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Abstract A detailed theoretical analysis on the orbital lifetime and orbital in-
clination of a Low Moon-Orbiting satellite (LMOs) and the ‘stable areas’ of long
orbital lifetime are given. Numerical simulations under the real force model were
carried out, which not only validate the theoretical analysis and also give some
valuable results for the orbit design of the LMOs.
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1 INTRODUCTION

Due to the difference between the Moon’s gravitational potential and the Earth’s, the lifetimes
of a Moon-Orbiting Satellite (MOs) and an Earth-Orbiting-Satellite (EOs) are very different.
Problems on the orbital lifetime of high MOs (HMOs) and low MOs (LMOs) have been discussed
in Matchal (1999), Mayer et al. (1994) and Wang et al. (2002, 2003). These mainly made use
of numerical results to show the short orbital lifetime of polar orbit LMOs under the lunar
odd zonal harmonic perturbations. In this paper we shall go more deeply into the theoretical
relationships between the LMOs’ lifetime and the orbital elements (especial the inclination i)
using perturbations analytical solutions. Numerical simulations are also carried out under the
full force model giving detailed useful orbital information on LMOs.

2 THE THEORETICAL ANALYSIS ON THE ORBITAL LIFETIME OF LMOS

Despite the absence of atmosphere on the Moon, LMOs will fall on the Moon when the Moon’s
nonspherical gravitational perturbation (NGP) has reduced the perifocus rp = a(1 − e) to
the semimajor axis ae. Now, there are only short period terms with small amplitudes (of the
order of 10−4) in the orbital semimajor axis a due to the perturbation of the Moon’s dynam-
ical oblateness of J2 and they will not lead to appreciable variation of rp. Thus, the reason
why rp diminishes greatly is due to the large amplitude long period terms ∆el of the orbital
eccentricity e.
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The equation for the long period terms of e in the lunar-centered epoch celestial coordinate
system due to the two main perturbations, the Moon’s NGP and the Earth’s gravitation, can
be written as:
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where J2 = −C2,0 is the Moon’s dynamical oblateness (of order 10−4). The original expression
of Eq.(1) was developed in Liu et al. (1998), here, some changes are made for the purpose of
this paper and a dimensionless unit system is introduced with the lunar gravitational constant
fixed at µ = GM = 1. The 1st term and the 2nd term of Eq.(1) are the response to the zonal
(Jl = −Cl,0) harmonic perturbations and tesseral harmonic perturbations and the 3rd term is
the response to the Earth gravitational perturbation and they are all factored by e. In Eq.(1),
n = a−3/2 and the notation p0 is used to distinguish it from the summing index p. The relative
equations may be written as
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I(ω) = −(1 − δ) sin(l − 2p)ω + δ cos(l − 2p)ω. (5)

Note that θ = Ω − S(t) in the function Φ(ω, θ) of the tesseral harmonic perturbation and
S(t) is the longitude of X axis in the lunar fixed coordinates system, which varies with the
revolution of the Moon. The expression of Φ(ω, θ), inclination function Flmp(i) and the Earth
gravitational perturbation term O(em′) are not given in this paper, because they can all be
omitted as will be shown below.

Further analysis of Eq.(1) shows that the terms on the right are either O(e0) (i.e. terms like
e0 cosω) when l is odd, or O(e) (i.e. terms like e sin 2ω) when l is even. The orbital eccentricity
e is small (i.e. e < 0.1) for the orbital lifetimes under consideration. In fact, for the LMOs
with mean altitude 100km, rp is near ae, where ae is 0.05 ∼ 0.06, and the LMOs will hit the
Moon once e increases. Thus, perturbation terms in Eq.(1) with odd l need to be considered,
while the tesseral harmonic perturbations are one order smaller than the odd zonal harmonic
perturbations. As a result, in theoretical analysis only the odd zonal harmonic perturbations
need to be retained in Eq.(1). The effect of the omitted terms can be considered in the numerical
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simulation under the full force model and the results have shown the reasonableness of the
simplification. Retaining only terms like O(e0) which are confined to the odd zonal harmonic
perturbation in Eq. (1), the simplified expression is
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Here l(2) means the summation in Eq.(6) is with stepsize 2, i.e. l(2) = 3, 5, · · ·. ω = ω̄(t) =
ω̄0 + ωc(t − t0), ωc is the secular coefficient of ω̄(t), and if only the 1st secular coefficient due
to J2 is considered, then we have
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3J2
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0
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Integrating Eq. (6) leads to
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It is easily seen that the amplitude of ∆e is mainly determined by the ratio of the odd zonal
harmonic coefficient J2l−1(l ≥ 2) to J2 and the character of the function F ∗(i) and we have

|∆el| ∼ O(J2l−1/J2) · · ·F ∗(i). (10)

