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Abstract Black hole mass is one of the fundamental physical parameters of active
galactic nuclei (AGNs), for which many methods of estimation have been proposed.
One set of methods assumes that the broad-line region (BLR) is gravitationally
bound by the central black hole potential, so the black hole mass can be estimated
from the orbital radius and the Doppler velocity. Another set of methods assumes
the observed variability timescale is determined by the orbital timescale near the
innermost stable orbit around the Schwarzschild black hole or the Kerr black hole,
or by the characteristic timescale of the accretion disk. We collect a sample of 21
AGNs, for which the minimum variability timescales have been obtained and their
black hole masses (Mσ) have been well estimated from the stellar velocity disper-
sion or the BLR size-luminosity relation. Using the minimum variability timescales
we estimated the black hole masses for 21 objects by the three different methods,
the results are denoted by Ms, Mk and Md, respectively. We compared each of
them with Mσ individually and found that: (1) using the minimum variability
timescale with the Kerr black hole theory leads to small differences between Mσ

and Mk, none exceeding one order of magnitude, and the mean difference be-
tween them is about 0.53 dex; (2) using the minimum variability timescale with
the Schwarzschild black hole theory leads to somewhat larger difference between
Mσ and Ms: larger than one order of magnitude for 6 of the 21 sources, and the
mean difference is 0.74 dex; (3) using the minimum variability timescale with the
accretion disk theory leads to much larger differences between Mσ and Md, for 13
of the 21 sources the differences are larger than two orders of magnitude; and the
mean difference is as high as about 2.01 dex.
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1 INTRODUCTION

One of the aims of studying active galactic nuclei (AGNs) is to unify certain classes of AGNs.
In a unified scheme different AGNs are understood in terms of variations in a few principal
parameters (Barth et al. 2003). In accretion and jet theories, the fundamental parameters
determining the appearance and behavior of the system are the black hole mass MH, the mass
accretion rate Ṁ , and the black hole angular momentum J , which are usually expressed in
dimensionless forms as m8 ≡ MH/108M� (M� the solar mass), ṁ = Ṁ/ ˙MEdd ( ˙MEdd the
accretion rate that produces one Eddington luminosity), and j = J/Jmax (Jmax = GM2

H/c
the angular momentum of a maximal Kerr black hole), respectively (Meier 2002). Obviously,
determining the mass of a super-massive black hole in AGNs is an important step in this
attempt. Many methods have been proposed to estimate the masses of the central black holes
of AGNs. One set of methods assumes that the observed variability timescale is determined
by the orbital timescale near the innermost stable orbit around the Schwarzschild black hole
(Miller et al. 1987; Xie et al. 1987; Fan et al. 1999) or the Kerr black hole (Xie et al. 2002),
or by the characteristic timescale of accretion disk (Fan et al. 1999). Another set of methods
assumes that the broad-line region (BLR) is gravitationally bound by the central black hole
potential, so that the black hole mass can be estimated from the orbital radius and the Doppler
velocity (Woo & Urry 2002; Blandford & Mckee 1982; Peterson 1993; Mclure & Dunlop 2001;
Vestergaard 2002; Kaspi et al. 2000; Barth et al. 2003). However, estimates of the black hole
mass by different methods for the same object have larger differences, as pointed out by Barth et
al. (2003). Therefore, it is very important to make a detailed comparison of the mass estimates
by the different methods. In this paper we will report results of such a comparative study.

The sample we use in this paper includes 21 AGNs, for which rapid variability timescales
have been obtained and their black hole masses have also been well estimated from stellar
velocity dispersion and the BLR size - luminosity relation of Woo & Urry (2002). These data are
listed in Table 1: column (1) gives the IAU name; column (2) the class of the source; column (3)
the redshift; columns (4), (5) and (6) the logarithm of the minimal variability timescale, its
band and the relevant reference; column (7) the bolometric luminosity (in erg s−1) given by
Woo & Urry (2002); column (8) the Doppler factor, column (9) the black hole mass estimated
using stellar velocity dispersion or the BLR size - luminosity relation of Woo & Urry (2002).

2 BLACK HOLE MASSES FROM MINIMUM VARIABILITY TIMESCALES

Large-amplitude, rapid optical variability is one of well-known identifying characteristics of
blazars. The minimum timescale of variation may be used to place constraints on the size of
the emitting region, even though it may have a complex structure. If one assumes that the
variations are produced close to the black hole, the black hole mass can be estimated by the
variability timescale (Miller et al. 1989; Xie et al. 1987).

