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Abstract Modern methods of spectral estimation based on parametric time-series
models are useful tools in power spectral analysis. We apply the autoregressive
(AR) model to study quasi-periodic oscillations (QPOs). An empirical formula to
estimate the expectation and standard deviation of the noise AR power densities
is derived, which can be used to estimate the statistical significance of an apparent
QPO peak in an AR spectrum. An iterative adding-noise algorithm in AR spectral
analysis is proposed and applied to studying QPOs in the X-ray binary Cir X-1.
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1 INTRODUCTION

Quasi-periodic oscillation (QPO) is a very common feature of accreting systems around compact
objects. The history of finding the QPO phenomena of low-mass X-ray binaries (LMXBs) can
be traced back to the early 70s. Angel et al. (1971) first reported that the X-ray of Sco X-1
has a 1–10 Hz oscillation. Tawaira et al. (1982) found that there was a 2Hz pulse in rapid
burst sources. These findings, however, did not attract much attention until the discovery of
the 20–30 Hz QPOs by van der Klis et al. (1986) in the typical bright galactic bulge source
GX 5-1 and the link of QPOs with millisecond pulsars suggested by them. QPOs have since
been found in several LMXBs. After the launch of Rossi X-Ray Timing Explorer (RXTE) into
orbit in Dec. 1995, its remarkable design of large area and high time resolution pushed the upper
limit of frequency of QPOs in LMXBs to the kilohertz range. The sources 4U 1728-34 and Sco
X-1 are the earliest ones found with kHz QPOs, with central frequencies at 800Hz and 1100Hz
respectively (Strohmayer et al. 1996; van der Klis et al. 1996). Connecting such a high frequency
with the Kepler time scale of the accretion disk at r = 100 km, by τdyn = (r3/GM)1/2 ∼ 2 ms,
it is seen that the source originates from the neutron star (van der Klis 1997). Until recently,
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13 sources show millisecond oscillations during thermonuclear X-ray bursts (see Muno 2004, for
a review). More than 20 sources have shown kHz QPOs and some of them show twin kHz peaks
(van der Klis 2000 for a review). The distribution of frequency is multi-peaked (Belloni et al.
2005). Although not as commonly as in LMXBs, pairs of 30–450Hz QPOs have also been found
in a few black hole candidates and their frequencies tends to appear in certain ratios (2:3, or
3:5) (Strohmayer 2001; Remillard et al. 2002; Abramowicz et al. 2003). By studying the rapid
QPOs, we may obtain information on such topics as the strong field effect of general relativity
theory and the state equation of compact objects. For example, QPOs with a central frequency
of 67Hz and 300Hz have been observed in GRO 1915+105 and GRO J1655–40, respectively,
which are the only known super-luminosity jet sources in the Galaxy (Morgen, Remillard &
Greiner 1996; Remillard et al. 1996). If these QPOs are induced by the accretion disk precession
frequency caused by frame dragging, it may suggest that there is a rapid rotational black hole
in these two sources. The value of angular movement can be used to classify the black holes
(Zhang, Cui & Chen 1997). Therefore, the detection of QPOs in X-ray sources is important for
establishing or verifying astrophysical theories. Also, some Chinese astronomers are interested
in the work in this field(cf. Wu 2005; Qian & Wu 2005).

The classical spectral estimation based on digital Fourier transform has been widely used
in studying QPOs (Leahy et al. 1983; van der Klis 1988). Shortcomings exist in this method
when applied to observed time series, e.g., the serious noise effect for long datasets and window
effect for short datasets. It is to overcome these shortcomings that modern spectral estimation
methods have been developed based on parametric models of stochastic process. We have found
that power density spectrum in the autoregressive model (AR PDS) can better reveal the QPO
peaks in Cyg X-1 (Chen, Feng & Li 2000; Chen et al. 2000). In Section 2 we compare the AR
PDS and Fourier PDS of the same time series with known QPO components and with simulated
white noise. Based on the good ability of AR PDS to reveal QPO peaks from noisy data shown
by our simulation studies, an iterative adding-noise algorithm is proposed for studying QPOs
in observed data. We examine the probability distribution of the noise AR power densities with
Monte Carlo simulations and derive an empirical formula for its parameters in Section 3. An
application of the AR spectral analysis technique to the X-ray source Circinus X-1 and a brief
discussion are given in Section 4.

