, and since we assume a fixed electron
temperature, the global disc flux weakens with a strong decrease of the bremsstrahlung and
Compton emissivity.

We note that we only want here to exemplify the impact of jet emission on the disc SED
without trying to reproduce the observed microquasar spectral states. This will be of course the
next step of this study. However, from this simple example, we can extrapolate that if we had
assumed a constant total luminosity instead of a constant temperature, the case “disc-with-jet”,
would have had a higher electronic temperature, i.e. a hotter corona, to compensate the smaller
density. This is in agreement with the presence of a hot thermal plasma commonly assumed in
microquasars to explain the X-ray spectra in the low/hard state.
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5 CONCLUSION AND PERSPECTIVES

We present here only some details of the model we are developing to explain the spectral changes
in microquasars. We believe that the changes are mainly due to physical changes in the disc
itself, and for instance part of it may be transiting from optically thin to optically thick states.
This would strongly influence the disc-jet structure resulting in important changes of the global
SED.

Work is in progress to develop a complete self-consistent solution of MAES with realistic
radiative transfer in the disc and in the jet.
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