
Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 4, 379–398

(http://www.chjaa.org)
Chinese Journal of
Astronomy and
Astrophysics

Precession of the Orbital Plane of Binary Pulsars and
Significant Variabilities

Bi-Ping Gong

Department of Astronomy, Nanjing University, Nanjing 210093; bpgong@nju.edu.cn

Received 2004 October 10; accepted 2005 February 28

Abstract There are two ways of expressing the precession of orbital plane of
a binary pulsar system, given by Barker & O’Connell, Apostolatos et al. and
Kidder, respectively. We point out that these two ways actually come from the
same Lagrangian under different degrees of freedom. Damour & Schäfer and Wex
& Kopeikin applied Barker & O’Connell’s orbital precession velocity in pulsar
timing measurement. This paper applies Apostolatos et al.’s and Kidder’s orbital
precession velocity. We show that Damour & Schäfer’s treatment corresponds to
negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and
this paper both found significant (but not equivalent) effects. The observational
data of two typical binary pulsars, PSR J2051–0827 and PSR J1713+0747, appar-
ently support a significant Spin-Orbit coupling effect. Specific binary pulsars with
orbital plane nearly edge on could discriminate between Wex & Kopeikin and this
paper: if the orbital period derivative of the double-pulsar system PSRs J0737–
3039 A and B, with orbital inclination angle i = 87.7+17

−29 deg, is much larger than
that of the gravitational radiation induced one, then the expression in this paper
is supported, otherwise Wex & Kopeikin’s is supported.

Key words: pulsars: binary pulsars – geodetic precession: individual (PSR J2051–
0827, PSR J1713+0747, PSRs J0737–3039 A and B)

1 INTRODUCTION

In the gravitational two-body problem with spin, each body is precessing in the gravitational
field of its companion, with precession velocity of first order Post-Newtonian (PN) (Barker
& O’Connell 1975, hereafter BO). This precession velocity is widely accepted. However, as to
how the orbital plane reacts to the torque caused by the precession of the two bodies there
are two approaches. In BO, the orbital precession velocity is obtained by assuming that the
angular momentum vector, L, precesses at the same velocity as the Runge-Lenz vector, A. On
the other hand, in the study of modulation of gravitational wave by Spin-Orbit (S-L) coupling
effect in merging binaries, Apostolatos et al. (1994) and Kidder (1995) (hereafter AK) obtained
an orbital precession velocity that satisfies the conservation of the total angular momentum,
J , and the triangle constraint, J = L + S (where S is the sum of spin angular momenta of
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two bodies, S1 and S2). This difference in the assumptions leads to different physical behaviors
between BO’ and AK’s orbital precession velocities. BO’s expression is not consistent with the
triangle constraint, whereas the AK’s expression is. Moreover, the reason of this discrepancy
is that the former actually assumes that the four vectors, S1, S2, r1 and r2 (r1, r2 being
the position vectors of the two bodies), are independent; but, the latter assumes that the
independent vectors are either S1, r1 and r2; or S2, r1 and r2.

The discrepancy between BO’ and AK’s precession velocities has an analogy in the following
case. The motion of a small mass at the bottom of a clock pendulum can be described in the
x− y plane. However, if we treat the dimension of this case as 2, then the small mass can move
freely in the 2-dimensional space, and the length of the pendulum is not a constant. In other
words, once the length of the pendulum is a fixed constant, then the dimension is 1 instead of
2. Correspondingly if the free vectors of a binary system is 4, and the triangle constraint is not
satisfied (or J cannot be a constant vector). On the other hand, if the triangle constraint is
satisfied, the number of free vectors is 3, instead of 4.

In the application to pulsar timing measurement, BO’s orbital precession velocity is treated
in two different ways, by Damour & Schäfer (1988) and Wex & Kopeikin (1999) (hereafter
WK), respectively. The former predicted an insignificant S-L coupling induced precession of
periastron, ω̇S , and hence an insignificant derivative of orbital period, Ṗb; while the latter
predicted a significant ω̇S and Ṗb. In this paper we point out that the discrepancy is due to
Damour & Schäfer and WK calculated the effects in two different coordinate systems. In the
former, the coordinate system is not at rest to “an observer” at the Solar System Baryon center
(SSB), whereas, in the latter, the coordinate system is at rest to the SSB. Relative to the SSB,
the former coordinate system has a non-zero acceleration, but the latter has a zero acceleration.

We calculate the observational effect corresponding to AK’s orbital precession velocity,
which uses the same coordinate system as WK. Significant ω̇S and Ṗb are given, but they are
not equivalent to the results given by WK. The validity of the two expressions can be tested
by specific binary pulsars with orbital inclination close to π/2, i.e., the double-pulsar system
PSRs J0737–3039 A and B.

This paper contains four parts: (a) the physical discrepancy between BO and AK’s orbital
precession velocity (Sections 2, 3); (b) the derivation of S-L coupling induced effect correspond-
ing to AK’s expression of orbital precession (Sections 4, 5, 9); (c) the discrepancy between the
coordinate systems used by Damour & Schäfer (1988) and WK, as well as the relationships
among three expressions for the S-L coupling induced effects, given by Damour & Schäfer, by
WK and by this paper (Section 6); (d) confrontation of the three expressions based on the dif-
ferent S-L coupling models with observational data of PSR J2051–0827 and PSR J1713+0747,
and different predictions on ω̇S and Ṗb of PSRs J0737–3039 A and B (Sections 7, 8).