2 PDS OF SIMULATED DATA WITH KNOWN QPOS

2.1 AR(p) Model and Its Parameters

Let ε(i), i = 0,±1,±2, · · · be a white noise process with zero mean and variance σ2
ε and

a(0), a(1), · · · , a(p) be a set of real constants with a(0) = 1 and a(p) �= 0. Then if x(j) is a
weakly stationary process which satisfies the different equation

p∑
i=0

a(i)x(j − i) = ε(j) , j = 0,±1,±2, · · · , (1)

and for which 〈x(i)ε(j)〉 = 0 for all i ≤ j − 1, j = 0,±1,±2, · · · then x(j) is said to be an
autoregressive process, denoted by AR(p). The number p is called the order of the autoregression
(Koopmans 1974). From Eq. (1) and that 〈ε(j)x(j − l)〉 = 0 for l = 1, 2, · · · , p, we obtain

〈x(j)x(j − l)〉 = −
p∑

i=1

a(i)〈x(j − l)x(j − i)〉 , l = 1, 2, · · · , p . (2)

However, by stationarity of x, 〈(x(j) − 〈x〉)(x(j + k) − 〈x〉)〉 only depends on the distance
k, normalize 〈x〉 to zero, we define the auto covariance function as r(k) ≡ 〈x(j)x(j + k)〉.
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Apparently, 〈x(j − l)x(j − i)〉 = r(l − i). Thus, Eq. (2) becomes
p∑

i=1

c(i)r(l − i) = r(l) , l = 1, 2, · · · , p , (3)

where c(i) = −a(i), i = 1, 2, · · · , p. These are the Yule-Walker Equations.
We have

σ2
ε = 〈x(j) −

p∑
i=1

c(i)x(j − i)〉2 = r(0) − 2
p∑

i=1

c(i)r(i) +
p∑

i,j=1

c(i)c(j)r(j − i) .

From Eq. (3), the above expression can be simplified to

σ2
ε = r(0) −

p∑
i=1

c(i)r(i) . (4)

In practice, r(j) can be replaced by its unbiased estimator,

r̂ =
1

N − j

N−j∑
k=1

x(k)x(k + j) ,

where N is the sample size.

2.2 The PDS of AR(p) Process

The PDS of a series x(k), P (f) is defined by the Fourier transform of its covariance r(k):

P (f) =
1
2π

∞∑
k=−∞

r(k)e−i2πkf∆t .

There are different ways to determine P (f). We view the problem from the angle of linear
filtering. In an AR(p) model, the white noise ε(i) can be thought of as the output of a linear
filter with, x(i), x(i − 1), · · · , x(i − p) as the input, and c(0) = 1, c(1), · · · , c(p) are the filter
coefficients. With the z-transform (z = ei2πf∆t), we have

(1 −
p∑

j=1

c(j)z−j)X(z) = E(z) ,

where X(z) and E(z) are the z-transform of the series x(j) and ε(j), respectively. Thus, the
frequency response of the AR(p) model is

C(z) =
E(z)
X(z)

=
1

1 − ∑p
j=1 c(j)z−j

.

However, the spectral density functions of the input, Px(z), and of the output, Pε(z) , are
related by the expression Px(z) = |C(z)|2Pε(z) (Jenkins & Watts 1968). Remember that Pε(z)
is the PDS of the white noise ε, that is, Pε(z) = σ2

ε . Replace z with ei2πf∆t, we see that the
AR(p) process has a continuous spectrum with spectral density of the form

Px(ei2πf∆t) =
σ2

ε

|1 − ∑p
j=1 c(j)e−i2πjf∆t|2 ≡ P (f) , (5)

where f(Hz) is the frequency. We label the PDS given in Eq. (5) as AR PDS.
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2.3 Determining the Value of Order p

Equation (5) is quite sensitive to p. If p is too small, the QPO frequency will be shifted severely
or even the QPO peak can not be found at all. A larger value of p may bring a higher spectral
resolution, but too large p will cause the peak to split and produce many pseudo-peaks in the
AR PDS. Some usually used criterions to determine the value of p are as follows:

(1) FPE (Final prediction error) criterion (Akaike 1970). According to FPE, p takes the value
where the function

FPE(p) =
1 + p/N
1 − p/N

σ2
ε (p)

reaches its minimum. Here N= sample size, 1 ≤ p ≤ N/10, σ2
ε (p) = r(0) − ∑p

i=1 c(i)r(i).
(2) AIC (A-Information Criterion) (Akaike 1973). Let

AIC(k) = lnσ2
ε (k) + 2k/N ,

where k = 1, 2, · · · , L, L is a few times lnN . Then p = k|AIC(k)=min.
(3) CAT (Autoregressive transfer function criterion) (Parzen 1976),

CAT(k) =
1
N

k∑
j=1

N − j
N σ2

ε (j )
− N − k

N σ2
ε (k)

.

where p = k|CAT(k)=min.