2.1 Black Hole Mass Estimates based on the Schwarzschild Black Hole Theory

It is well-known that the maximum rotation frequency and the fundamental vibration frequency
of any Newtonian polytrope are both of order ((GM/R3)1/2) (Weinberg 1972; Xie et al. 1987).
If the minimum variability timescale is ∆tmin, we have

(GM

R3

) 1
2

=
1

∆tmin
, (1)

which can be written as

R =
1√
2

√
2GM

c2R
c∆tmin. (2)
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Table 1 Observational Data and the Results Derived for 21 Blazars

Source Class z log ∆t band∗ Ref.† log Lbol
� δ log(Mσ/M�)� log(Mk/M�) log(Ms/M�) log(Md/M�)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

0317+183 XBL 0.190 3.75 O X04a 45.50 1.37 8.0 8.0 7.9 6.51

0420−014 FSRQ 0.915 4.65 O X04a 47.0 1.81 9.03 9.0 8.8 7.5

0548−322 XBL 0.069 3.54 O X04a 45.6 1.60 8.15 7.8 7.67 6.91

1101+384 XBL 0.031 3.56 O X88 45.7 1.65 8.29 8.0 7.69 6.45

1137+660 FSRQ 0.652 4.72 O X91 46.85 1.64 9.36 9.1 8.8 7.4

1244−255 FSRQ 0.633 4.72 O X91 46.48 1.38 9.04 8.9 8.8 7.4

1253−055 FSRQ 0.536 3.69 O X04a 46.1 1.87 8.43 8.0 7.8 6.9

1355−416 FSRQ 0.313 4.78 O X91 46.0 1.35 9.73 9.00 8.88 7.48

1510−089 FSRQ 0.361 3.50 O X04a 46.90 2.94 8.65 8.1 7.67 6.57

1514−241 RBL 0.049 2.95 O X04a 44.50 1.30 8.10 7.2 7.08 5.74

1538+149 FSRQ 0.605 3.44 O X90 46.4 2.4 7.82 7.81 7.54 6.66

1641+399 FSRQ 0.595 3.90 O X99 46.89 2.44 9.4 8.5 8.0 6.78

1652+398 XBL 0.034 4.10 O X04a 45.3 1.10 9.21 8.3 8.1 6.57

1807+698 RBL 0.051 3.38 X X04a 44.70 1.13 8.51 7.6 7.5 6.08

2005−489 XBL 0.071 3.84 X X04a 45.20 1.20 9.03 8.1 8.0 6.59

2128−123 FSRQ 0.501 4.88 O X91 46.76 1.46 9.61 9.10 8.98 7.58

2141+175 FSRQ 0.213 3.69 X X91 46.5 2.24 8.74 8.24 7.8 6.60

2200+420 RBL 0.069 3.44 O X04a 45.0 1.20 8.23 7.7 7.57 6.19

2251+158 FSRQ 0.859 3.84 O X04a 47.27 2.98 9.17 8.25 8.0 6.65

2254+074 RBL 0.190 3.68 O X04a 46.00 1.80 8.62 8.0 7.8 6.55

2344+514 XBL 0.044 4.00 X Gi00 45.00 1.00 8.8 8.2 8.1 6.70

References for Table 1:
∗ O: optical, X: X-rays;
† X88: Xie et al. (1988); X90: Xie et al. (1990); Xie91: Xie et al. (1991); X99: Xie et al. (1999);

X04a: Xie et al. (2004a); Gi00: Giommi et al. (2000);
� These data come from Woo & Urry (2002) except 1538+149, whose Mσ comes from Wu et al.

(2002) but log Lbol from Xie et al. (2004b).

According to the general theory of relativity, the stable interior radius is 3Rs, Rs = 2GMs/c2

being the Schwarzschild radius of the central black hole with mass Ms, so that we have

Ms = 1.36 × 104∆tmin(M�). (3)

From this equation we derive the black hole mass estimates for the 21 blazars listed in col-
umn (11) of Table 1.