2 ORBITAL PRECESSION VELOCITY

This section introduces the derivation of the orbital precession velocity of BO and AK.

2.1 Derivation of BO’s Orbital Precession Velocity

BO’s two-body equation was the first gravitational two-body equation with spin, it consists of
two parts, the precession velocity of the spin angular momentum vectors of body one and body
two, and the precession velocity of the and the orbital angular momentum vector. Body one
precesses in the gravitational field of body two, with precession velocity (BO),

Ω̇1 =
L(4 + 3m2/m1)

2r3
L̂ +

S2

2r3

[
Ŝ2 − 3(L̂ · Ŝ2) L̂

]
, (1)
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where L̂, Ŝ1 and Ŝ2 are unit vectors of the orbital angular momentum, and of the spin angular
momentum of star 1 and star 2, respectively. Here Ω̇2 can be obtained by exchanging the
subscript 1 and 2 at the right side of Eq. (1). The first term of Eq. (1) represents the geodetic
(de Sitter) precession, which corresponds to the precession of S1 around L. It is 1PN due to
L
r3 ∼ (v

c )2(v
r ). The second term represents the Lense-Thirring precession, S1 around S2, which

is S
L times smaller than the first. Therefore, it corresponds to 1.5PN. The precession velocity

of the spin angular momentum vectors is confirmed by other authors using different methods.
However, for the precession velocity of the orbit, there are different expressions. BO’s orbital
precession velocity is given as follows. The total Hamiltonian for the gravitational two-body
problem with spin is given as (BO; Damour & Schäfer 1988)

H = HN + H1PN + H2PN + HS , (2)

where HN, H1PN and H2PN are the Newtonian, the first and second order post-Newtonian terms
respectively. HS is the spin-orbit interaction Hamiltonian (BO; Damour & Schäfer 1988),

HS =
2∑

α=1

(
2 + 3

mα+1

mα

)(Sα · L
r3

)
, (3)

where by α + 1 is meant modulo 2 (2+1=1), m1, m2 are the masses of the two stars, r =
a(1 − e2)1/2, a is the semi-major axis, e is the eccentricity of the orbit. Note we use G = c = 1
units until Section 5 to Section 7 when we discuss observational effects .

The BO equation describes the secular effect on the orbital plane by a rotational velocity
vector, Ω̇S , acting on some instantaneous Newtonian ellipse. Damour & Schäfer (1988) com-
puted Ω̇S in a simple manner by making full use of the Hamiltonian method. The functions of
the canonically conjugate phase space variables r and p are defined as

L(r, p) = r × p , (4)

A(r, p) = p × L − GMµ2 r

r
, (5)

where r = r1 − r2, M = m1 + m2, µ = m1m2/M . Vector A is the Runge-Lenz vector (first
discovered by Lagrange). The instantaneous Newtonian ellipse evolves according to the funda-
mental equations of Hamiltonian dynamics (Damour & Schäfer 1988)

L̇ = {L, H} , (6)

Ȧ = {A, H} , (7)

where {, } denotes the Poisson bracket. L and A are first integrals of HN, only H1PN+H2PN+HS

contributes to the right-hand sides of Eqs. (6) and (7), in which H1PN + H2PN determines the
precession of periastron, in 1PN it is given as,

ω̇GR =
6πM

Pba(1 − e2)
, (8)

where Pb is the orbital period. To study the spin-orbit interaction, it is sufficient to consider
HS. Thus replacing H of Eqs. (6) and (7) by HS one obtains (Damour & Schäfer 1988),

(dL

dt

)
S

= {L, HS} = Ω̇∗

SŜ × L , (9)

(dA

dt

)
S

= {A, HS} = Ω̇∗

S [Ŝ − 3(L̂ · Ŝ)L̂] × A , (10)
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where

Ω̇∗

S =
S(4 + 3m2/m1)

2r3
. (11)

By Damour & Schäfer (1988), S represents a linear combination of S1 and S2. For simplicity
and consistency with WK’s application of Ω̇S , we assume S = S1 (the other spin angular
momentum is ignored) until Section 4 where the general binary pulsar is discussed.

The solution of Eqs. (9) and (10) gives the S-L coupling induced orbital precession velocity
(Damour & Schäfer 1988)

Ω̇S = Ω̇∗

S [Ŝ − 3(L̂ · Ŝ)L̂] . (12)

By Eqs. (9) and (12), the first derivative of L̂ can be obtained

dL̂

dt
= Ω̇∗

SŜ × L̂ , (13)

and by Eq. (1) the first derivative of Ŝ (recall S = S1) can be written

dŜ

dt
= Ω̇∗

1L̂ × Ŝ = Ω∗

S

L

S
L̂ × Ŝ , (14)

where Ω̇∗

1 is the first term at the right hand side of Eq. (1). By Eqs. (13) and (14) L̂ precesses

slowly around Ŝ, 1.5PN, as shown by Eq. (13); but Ŝ precesses rapidly around L̂, 1PN, as

shown in Eq. (14). Therefore the BO’s equation predicts a scenario in which the two vectors, L̂

and Ŝ precess around each with very different precession velocities (typically one is larger than
the other by 3 to 4 orders of magnitude for a general binary pulsar system).