There are also other criterions that are commonly used. However, all, including those listed
above, usually give underestimates of p in practice.

2.4 QPO Model

The AR(2) model,

x(i) = c(1)x(i − 1) + c(2)x(i − 2) + ε(i) , ε(i) ∼ N(0, σ2
ε ) , (6)

where N(µ, σ2
ε ) is a normal distribution with expectation µ and standard deviation σε, which

may contain a QPO in its PDS with a peak at

fc = [cos−1(c(1)(1 − c(2))/4|c(2)|)/2π]/∆t (Hz), (7)

under the condition that c(2) < 0 and |c(1)(1 − c(2))/4c(2)| < 1 (Priestley 1981). With ∆t =
1/64 s time bin, we make two AR(2) series

u(i) = 1.6u(i − 1) − 0.9u(i − 2) + η(i), (8)

and
v(i) = 0.5v(i − 1) − 0.9v(i − 2) + 5ζ(i) , (9)

where η(i) ∼ N(0, 1) and ζ(i) ∼ N(0, 1) are two independent white noises. The expected PDS
of u(i) and v(i) calculated by Eq. (5) are presented in Figure 1. From Eq. (7) u(i) has a QPO
at 5.76Hz in its PDS (peak 1 in Fig.1) and v(i) has one at 13.28Hz (peak 2 in Fig.1). Adding
these two series up, we obtain a series x(i) = u(i) + v(i) with two QPO components. Because
the two series are independent, the PDS of x(i) is the simple sum of the two spectra of u(i)
and v(i) (see Fig.1). We produce a sample of x(i) for i from 1 to 40960 (the sample interval
T = 640 s) from the models (8) and (9) with the initial values u(0) = u(1) = v(0) = v(1) = 0.
Using a linear transform x′ = (x − x)/σ(x) + 1 we can obtain a new sequence with both mean
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Fig. 1 Power density spectra of QPO models. Dashed line: PDS of the model (8) with a
QPO peak at ∼5.76 Hz. Dot-Dashed line: PDS of model (9) with a QPO peak at ∼ 13.28 Hz.
Solid line: PDS of the model (8)+(9) with two QPO components.

and variance being unity. We still denote the normalized sequence as x(i). To compare the AR
and Fourier spectral estimations on the ability of extracting QPOs from noisy data, we add an
additional noise component a · ε(i) on the same x(i) produced above

y(i) = x(i) + a · ε(i) , ε ∼ N(1, 1) , (10)

where a takes the values 0, 10, 30 or 50 in turn.
As is usual with PDS obtained with FFT, each produced sample of y(i) is divided into

10 64-second segments. A 4096-point FFT and spectral estimation of AR model with order
p = 25 are performed on each segment to obtain Fourier PDS, PF (f), and AR PDS, PAR(f),
respectively. Taking the average of these PDSs, we acquire the PDS with the error-bar

err(f) =

√∑10
k=1(Pk(f) − P (f))2

10(10− 1)

at f(Hz). To compare the significance of the spectral components, all spectra are normalized
to the one with mean=3 (so that all data including their error-bars are kept positive) and
variance=1. Finally, all spectra are logarithmically rebinned to reduce the scatter at high fre-
quencies. The FFT PDS and AR PDS are respectively shown in the top and middle rows of
Figure 2.

We use a constant pulsing Gaussian curve

P (f) = A +
B1

w1

√
π/2

exp
(
− 2

(f − fc1

w1

)2)
+

B2

w2

√
π/2

exp
(
− 2

(f − fc2

w2

)2)

to fit the PDS. Because each PDS is normalized to standard deviation=1, we can define
the signal significance at the ith central frequency fci(Hz)(i = 1, 2) by S(fci) = ((P (fci) −
P (background))/STD(P (f)). Here P (fci) − P (background) = Bi/(wi

√
π/2) is the height of
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Table 1 QPO locations in Fourier, AR and AN-AR spectra for simulated data with two
known QPO components