2.2 Black Hole Mass Estimates on the Basis of the Kerr Black Hole Theory

Assuming that the central super-massive black hole is a maximal Kerr black hole, and that
the innermost edge of the disk does not necessarily coincide with the marginally stable orbit
(r = rms), but can be much closer to the hole; as close, in fact, as the marginally bound orbit
(r = rmb). The varying region can now be smaller than the least stable circular orbit. This
condition could be violated if fluctuations are produced, e.g., by some plasma instabilities in
a small region in or above the accretion disk or in a jet, that momentarily release energies
comparable to the overall energy. The frequency of circular orbit motion gives a good estimate
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of a minimal possible periodicity of flux generated at a given point on the surface of the disk
(Abramowicz & Nobili 1982), i.e.,

∆tmin = τ
rG

c
= 0.98 × 10−5τ

( Mk

M�

)
s, (4)

where Mk denotes the mass of the central Kerr black hole, rG = 2GMk/c2, τ is a dimensionless
parameter depending on the location of the region that provides the time variation (r∗ = r/rG)
and on the Kerr parameter a, which characterizes the rotation of the black hole (a = 0 for
zero rotation, a = 1 for the maximum possible rate): τ ≡ π(r3/2

∗ + a). The locations of the
horizon, marginally bound, and marginally stable orbits for the non-rotating black hole are
given by r∗ = 2, 4, and 6, respectively; for the black hole rotating at the maximum speed, all
three locations are given by r∗ = 1. Therefore, the parameter τ must obey τ > τmin = 2π. If
τmax < 2π, observations exclude the possibility of the black hole model (Abramowicz & Nobili
1982). Adopting τ = τmin = 2π and without considering relativistic beaming, one can deduce
an upper limit to Mk from Equation (4) as

Mk = 1.62 × 104∆tmin(M�), (5)

where ∆tmin is the minimal timescale of AGN variability. If we consider the relativistic beaming
effect, based on the relation ∆tmin(in) = [δ/(1+ z)]∆tmin(ob), Equation (5) then becomes (Xie
et al. 2002)

Mk = 1.62 × 104 δ

1 + z
∆tmin(M�), (6)

where ∆tmin is the observed minimal timescale of AGN variability, δ the Doppler factor and z
the redshift. According to the argument presented in Xie et al. (1991a, 2001a, 2001b, 2003 and
2004a), the Doppler factor, δ, should be given by

δ ≥
(5.0 × 10−43∆Lob

0.057× ∆tmin,ob

) 1
4+α

, (7)

where α is the spectral index. The results of Equation (6) for our sample are listed in column (10)
of Table 1.

2.3 Black Hole Mass Estimates using the Accretion Disk Theory

The variability discussed here could be directly related to shock processes in a jet. If we take
the variability timescale as a measure of the size, R, of the emission region, then R in the jet
obeys the inequality,

R ≤ c∆tmin
δ

1 + z
cm, (8)

where ∆tmin, in units of second, is the doubling time scale (Fan et al. 1999).
On the basis of the observations of the same kind of typical events of both optical (Xie et al.

1998) and TeV γ-rays bursts (Gaidos et al. 1996) we have found in our previous paper (Xie et
al. 1998), that ∼ 200Rs (Rs being the Schwarzschild radius of the central black hole) is perhaps
an important critical point, which had been expected based on the standard thin accretion disk
theory by Sunyaev (1975). Because when R < 200Rs, the electrons in the accretion flow become
ultra-relativistic. On the other hand, the mixture of relativistic electrons and non-relativistic
protons has an adiabatic index γ < 5/3, with which the transition to supersonic accretion
regime is possible in the region of R < 200Rs (Sunyaev 1975). As can be seen, both observation
and theory of accretion disk have shown that the 200Rs is an important critical point. Based on
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Fig. 1 A comparison between Mσ and Mk. Equality of the two is represented
by the lower dashed line.

the assumption that 200Rs is the critical point of the accretion disk, Fan et al. (1999) obtained
the black hole mass

Md = 5 × 102 δ

1 + z
∆tmin(M�). (9)

The results for the 21 blazars are listed in column (12) of Table 1.

3 COMPARISON OF Mσ WITH Mk, Ms AND Md

As addressed above there are three ways of estimating the black hole mass from the minimum
variability timescale, based on three different theoretical models. It can be easily seen from
Equations (3), (6), and (9), or more specifically from columns (10), (11), and (12) of Table 1,
that there are rather large differences. In order to determine which one is the most reliable,
we shall compare each one with the mass estimates from the BLR size-luminosity relation or
stellar velocity dispersion of Woo & Urry (2002), given in column (9) and taken to represent
the true values.