2.2 Orbital Precession Velocity in the Calculation of Gravitational Waves

In the study of modulation of precession of orbital plane by gravitational waves, the orbital
precession velocity is obtained in a different manner and the result is very different from that
given by Eq. (12). Since the gravitational wave corresponds to 2.5PN, it is negligible compared
to the S-L coupling effect that corresponds to 1PN and 1.5PN, and the total angular momentum
can be treated as conserved, J̇ = 0. Then the following equation can be obtained (BO),

Ω̇0 × L = −Ω̇1 × S1 − Ω̇2 × S2 . (15)

Note that as defined by BO and AK, L = µM1/2r1/2L̂. In the one-spin case the right side of
Eq. (15) can be given as (Kidder 1995)

Ṡ =
1

2r3

(
4 +

3m2

m1

)
(L × S) , (16)

and considering that J = L + S, Eq. (16) can be written

Ṡ =
1

2r3

(
4 +

3m2

m1

)
(J × S) . (17)

From Eq. (15), L̇ can be given

L̇ =
1

2r3

(
4 +

3m2

m1

)
(J × L) . (18)

By Eqs. (17) and (18), L and S precess about the fixed vector J at the same rate with a
precession frequency approximately (AK)

Ω̇0 =
J

2r3

(
4 +

3m2

m1

)
. (19)
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Equation (19) indicates that in the 1PN approximation, L̂ and Ŝ can precess around J rapidly

(1PN) with exactly the same velocity. Note that the misalignment angles between L̂ and Ŝ

(λLS), L̂ and Ĵ (λLJ) are very different, due to S/L ≪ 1 , λLJ is much smaller than λLS .
Thus, AK’s equations, Eqs. (18) and (17), give a very different scenario of motion of S, L

and J from that given by BO equation shown in Eqs. (13) and (14).

3 PHYSICAL DIFFERENCES BETWEEN BO AND AK

This section compares the two different scenarios corresponding to BO’ and AK’s orbital pre-
cession velocity, and points out that BO’s orbital precession velocity is actually inconsistent
with the definition of the total angular momentum of a binary system.

Section 2 indicates that BO and AK derived the orbital precession velocity in different ways,
therefore two different orbital precession velocity vectors were obtained, as shown in Eqs. (12)
and (19), respectively, which in turn correspond to different scenarios of motion of the three
vectors. This section shows that the discrepancy between BO and AK is not just a discrepancy
due to different coordinate systems: actually there is a significant physical difference between
BO and AK. In BO, the total angular momentum of a binary system is defined as

J = L + S , (20)

Eq. (20) means that J , L and S form a triangle, and therefore, it guarantees that the three
vectors must be in one plane at any moment. For a general radio binary pulsar system, the
total angular momentum of this system is conserved in 1PN. Therefore we have

J̇ = 0 . (21)

Equation (21) means that J is a constant during the motion of a binary system. Equations (20)
and (21) together provide a scenario in which the triangle formed by L, S and J determines a
plane, and the plane rotates around a fixed axis, J , with velocity Ω̇0. This scenario is shown in
Fig. 1, which can also be represented as

J̇ = Ω̇0Ĵ × L + Ω̇0Ĵ × S = 0 . (22)

Smarr & Blandford (1976) mentioned the scenario that L and S must be at opposite sides of J

at any instant. Hamilton & Sarazin (1982) also studied the scenario and stated that L precesses
rapidly around J . Obviously the orbital precession velocity given by Eq. (19) can satisfy the
two constraints, Eqs. (20) and (21) simultaneously.

Can the BO’s orbital precession velocity given by Eq. (12) satisfy the two constraints,
Eqs. (20) and (21) simultaneously? From Eqs. (12), (13) and (14), the first derivative of J

can be written (BO)

J̇ = Ω̇S × L + Ω̇
∗

1 × S = Ω̇∗

SŜ × L + Ω̇∗

1L̂ × S ≡ 0 , (23)

and since Eq. (20) is defined in BO’s equation, then it seems that the BO equation can satisfy
both Eqs. (20) and (21).

However, in BO’s derivation of Ω̇S (Eqs. (6)–(12)), Eq. (20) is never used. The corresponding
Ω̇S can make J̇ = L̇ + Ṡ ≡ 0, as shown in Eq. (23), but it cannot guarantee that J = L + S

is satisfied. In other words, when J 6= L + S, Eq. (23) is still correct. This can be easily tested
by putting L′ = L + αS, or S′ = S + βL (α and β are arbitrary constants) into Eq. (23) to
replace L and S, respectively. Obviously in such cases, Eq. (23) is still satisfied (J̇ ≡ 0).

On the other hand, in AK’s derivation of Ω̇0(Eqs. (16)–(18)), the relation Eq. (20) is used.
If we do the same replacement of L′ = L + αS, or S′ = S + βL in Eq. (22), then Eq. (22) is
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Fig. 1 In 1PN, the scenario of motion of a binary pulsar system can be described as the
rotation of the plane determined by L, S around the fixed axis, J . Here ηL and ηS are
precession phases of L and S in the J-coordinate system, respectively.

violated (J̇ 6= 0). This means that for AK’s Ω̇0, if Eq. (20) is violated then Eq. (21) is violated
also. Thus in AK’s expression, the conservation of the total angular momentum is dependent
on Eq. (20), whereas, in BO’s expression, the conservation of the total angular momentum is
independent of Eq. (20). If we rewrite Eq. (20) as

J = L + S + C , (24)

then in BO’s expression the conservation of the total angular momentum can be satisfied in
the case that C 6= 0 in Eq. (24); but, in AK’s expression the conservation of the total angular
momentum is satisfied only when C = 0 in Eq. (24). This means that the discrepancy between
BO and AK’s orbital precession velocity is physical. It is not just a matter of different expressions
in different coordinate systems or relative to different directions.