Peak 1 (5.76 Hz) Peak 2 (13.28 Hz)

a fc1 (Hz) Significance fc2(Hz) Significance

0 5.76±0.03 2.4±0.3 13.27±0.01 6.8±0.4

FFT 10 5.77±0.11 2.0±1.1 13.24±0.05 5.9±1.4

30 5.93±0.33 1.2±1.3 13.13±0.13 3.6±1.8

50 – – 13.22±0.42 1.4±3.2

0 5.74±0.02 2.4±0.2 13.28±0.01 6.6±0.3

AR 10 5.58±0.08 1.7±0.4 13.30±0.03 6.1±0.6

30 6.78±0.28 1.5±0.9 13.28±0.13 3.9±1.1

50 – – 12.57±0.35 2.0±2.3

0 5.74±0.02 2.3±0.2 13.28±0.01 6.6±0.2

AN-AR 10 5.57±0.04 2.1±0.3 13.22±0.02 6.2±0.4

30 5.98±0.11 1.9±0.4 13.19±0.05 5.2±0.7

50 6.16±0.15 1.8±0.8 13.30±0.08 4.8±1.0

the Gaussian peak; STD(P (f)) = 1, is the standard deviation. The QPO characteristics deter-
mined from the Fourier and AR PDS are presented in the upper two boxes in Table 1.

Based on the ability of AR spectral estimation to extract QPO signal from noise-dominated
data, an iterative adding-noise algorithm can be proposed: repeatedly produce K length T
samples of z(i) by

z(i) = y(i) + η(i) , η ∼ N(λ, λ) , (11)

where λ is the mean of series y(i).Calculate AR PDS for the K samples separately, take the
average of the K spectra as the final result and denote it by AN-AR PDS. With K = 100
we draw the AN-AR PDS from the 100 samples of z(i) and show the results in the bottom of
Figure 2 and Table 1.

From Figure 2 and Table 1 we can see that compared to the Fourier technique, the AN-AR
spectral estimation is better able to extract QPOs from noisy data. When a = 30 and 50 in the
FFT spectra, we can hardly find the QPO at 5.76Hz, and the significance of the component
near 13Hz is small, too. When the background noise increases, the signal significance of Fourier
power spectrum decreases quickly, but there always exist remarkable QPOs in the AN-AR PDS.
In the case of a = 50 where the additional noise is 50 times the original signal x(i), both the
Fourier spectra and the AR PDS have almost completely lost the QPOs but the AN-AR PDS
still shows them clearly. It is easy to see that the QPO components are clearer and the pseudo
peaks are much smaller in AN-AR PDS than that in normal AR PDS. We chose different values
of p between 25–40 to calculate AN-AR PDS, the results near 13.28Hz are hardly affected, but
there would be a ∼0.5Hz frequency shift around 5.76Hz.

3 THE PROBABILITY DISTRIBUTION OF THE NOISE AR POWER
DENSITIES

To estimate the statistical significance of detecting a QPO peak in a power density spectrum
against a background of noise, we need to know the probability distribution of the noise power
densities in a PDS of data of pure noise. We study the distribution of the noise AR power



AR spectra of QPOs 501

Fig. 2 Power density spectra for different noise component added to the same simulated
data of the model (8)+(9). The analyzed data for each spectrum are produced by y(i) =
x(i) + a · η(i), where x(i) is a normalized sample of the model (8)+(9), η(i) ∼ N(1, 1). Each
PDS is normalized to mean=3 and standard deviation=1. Top row: Fourier spectra. Middle
row: AR spectra with p = 25. Bottom row: AN-AR spectra with p = 25.

densities by a Monte Carlo approach. We produce 100 random samples of stochastic process
of pure noise following the normal distribution N(1, 1). For each sample i (i = 1, · · · , 100) the
average AR power densities P i(f) with a AR(p) model (p = 5, 10, 15, 20, 25, 30) are calculated
from M data segment (M = 1, 2, 4, 8, 16, 32, 64), with each segment containing N data points
(N = 512, 1024, 2048, 4096). For each parameter set (p, N, M) the noise AR power density P i(f)
(i = 1, · · · , 100) is tested by the Kolmogorov test to see whether they are normally distributed.
The results show that for all parameter values the average noise power AR densities follow the
normal distribution at the 95% confidence level.