For the Earth orbiting satellite, because

O(J2l−1/J2) = 10−3 (11)

the amplitude of eccentricity ∆el is small. For the Moon orbiting satellite, because

O(J2l−1/J2) = 10−1 (12)

it is possible for rp = ae with sufficient increase of e. In fact, it is essentially determined by the
character of (J2l−1/J2)F ∗(i).

Due to the character of the lunar nonspherical gravitational potential, the harmonic coef-
ficients J2l−1 do no obviously decrease with increasing order l, and from the analysis of the
function (J2l−1/J2)F ∗(i) we know that the modulus of long period variation |∆el| has several
maxima or minima for different inclinations i (0◦ < i ≤ 90◦), this means the LMOs’ orbital
lifetime is determined by both the odd zonal harmonic perturbations and the orbital inclination.
The LMOs will not hit the Moon in a long period when the inclination i∗ is near an area where
the function (J2l−1/J2)F ∗(i) attains its minimum and this area is called the ‘stable area’ of
orbital lifetime; but the LMOs will soon hit the Moon when the i∗ is near an area where the
function (J2l−1/J2)F ∗(i) attains its maximum, this area is called the ‘unstable area’.

Although lunar libration could change lunar nonspherical gravitational potential, the order
of magnitude of the change is only 10−7. So, there are only short period terms in a and e due
to the libration. Thus, the lunar libration is omitted in the above discussion. The effect of lunar
libration is included in Zhang et al. (2005).
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3 NUMERICAL SIMULATIONS AND SOME VALUABLE RESULTS FOR
LMOS’ ORBIT DESIGN

To verify the correctness of the theoretical analysis, numerical simulation were carried out for
two cases for the LMOs:

(1) According to the analytical solution Eq.(9), the distribution of the maximum and min-
imum is found by calculating |∆el| for i ranging from 0◦.5 to 179◦.5 in step of 1◦.

(2) Considering the main perturbation (including lunar nonspherical gravitational pertur-
bation, the Earth gravitational perturbation and the Sun gravitational perturbation), the per-
ifocus altitude hp for different inclinations i is given by the dynamical equations of the LMOs
(the mean altitude is h̄ = 100km, e0 = 0.001). This is just the correlation between the LMOs’
orbital lifetime and the inclination i.

Numerical calculation in case (2) verifies the correctness of the results given by the analytical
solution, and identifies the relationship between the LMOs’ orbital lifetime and the orbital
inclination i. Therefore, it is clear that the result is mainly determined by the character of the
lunar nonspherical gravitational harmonic potential.

In the above calculation, the lunar gravitation model LP75G of JPL which is similar to
model LP165 of JPL is used. Moreover, only zonal harmonic terms with l in the range 30–45
are useful for case (1), and the full harmonic terms are useful with l is 75 and m is 0 − l for
case (2).

The ‘stable areas’, i.e. where |∆el| is very small, correspond to

i = 0◦, 27◦, 50◦, 77◦ and 85◦,

and Eq.(9) gives the corresponding magnitudes of |∆el| as 0.0, 0.0053, 0.0010, 0.0042 and 0.0015.
According to the character of sin i, there are also ‘stable areas’ in the range 90◦−180◦, namely,
at 95◦, 103◦, · · ·.

The LMOs’ orbital lifetime in the ‘stable areas’ is expected to be long in in case (2) calcu-
lated with the full force model, while it is very short in the ‘unstable areas’. Numerical results
are listed in Table 1 for different orbital inclinations i. In Table 1, minhp = 0.0 or minhp � 0.0
indicates hitting the Moon’s surface and Tc is the associated orbital lifetime. The maximum
integrating interval is 10 years for all i0 and the integration is stopped when hp = 0.0. The

Fig. 1 Orbital lifetime of LMOs with initial
inclination i0 = 40◦.