Moreover, Eqs. (22) and (19) correspond to the following orbital precession velocity,

Ω̇0 = Ω̇∗

S

(
Ŝ +

L

S
L̂
)

. (25)

Obviously Eq. (25) is not consistent with BO’s Eq. (12), which demands that the coefficient of

the component along L̂ be γ = −3(L̂ · Ŝ), instead of γ = L
S as given by Eq. (25).

In other words, once Eq. (20) is satisfied, BO’s orbital precession velocity of Eq. (12) must be
violated. Therefore, BO’s orbital precession velocity cannot be consistent with BO’s definition,
J = L + S. Actually Eq. (25) can be consistent with Eq. (9), however, it contradicts Eq. (10).
The reason of introducing Eq. (10) is that without it Eq. (9) alone cannot determine a unique
solution. However, Eqs. (22) and (19) can be regarded as solving this problem by using Eqs. (9)
and (20) instead of Eqs. (9) and (10) to obtain the orbital precession velocity.

As defined in Eqs. (4) and (5), L and A are vectors that are determined by different ele-
ments in celestial mechanics, L(Ω, i) and A(Ω, i, ω, e), respectively. These two vectors satisfy
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different physical constraints, i.e., L satisfies Eqs. (20) and (21), but A does not satisfy these
two constraints.

Therefore, it is conceivable that L and A should correspond to different precession velocities,
as given by Eqs. (9) and (10), respectively. However, since the discrepancy is only in the L̂

component, which does not influence the satisfaction of the conservation equation, Eq. (23), the
discrepancy seems unimportant. Therefore, the precession velocity of L is treated equivalently
to that of A’s, thus the components in L̂ are both treated as γ = −3(L̂ · Ŝ). However, as given

by Eq. (25), L̂ component must be γ = L
S if the triangle constraint is to be satisfied. Hence, the

violation of the triangle constraint is inevitable under the assumption that L and A precess at
the same velocity.

4 S-L COUPLING INDUCED EFFECTS DERIVED UNDER DIFFERENT

DEGREES OF FREEDOM

As analyzed in Sections 2 and 3, the orbital precession velocity is dependent on the physical
constraint imposed, on whether or not the triangle constraint is satisfied. This section further
shows that the violation or satisfaction of the triangle constraint is due to different degrees of
freedom used by BO and AK. To discuss the S-L coupling induced effects on the observational
parameters, one needs to obtain the variation of the six orbital elements under S-L coupling.
The way of doing this is to start from the Hamiltonian equation of motion (corresponding to
S-L coupling), then through some perturbation method in celestial mechanics to obtain the
S-L coupling induced variation of the six orbital elements, and finally transform the effects to
the observer’s coordinate system. In this section this process is performed in the case in which
the triangle constraint is satisfied and the number of free vectors of a binary system (with two
spins) is 3.

It is convenient to study the motion of a binary system in such a coordinate system (J-
coordinate system), in which the total angular momentum J is along the z-axes and the invari-
ance plane is the x-y plane. The J-coordinate system has two advantages:

(a) Once a binary pulsar system is given, λLJ , the misalignment angle between J and L,
can be estimated, from which Ω̇ and ω̇ can be obtained easily and are intrinsic to the binary
pulsar system.

(b) The J-coordinate system is static relative to the line of sight (after leaving out the
proper motion). Therefore, transforming the parameters obtained in the J-coordinates system
to observer’s coordinate system, S-L coupling induced effects can be reliably obtained. From
Eq. (3), the S-L coupling induced HS contains only the potential part, therefore we have HS =
U , where

U = U1 + U2 =
1

r3

(
2S +

3m2

2m1
S1 +

3m1

2m2
S2

)
· L , (26)

which can be written as

U =
1

r3
(σ1S · L + σ2S2 · L) , (27)

where

σ1 = 2 +
3

2

m2

m1
, σ2 = 2 +

3

2

(m1

m2
− m2

m1

)
. (28)

From Eq. (27) we have the Lagrangian corresponding to S-L coupling, ℑ = −U . The Lagrange
equation is

d

dt

( ∂ℑ
∂q̇κ

)
− ∂ℑ

∂qκ
= 0 , (κ = 1, 2, ..., β) (29)

where qκ is the generalized coordinate (β is the number of degrees of freedom), given by r
(α)
1 ,

r
(α)
2 , s

(α)
1 , s

(α)
2 (α = 1, 2, 3) representing, respectively, the position of body 1 and body 2; the
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direction of the spin angular momentum of body 1 and body 2. Considering that S1 and S2

can vary in direction only, the α of s
(α)
1 , s

(α)
2 is given α = 1, 2.