3.1 Comparison of the Black Hole Mass Estimates Mσ and Mk

There are two completely independent ways of estimating the black hole mass, one based on
the BLR size-luminosity relation or stellar velocity dispersion of Woo & Urry (2002, hereafter
the Method-WU), and the other from the minimum variability timescale and the Kerr black
hole theory by Xie et al. (2002). A comparison between the two is made in Figure 1, in which
equality is represented by the lower dashed line.

We can see that they agree relatively well. The largest difference between them is less than
one order of magnitude. The mean of the differences between them is very small; the mean
difference in logarithm is 〈

log
Mσ

Mk

〉
≈ 0.53. (10)
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Fig. 2 A comparison between Mσ and Ms. Equality of the two is expressed by the lower
dashed line, difference of one order of magnitude, by the upper dashed line.

Furthermore, the standard deviation of the logarithm of the Mσ to the Mk ratio is only about
0.31

σlog Mσ
Mk

=

√√√√∑ (
log Mσ

Mk
− 〈

log Mσ

Mk

〉)2

N
≈ 0.31. (11)

Obviously the estimates Mk compare well with the estimates Mσ.

3.2 Comparison of Black Hole Mass Estimates between Mσ and Ms

The black hole mass estimate from the Method-WU is also independent of that from the mini-
mum variability timescale based on the Schwarzschild black hole theory by Miller et al. (1989)
and Xie et al. (1987). The results of comparing the two are shown in Figure 2.

Figure 2 shows, for 6 of the 21 sources, the difference is more than one order of magnitude.
The mean difference in logarithm is as much as

〈
log

Mσ

Ms

〉
≈ 0.74. (12)

The differences in this case are much larger than in the previous case. However, the standard
deviation of the logarithm of the Mσ to Ms ratio is nearly the same as was found in Section 3.1,

σlog Mσ
Ms

=

√√√√∑ (
log Mσ

Ms
− 〈

log Mσ

Ms

〉)2

N
≈ 0.34. (13)
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Fig. 3 A comparison between Mσ and Md. The lower dashed line represents equality, the
upper dashed line, a two orders of magnitude difference.

3.3 Comparison of Black Hole Mass Estimates between Mσ and Md

Figure 3 shows the comparison between another two completely independent estimates of black
hole mass, one from the Method-WU, and the other from minimum variability timescale in the
accretion disk theory (Fan et al. 1999).

Figure 3 shows that even the smallest difference is more than one order of magnitude, and
for 13 of the 21 sources, the differences are more than two orders of magnitude. The mean
difference is as much as 〈

log
Mσ

Md

〉
≈ 2.01, (14)

and is the largest of the three cases. The standard deviation of the logarithm of the Mσ to the
Md ratio is

σlog Mσ
Md

=

√√√√∑ (
log Mσ

Md
− 〈

log Mσ

Md

〉)2

N
≈ 0.43. (15)

It is very small and is almost the same as that we found in Sections 3.1 and 3.2.

4 SUMMARY AND CONCLUSIONS

We estimated the black hole masses of 21 AGNs from the minimum variability timescale on the
basis of three theoretical models. For these sources, rapid optical variabilities have been reliably
established and their black hole masses have also been well (and independently) estimated by
the stellar velocity dispersion and the BLR size-luminosity relation (Woo & Urry 2002). Direct
comparisons in Figures 1, 2, and 3 show that : (1) The minimum variability timescale and the
Kerr black hole theory give reliable black hole mass estimates, the differences between Mσ and
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Mk are very small for most of the sources, the mean differences is only about 0.53. (2) Using
the minimum variability timescale and the Schwarzschild black hole theory leads to somewhat
larger differences between Mσ and Ms, for 6 of the 21 sources, the differences are larger than
one order of magnitude and there is a somewhat larger difference of 0.74 between the log Mσ

and log Ms. (3) The method of the minimum variability timescale and the accretion disk theory
leads to much larger differences between Mσ and Md. The differences are more than one order
of magnitude for all of the 21 sources and more than two orders of magnitude for 13 of them.
The mean difference in logarithm is as much as 2.01.

Our results seem to show that the method of black hole mass estimates through the min-
imum variability and the Kerr black hole theory is reliable. Thus, it could be expected that
most of black holes of AGNs are probably Kerr black holes. It is obviously of interest to apply
this method to a larger sample of AGNs at the highest known redshifts.
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