For each given set of p, N and M , the mean µ =
∑

i P i/100 and variance s2 =
∑

i(P i

−µ)2/(100−1) are calculated. All the means are in the range of 1.00±0.02, independent of the
order p, data length N and segment number M . For each set (N, M) the quantity

√
p varies

linearly with s (see Fig. 3). The distribution of
√

MN/2s vs
√

p shown in Figure 4 can be
fitted simply by a straight line√

NM

2
s = (−0.175 ± 0.028) + (1.055± 0.007)

√
p . (12)

Then, for a noise spectrum with length N , segment number M and order p of the AR model,
we have an empirical estimate of its expectation and standard deviation:

〈P 〉 ≈ 1 ,

σP ∈
[√ 2

NM
(1.04

√
p − 0.21),

√
2

NM
(1.07

√
p − 0.14)

]
. (13)
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Here we always have M > 1 and N � 1. Therefore, in Eq. (13), when p is large enough (e.g.
p > 10) the second term in each round bracket becomes negligible, thus

σ2
P
≈ 2p

NM
. (14)

Fig. 3 Relations of the standard deviation s vs
√

p for seven different values of data segment
number M . The symbols of square, circle, up triangle, down triangle, diamond, left triangle
and right triangle are correspondent to M = 1, 2, 4, 8, 16, 32 and 64, respectively. N denotes
the number of points in each segment.

Fig. 4 Linear relation between
√

p and reduced standard deviation s
√

MN/2. The error

bars are the standard deviations of 28 values of s
√

MN/2 at each p.
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Obviously, a noise spectrum of higher order, lower time resolution and shorter segment corre-
sponds to a larger variance. In fact, the order p is determined by the intrinsic properties of the
time series. For a given segment number σ2

P
∝ 1/N, σ2

P
→ 0 when N → ∞, consistent with the

theoretical spectrum of white noise.

4 APPLICATION AND DISCUSSION

We applied the AR spectral analysis method proposed above to study QPOs in the X-ray emis-
sion from Cir X-1. Cir X-1 is a low magnetic field neutron star (Tennant, Fabian & Shafer 1986).
Some QPO peaks, ranging between 1.3 and 32 Hz, have been reported (Shirey et al. 1998 and
Ref. in). We use the observational data of Cir X-1 taken with the Main Pointing Detector
PCA (Proportional Counter Array) on board RXTE between 09:25′:20′′ and 09:56′:06′′ on
18/05/1997. The Single-Bit Mode PCA data in 2–13 keV band with a time resolution of 122 µs
is used in our analysis. From the data, we select a span of 1664 s that is continuous without any
observational gap. First, with ∆t = 1/64 s time bin we calculate the average Fourier PDS from
26 segments, each segment has a length of 64 s (M = 26, N = 4096). Then we do the same thing
to the noise-added series y(i) = x(i)+a · ε(i), where x(i) is the original data and ε(i) ∼ N(λ, λ)
with λ being the average counts during a time bin in each segment of data. Figure 5 displays
the resulting Fourier spectra and AN-PDS for the unadulterated observational data (a = 0)
and different noise-added data (a = 10, 50, 100), with p = 26 estimated by the FPE criterion
(p = 11). We use the following function,

P = A1 + A2f + A3f
2 +

B

w
√

π/2
exp

(
− 2

(f − fc

w

)2)
(15)

to fit each PDS to find the QPO frequency fc and w. The average Leahy-normalized Fourier
power density approximately follows a normal distribution with mean 2 and standard error
2/

√
M (Leahy et al. 1983). The Fourier spectra in the paper is normalized to one half of the

Leahy-normalized PDS, therefore, the mean=1 and the standard error = (1/2)/
√

M . The sig-
nificance of QPO in the FFT PDS can be defined by S = 2(P c − 1)/

√
M , where P c is the

average power density at fc. The significance of QPO in the average AR PDS is defined by
S = (P c − 1)/σP , where the σP is estimated by Eq. (14). Table 2 lists the QPO characteristics
obtained by the Fourier and AN-AR spectra for different noise-added data.

Now we apply the proposed iterative adding-noise algorithm to analyze the observation data.
A difficulty in the AR spectral analysis is how to determine the value of order p. Although
some criteria for selecting p have been proposed (see Section 2.3), they usually result in an
underestimate on p in practice. The iterative adding-noise algorithm can weaken the demand
for accurate estimate of model order. As AR spectral analysis is able to extract weak QPO
signal from noisy data, AN-AR PDS can still show QPOs as AR PDS does for the original
data. However, as the artificially added noises are statistically independent from each other,
pseudo peaks should be smoothed out in the final averaged AN-AR PDS from many (K � 1)
noise-dominated data segments. One of the advantages of the iterative adding-noise algorithm is
that even larger p would not cause peak splitting and we may obtain a good frequency resolution
as well. To derive the adding-noise AR spectrum we took the time bin = 1/32S and p = 32, The
analyzed 1644 s duration is divided into M = 13 segments and each segment contains N = 4096
consecutive counts x(i). For each segment 500 noise-added data y(i) = x(i)+ ε(i) are produced
by independently adding noise ε with the same average rate as the signal. The final AN-AR
PDS is shown in Figure 6.