Since the times scale of spin down of a pulsar in a binary pulsar system is much longer
than that of the period of geodetic precession, the magnitude of S1 and S2 can be treated
as constant (these two vectors can only vary in direction). However, since the misalignment
angle between S1 and L (λLS1), as well as between S2 and L (λLS2), are also constants in

BO’s gravitational two-body equation (Barker & O’Connell 1975), we have ∂(S1 ·L)/∂s
(α)
1 = 0

and ∂(S2 · L)/∂s
(α)
2 = 0. Thus we have ∂ℑ/∂qκ = 0 for qκ = s

(α)
1 , s

(α)
2 . Furthermore, since

Ṡ1 and Ṡ2 do not appear in the Lagrangian ℑ, we have d(∂ℑ/∂q̇κ)/dt = 0 for qκ = s
(α)
1 , s

(α)
2 .

Therefore, we only need to calculate d(∂ℑ/∂q̇κ)/dt and ∂ℑ/∂qκ of Eq. (29) in the case where

qκ = r
(α)
1 , r

(α)
2 . The first term on the left side of Eq. (29) corresponds to a generalized force,

which can be written as d(∂ℑ/∂q̇κ)/dt = F = µaso; and the second term is ∂ℑ/∂qκ = −∇U
(where ∇ represents gradient). Thus Eq. (29) can be rewritten

aso = − 1

µ
∇U = − 1

µ

[
σ1∇

(S · L)

r3
+ σ2∇

(S2 · L)

r3

]
. (30)

The triangle constraint given by Eq. (20) indicates that S and L are not independent. Therefore,

we cannot treat as free variables of Eq. (30), r
(α)
1 , r

(α)
2 , s

(α)
1 and s

(α)
2 .

Classical mechanics shows us that constraints reduce the number of dimensions of a dy-
namic system. The geometric constraint J = L + S can be imposed on Eq. (30) through the

replacement, S = J − L. Thus the set of free variables in Eq. (30) is either r
(α)
1 , r

(α)
2 , and

s
(α)
1 ; or r

(α)
1 , r

(α)
2 , and s

(α)
2 (depending on the definition of σ1 and σ2 in Eq. (28)). Therefore,

replacing S = J − L in Eq. (30) means that the triangle constraint is imposed on the motion
of binary system, and the number of dimensions are reduced from 10 to 8.

This is analogous to the calculation of the equation of motion of a simple clock pendulum.
The motion of a small mass at the bottom of a clock pendulum can be described in the x − y
plane. However, if we treat the dimension of this small mass as 2, then this small mass can move
freely in the 2-dimensional space, and the length of the pendulum is not a constant. In other
words, once the length of the pendulum is fixed, the dimension is 1 instead of 2. Correspondingly
if the dimension of a binary system is 10, then the satisfaction of the triangle constraint cannot
be guaranteed (or J=const vector cannot be guaranteed). Contrarily, if the triangle constraint
is satisfied, the dimension is 8 instead of 10. By the replacement, S = J − L, Eq. (30) can be
re-written

∇ (S · L)

r3
= ∇ [(J − L) · L]

r3
= ∇ (J · L)

r3
−∇ (L · L)

r3
, (31)

where V is the velocity of the reduced mass. By Eqs. (31) and (30), we have

aso =
3

r3
[σ1(J − L) · (n̂ × V )n̂ + σ2S2 · (n̂ × V )n̂]

+
1

r3
[σ1(V × J) − 2σ1(V × (J − L)) − σ2(V × S2)] , (32)

where n̂ is the unit vector of r. Replacing J − L by S, Eq. (32) can be written as

aso =
3

r3
[σ1S · (n̂ × V )n̂ + σ2S2 · (n̂ × V )n̂]

+
1

r3
[σ1(V × J) − 2σ1(V × S) − σ2(V × S2)] . (33)
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If one calculates aso directly by Eq. (30) without imposing the triangle constraint, then the
result can be given by replacing J of Eq. (33) by S,

a′

so =
3

r3
[σ1S · (n̂ × V )n̂ + σ2S2 · (n̂ × V )n̂]

+
2

r3
[σ1(V × S) + σ2(V × S2)]

+
3(V · n̂)

r3
[σ1(S × n̂) + σ2(S2 × n̂)] . (34)

The difference between Eqs. (33) and (34) indicates that whether the triangle constraint is
satisfied or can not lead to significant differences in aso, which in turn results in significant
differences on the predictions of observational effects as the next section will show.

Having obtained aso, we can use the standard method in celestial mechanics to calculate

S̃ = aso · n̂, T̃ = aso · t̂, W̃ = aso · L̂, (35)

from which we can calculate the derivative of the six orbit elements and then transform these
to the observer’s coordinate system to compare with the observations. The unit vectors, n̂, in
Eqs. (33)–(35) are given by

n̂ = P cos f + Q sin f , (36)

and t̂ is the unit vector that is perpendicular to n̂,

t̂ = −P sin f + Q cos f , (37)

V = p/µ, is given by

V = −h

p
P sin f +

h

p
Q(e + cos f) , (38)

where f is the true anomaly, p is the semi-latus rectum, p = a(1 − e2), and h is the integral of
area, h = r2ḟ . P has the three components,

Px = cosΩ cosω − sinΩ sin ω cosλLJ ,

Py = sin Ω cosω + cosΩ sin ω cosλLJ ,

Pz = sin ω sin λLJ ; (39)

and for Q, the three components,

Qx = − cosΩ sin ω − sin Ω cosω cosλLJ ,

Qy = − sinΩ sin ω + cosΩ cosω cosλLJ ,

Qz = cosω sin λLJ . (40)