Fig. 2 Orbital lifetime of LMOs with initial
inclination i0 = 90◦.
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perifocus altitude does not decrease greatly for LMOs in the ‘stable area’ (such as i0 = 85◦

and 95◦) in 10 years and the minimum altitude is still 60 km. Figures 1–4 show the hp–t graph
for i0 = 40◦, 90◦ and 85◦, 95◦.The lifetime is only 48 days and 172 days for i0 = 40◦ and 90◦,
respectively, and the minimum altitude is 60 km for i0 = 85◦ and 68km for i0 = 95◦.

Table 1 Orbit Lifetime of LMOs for Different Initial Inclinations i0

i (deg) Tc (day) Max. e Min. hp (km) i (deg) Tc (day) Max. e Min. hp (km)

1.0 2723.1 0.0362 33.9 60.0 88.2 0.0548 0.0

2.0 549.0 0.0414 24.6 61.0 88.1 0.0547 0.0

3.0 1852.7 0.0479 13.0 63.43 85.9 0.0545 0.0

4.0 273.2 0.0550 0.0 65.0 88.0 0.0546 0.0

5.0 49.5 0.0548 0.0 67.0 115.5 0.0547 0.0

7.5 42.9 0.0545 0.0 69.0 224.1 0.0523 3.9

10.0 42.5 0.0545 0.0 70.0 3347.5 0.0464 14.9

12.5 43.9 0.0547 0.0 71.0 3407.0 0.0406 25.5

15.0 43.9 0.0547 0.0 72.0 2453.3 0.0348 36.2

17.5 46.3 0.0548 0.0 73.0 1469.4 0.0333 39.0

20.0 77.0 0.0547 0.0 74.0 1498.4 0.0339 37.8

22.0 80.7 0.0532 3.2 75.0 1500.5 0.0340 37.8

24.0 80.0 0.0525 4.4 76.0 1449.0 0.0336 38.5

26.0 2543.1 0.0515 6.0 77.0 3383.8 0.0381 30.4

27.0 2219.9 0.0419 23.6 79.0 401.1 0.0544 0.0

28.0 2599.4 0.0264 52.1 80.0 320.6 0.0545 0.0

29.0 1404.4 0.0251 54.4 81.0 294.0 0.0545 0.0

30.0 2084.1 0.0453 17.3 82.0 294.7 0.0547 0.0

31.0 91.6 0.0547 0.0 83.0 403.2 0.0544 0.0

33.0 46.2 0.0547 0.0 84.0 2941.4 0.0419 23.0

35.0 44.5 0.0546 0.0 85.0 1711.7 0.0220 59.6

37.0 45.2 0.0546 0.0 86.0 3401.8 0.0414 23.6

39.0 47.4 0.0548 0.0 87.0 308.8 0.0523 4.0

40.0 47.9 0.0547 0.0 88.0 174.6 0.0542 0.3

41.0 48.4 0.0546 0.0 89.0 171.3 0.0545 0.0

43.0 48.3 0.0548 0.0 90.0 172.0 0.0545 0.0

45.0 49.7 0.0544 0.7 91.0 193.0 0.0546 0.0

47.0 72.7 0.0545 0.0 92.0 226.7 0.0546 0.0

49.0 177.9 0.0546 0.0 93.0 309.9 0.0546 0.0

50.0 2522.0 0.0545 0.0 94.0 1133.9 0.0392 28.1

51.0 1908.1 0.0337 38.5 95.0 1102.0 0.0172 68.3

52.0 211.9 0.0547 0.0 96.0 1557.2 0.0253 53.6

54.0 88.9 0.0546 0.0 97.0 1118.8 0.0464 14.5

56.0 83.1 0.0547 0.0 98.0 236.2 0.0546 0.0

58.0 84.6 0.0546 0.0
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Fig. 3 Orbital lifetime of LMOs with initial inclination i0 = 85◦.

Fig. 4 Orbital lifetime of LMOs with initial inclination i0 = 95◦.

4 CONCLUSIONS

Numerical results listed above have validated the correctness of the theoretical analysis and pre-
sented the relationship between the LMOs’ orbital lifetime and orbital inclination. Considering
the smallness of the ‘stable areas’ (for the selection of i0) and small perturbing terms omitted
in the theoretical analysis of this paper, more refined calculations may be necessary in orbit de-
sign. Furthermore, an orbital manoeuver is always necessary with the existing of orbit injection
errors.
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