The obtained AN-AR PDS shows that besides the ∼12Hz QPO there may exists another
low frequency component in Cir X-1. We use Eq. (15) to fit the AN-AR PDS of Cir X-1 and
find that fc1 = 12.31 ± 0.01Hz, w1 = 2.25 ± 0.01Hz with fractional rms = (4.1 ± 0.4)% and
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Fig. 5 Power spectra of X-rays from Cir X-1. Upper row: Fourier spectrum. The analyzed
light curve is 1664 s long and the time step is 1/64 s. Each plotted spectrum is normalized to
0.5Pleahy with an average of 26 spectra from 4096-point FFT for 64 s segments. An artificial
noise a · ε, ε ∼ N(λ, λ) is added on the data, where λ = 244.407 is the average counts in
a time bin of observation data of Cir X-1. Lower row: AN-AR PDS with p = 11. The data
are logarithmically rebinned to reduce scatter at high frequencies. Each plotted spectrum is
normalized to 0.5Pleahy with an average of 13 spectra from 4096-point AR PDS for 128 s
segments.

Fig. 6 AN-AR spectrum of Cir X-1. The spectrum is an average of 500 spectra from noise-
added samples with Eq. (10), where y(i) = x(i) and the used AR order p = 32. The data are
logarithmically rebinned to reduce scatter at high frequencies. The spectrum is normalized
to 0.5Pleahy with an average of 13 spectra from 4096-point FFT for 64 s segments.
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Table 2 QPO Parameters in Fourier and AR Spectra for Noise-added Data

AR (p = 11)

a fc (Hz) w (Hz) rms (%) S

0 12.4 ± 0.01 2.90 ± 0.01 5.7 ± 0.4 245.0 ± 1.7

10 12.4 ± 0.01 2.98 ± 0.02 1.8 ± 0.4 23.1 ± 0.3

50 12.4 ± 0.03 4.23 ± 0.08 0.9 ± 0.1 4.0 ± 0.3

100 12.1 ± 0.05 4.25 ± 0.14 0.7 ± 0.2 2.4 ± 0.4

Fourier

a fc (Hz) w (Hz) rms (%) S

0 12.4 ± 0.03 2.67 ± 0.05 5.5 ± 0.8 74.0 ± 3.0

10 12.4 ± 0.06 2.37 ± 0.06 1.7 ± 0.4 7.4 ± 0.9

50 12.5 ± 0.35 3.87 ± 0.93 0.9 ± 0.1 1.2 ± 0.7

100 12.0 ± 0.34 2.41 ± 0.79 0.6 ± 0.4 0.9 ± 0.6

Fig. 7 Evolution of power spectrum of Cir X-1. Each curve is the AN-AR PDS of a 64 s
segment which is an average of 500 spectra from noise-added samples with a = 0 and AR
order p = 11. Error bars are not shown in the plot.

significance S = 48.2± 0.1 for the normal QPO component. The second QPO component is at
fc2 = 1.94 ± 0.02Hz with width w2 = 1.03 ± 0.04Hz, rms = (1.3 ± 0.3)% and S=10.6 ± 0.1.
Although the low frequency component might not be ranked as a QPO, it does look very
significant!

Based on the high sensitivity of AR spectral analysis in revealing QPOs and the ability
of the iterative AN-AR algorithm in depressing the effect of background noise, we can study
the spectral evolution segment by segment. The process of adding noise on the same data of
a segment for K times can produce K artificial noise-dominated segments which are almost
independent samples. QPO peaks can show up in the AR PDS of each noise-added segment
and then in the resultant average PDS, but, at the same time, the noise effect can be greatly
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Fig. 8 Correlation between the central frequency and the width. The correlation coefficient
between the central frequency and the width is ∼0.6.

depressed by averaging over the K spectra. The whole 26 AN-AR spectra (p = 11) of a single
segment are displayed in Figure 7, from which we can see the evolution of QPO clearly at
∼12Hz in Cir X-1 during the time analyzed. Using Eq. (15) to fit the QPO components in each
segment, we find that there is some correlation between the central frequency and the width
(Fig. 8), the correlation coefficient is ∼0.6.
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