The unit vectors of L̂ and Ŝκ (κ = 1, 2) are given by

L̂ = (sin λLJ cos ηL, sin λLJ sin ηL, cosλLJ)T , (41)

Ŝκ = (sin λJSκ cos ηSκ, sin λJSκ sin ηSκ, cosλJSκ)T . (42)



388 B. P. Gong

In the perturbation equation, the acceleration of Eq. (33), aso, is expressed along n̂, t̂ and L̂

respectively. We can use a1 and a2 to represent terms corresponding to the two terms containing
brackets [, ] at the right hand side of Eq. (33), respectively. Projecting a1 onto L̂, we have

W1 = a1 · L̂ =
3σ1

r3
[Sx(nyVz − nzVy) + Sy(nzVx − nxVz) + Sz(nzVy − nyVz)]

(nx sin λLJ cos ηL + ny sin λLJ sin ηL + nz cosλLJ) , (43)

where nx, ny, nz and V (α = 1, 2, 3)x, Vy , Vz are the components of n̂ and V along axes, x, y

and z, respectively. Projecting a2 onto L̂, we have W2 = 0. Therefore, the sum of W is

W̃ = W1 + W2 = W1 . (44)

The effect around J can be obtained by the perturbation equations (Roy 1991; Yi 1993;
Liu 1993) and Eq. (44)

dΩ

dt
=

W̃ r sin(ω + f)

na2
√

1 − e2

1

sin λLJ
, (45)

where n is the angular velocity. Averaging over one orbital period we have

〈dΩ

dt

〉
=

3 cosλLJ

2a3(1 − e2)3/2 sin λLJ
(Pz sin ω + Qx cosω)[(PyQz − PzQy)(Sxσ1 + S2xσ2)

+(PzQx − PxQz)(Syσ1 + S2yσ2) + (PxQy − PyQx)(Szσ1 + S2zσ2)] . (46)

Note that the average value of Eq. (46) depends on W1 only. With S/ sinλLJ ∼ L, we have
dΩ/dt ∼ L/a3, which corresponds to 1PN.

The term dω/dt can be obtained by calculation of S̃ = aso · n̂ and T̃ = aso · t̂. Since a1 · n̂
and a1 · t̂ are 1.5PN, it is sufficient to consider the projection of a2 onto n̂, t̂, respectively, thus
we have 〈

(a2 · n̂) cos f
〉

=
7σ1J

8(1 − e2)3/2a3

eh

p
(PxQy − PyQx) , (47)

〈
(a2 · t̂) sin f

〉
=

−5σ1J

8(1 − e2)3/2a3

eh

p
(PxQy − PyQx) . (48)

From Eqs. (47) and (48), we have

dω′

dt
=

√
1 − e2

nae
{[−a2 · n̂] cos f + (1 +

r

p
)[a2 · t̂] sin f}

=
2σ1J

(1 − e2)3/2a3
(PyQx − PxQy) . (49)

Therefore, by the standard perturbation(Roy 1991; Yi 1993; Liu 1993), the advance of precession
of periastron induced by S-L coupling is given by

dω

dt
=

dω′

dt
− dΩ

dt
cosλLJ . (50)

By putting Eqs. (47) and (48) into Eq. (50), and averaging over one orbital period, we have

〈dω

dt

〉
=

2σ1J

(1 − e2)3/2a3
(PyQx − PxQy) −

dΩ

dt
cosλLJ . (51)
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Using perturbation equations as in (Roy 1991; Yi 1993; Liu 1993), and by Eqs. (45) and (51),
we have 〈d̟

dt

〉
=

2σ1J

(1 − e2)3/2a3
(PyQx − PxQy) + 2

dΩ

dt
sin2 λLJ

2

=
2σ1J

(1 − e2)3/2a3
(PyQx − PxQy) + O(c−3) , (52)

where ̟ = ω + Ω. Eqs. (46), (51) and (52) indicate that the magnitude of dΩ/dt, and d̟/dt
are both L/a3 (1PN).

In dΩ/dt (1PN) of Eq. (45) is equivalent to Φ̇S (1PN) which was given by WK. This is
because the averaged value of dΩ/dt depends only on a1, the first term containing bracket [,] in
aso, as shown in Eq. (33). Both this paper (aso, Eq. (33)), and the BO equation (a′

so of Eq. (34))
give the same a1. Thus, different authors give equivalent value on the averaged dΩ/dt.

In contrast, dω/dt of Eq. (51) and Ψ̇S (1PN) given by WK are very different in magnitude.
The difference is due to the fact that dω/dt given by Eq. (51) is obtained by the aso of Eq. (33);
but the corresponding dω/dt of WK is obtained by the a′

so of Eq. (34), which is equivalent of
replacing J of Eq. (33) by S.

In turn, the difference between aso and a′

so is due to the fact that aso satisfies the triangle
constraint; but a′

so does not. Therefore, a small difference in the equation of motion causes
significant discrepancy in the variation of elements, such as dω/dt.

5 EFFECTS ON ω̇, Ẋ, Ṗb

As shown in Section 4 the S-L coupling effect can be treated as a perturbation to the Newtonian
two-body problem, and by the standard method in celestial mechanics the variation of six orbital
elements can be obtained. This section calculates what ω̇, ẋ, Ṗb are for an observer when the
variations of the six orbital elements are given. The results of this section are independent of
the dimension used in a binary system.

The observational effect is studied in a coordinate system where the vector K0 (correspond-
ing to line of sight) is along the z′-axis; the x′ axis is along the intersection of the plane of the sky
and the invariance plane; and the y′-axis is perpendicular to x′ − z′ plane, as shown in Fig. 2a.
Obviously this coordinate system is at rest to “an observer” at the SSB. The relationship of
the dynamical longitude of the ascending node, Ω, the dynamical longitude of the periastron,
ω, and the orbital inclination, i, is given as (Smarr & Blandford 1976; WK)

cos i = cos I cosλLJ − sin λLJ sin I cosΩ , (53)

and
sin i sinωobs = (cos I sin λLJ + cosλLJ sin I cosΩ) sin ω

+ sin I sin Ω cosω , (54)

sin i cosωobs = (cos I sin λLJ + cosλLJ sin I cosΩ) cosω

− sin I sin Ω sinω , (55)

where I is the misalignment angle between J and the line of sight. The semi-major axis of the
pulsar is defined as

x ≡ ap sin i

c
, (56)

where ap is the semi-major axis of the pulsar. By Eq. (53) we have

ẋ1 =
ap cos i

c

di

dt
= −xΩ̇ sin λLJ sin Ω cot i . (57)
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The semi-major axis of the orbit is a = M
m2

ap, and since the L-S coupling induced ȧ is a function
of Ω and ω, as shown in the appendix, we have

ẋ2 =
ȧp sin i

c
=

ȧ

a
x . (58)

Therefore, the L-S coupling induced ẋ is given by

ẋ = ẋ1 + ẋ2 = −xΩ̇ sin λLJ sin Ω cot i +
ȧ

a
x . (59)

By Eq. (59) we have

ẍ = ẋ1

(
Ω̈

Ω̇
+ Ω̇ cotΩ +

λ̇LJ cosλLJ

sin λLJ

)
+ x

äa − ȧ2

a2
+ ẋ2

ȧ

a
. (60)

Note that Ω̇ and Ω̈ can be obtained by Eq. (45). Considering λLJ ≪ 1 and by Eqs. (54) and
(55), the observational advance of precession of periastron is given (Smarr & Blandford 1976;
WK),

ωobs = ω + Ω − λLJ cot i sinΩ . (61)

Therefore, we have
ω̇obs = ω̇ + Ω̇ − λ̇LJ cot i sinΩ . (62)

If ω̇ and Ω̇ are caused only by the S-L coupling effect (H = HS), then ω̇ is given by Eq. (51). If
we consider all the terms of the Hamiltonian, as given by Eq. (2), then ω̇ should include ω̇GR,
the advance of periastron predicted by general relativity, caused by H1PN and H2PN. In this
case ω̇ in Eq. (62) is replaced by ω̇GR + ω̇. Thus Eq. (62) can be written as

ω̇obs = ω̇GR + ω̇S . (63)

where
ω̇S = ω̇ + Ω̇ − λ̇LJ cot i sinΩ . (64)

Note that ω̇S is a function of time due to Ω̇, ω̇ and λ̇LJ are functions of time, as shown in
Eqs. (46), (51) and (A6), respectively. While ω̇GR is a constant as shown in Eq. (8).

For a binary pulsar system with negligibly small eccentricity, the effect of the variation
in the advance of periastron, ω, is absorbed by the redefinition of the orbital frequency. As
discussed by Kopeikin (1996), ωobs + Ae(u) is given

ωobs + Ae(u) = ω0 +
2π

Pb
(t − t0) , (65)

where Ae(u) is the true anomaly, related to the eccentric anomaly, u, by the well-known tran-
scendental equation, and ω0 is the orbital phase at the initial epoch t0.

At the time interval, δt = (t − t0), there is a corresponding δωobs which causes a corre-
sponding δPb on the right hand side of Eq. (65). Therefore, Pb is a function of time. Thus we
have

δωobs + Ae(u) =
2π

Pb
δt . (66)

Write 1/Pb in Taylor series, we have

1

Pb
=

1

Pb(t0)
− Ṗb(t0)δt

P 2
b (t0)

+ ... (67)
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Fig. 2 (a) Binary geometry and definitions of angles of Wex & Kopeikin (1999) and this
paper. The invariable plane (x − y), represented by the dotted ellipse, is perpendicular to
the total angular momentum, J . The inclination of the orbital plane with respect to the
invariable plane is λLJ , which is also the precession cone angle of L around J . The orbital
inclination with respect to the line of sight is i, Ω is the longitude of the ascending node, ω
is the longitude of the periastron from point B, and ω̇obs is longitude of the periastron from
point A. The J-coordinate system is defined by (x, y, z), and the observer’s coordinate system,
by (x′, y′, z′). (b) Coordinate system of Damour & Schäfer (1988), which is determined by
the triad (L̂, i, K0). Here ii represents i.

Considering Ae(u) = 2πδt/Pb(t0) and by Eqs. (66) and (67) we obtain

δω̇obs = −2πṖb

P 2
b

δt . (68)

Since ω̇S is a function of time, and ω̇GR =const, we have ω̈obs = ω̈S by Eq. (63). Assume F = ω̇S ,
and write it in Taylor series as: F = F0 + Ḟ δt + 1

2 F̈ δt2, we obtain δF = δω̇S ≈ Ḟ δt = ω̈Sδt.
Therefore, δω̇obs of Eq. (68) becomes δω̇S = ω̈Sδt, from which Eq. (68) can be written as

Ṗb = − ω̈SP 2
b

2π
. (69)

By Eq. (69), the derivatives of Pb can be obtained:

P̈b =
2Ṗ 2

b

Pb
− P 2

b

2π

d3ωS

dt3
≈ −P 2

b

2π

d3ωS

dt3
, (70)

d3Pb

dt3
≈ −P 2

b

2π

d4ωS

dt4
. (71)



392 B. P. Gong

6 COMPARISON OF THREE DIFFERENT S-L COUPLING INDUCED ω̇obs

AND Ṗb

6.1 Discrepancy between Wex & Kopeikin and this paper

Section 4 calculates the S-L coupling induced change of orbital elements of a binary system
directly in the J-coordinate system (in which z axis is along Ĵ and x− y plane is the invariance
plane), and Section 5 transforms the effects in J-coordinate system to the observer’s coordinate
system, and obtains ẋ, ω̇obs and Ṗb. In which ωobs is equivalent to the definition of WK as
shown in Fig. 2a.

By Eq. (51) the ω̇ can be 1.5PN (or ω̇ = 0 in 1PN), thus by Eq. (64) the S-L coupling
induced precession of periastron, ω̇S , becomes

ω̇S ≈ ˙̟ − λ̇LJ cot i sinΩ . (72)

Equation (72) is the result corresponding to 8 degrees of freedom, and ω̇S is 1PN. On the other
hand, WK rewrote BO’s orbital precession velocity, Eq. (12) in the J-coordinate system, and
then obtained ẋ, ω̇obs in observer’s coordinate system.

However, the difference is that for WK, all the results in the J-coordinate system are
calculated in 10 dimensions. In this case J in Eq. (51) is replaced by S, and hence the first term
on the right side of Eq. (51) is 0.5PN smaller than that of the second term. Therefore, ω̇ can
be represented by the second term on the right side of Eq. (51), which is 1PN. By Eq. (64) and
by considering Ω̇ − Ω̇ cosλLJ ∼ 1.5PN (λLJ ≪ 1), we have

ω̇S ≈ −λ̇LJ cot i sinΩ . (73)

Although λLJ ∼ S/L ≪ 1, λ̇LJ is significant, being 1PN (λ̇LJ ∼ Ω̇), as shown in Eqs. (A5)
and (A6). Consequently ω̇S is also 1PN, which leads to significant ω̈S (1PN), and therefore,
significant derivative of Pb by Eqs. (69)–(71). In other words, WK’s ω of Eq. (59) actually
contains significant variabilities, such as ω̇S and Ṗb, which seem to have been ignored.

Therefore, this paper and WK, which correspond to Eqs. (72) and(73) respectively, both
predict significant ω̇S and Ṗb. However, there is an obvious difference between them, namely,
in Eq. (73), ω̇S → 0 when i → π/2, but Eq. (72) does not have such a relation. Therefore, the
validity of WK versus this paper can be tested by binary pulsar systems with orbital inclination,
i → π/2 (edge on).

If a binary pulsar system with i → π/2 still has significant Ṗb (1PN), then Eq. (73) cor-
responding to WK is not supported; otherwise, Eq. (72) corresponding to this paper is not
supported.

The discrepancy between Eqs. (72) and (73) is due to the discrepancy in ω̇, which is caused
by the different number of dimensions used in this paper and in WK.

Equations (72) and (73) have an important property in common, namely, ω̇S (and there-
fore, ω̇obs) is obtained by the transformation from the J-coordinate system to the observer’s
coordinate system, in which all the three triads are at rest to SSB.

6.2 Discrepancy between Damour & Schäfer and Wex & Kopeikin

Damour & Schäfer (1988) expressed the orbital precession velocity as,

Ω̇S =
dΩS

dt
K0 +

dω

dt
k +

di

dt
i , (74)

where the K0 unit vector is along the line of sight, which defines the third vector of a reference
triad (I0, J0, K0), where I0-J0 correspond to the plane of the sky. The triad of the orbit is (i,
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j, k), in which k corresponds to L̂, i is the nodal vector determined by the intersection of the
two planes (note that it is different from the scalar, i, which represents the orbital inclination),
as shown in Fig. 2b. By Eq. (74), and the relations between the reference triad, components of
Ω̇S are obtained (Damour & Schäfer 1988).

dω

dt
=

1

sin2 i
[Ω̇S · k − Ω̇S · K0 cos i] , (75)

dΩS

dt
=

1

sin2 i
[Ω̇S · K0 − Ω̇S · k cos i] , (76)

di

dt
= Ω̇S · i . (77)

S-L coupling induced ω̇ given by Eq. (75) is ω̇ ∼ Ω̇S ∼1.5PN. Therefore, Damour & Schäfer
(1988) predicted an insignificant ω̇ (ω̇S) much smaller than 1PN, and hence a correspondingly
insignificant Ṗb.

Thus it seems strange that Damour & Schäfer (1988) and WK while starting from the
same orbital precession velocity given by Eq. (12), predicted a different observable effect. This
is because ω̇S of WK is calculated in a coordinate system with the axes (x′, y′, z′) at rest to SSB
as shown in Fig. 2a, but, ω̇ (ω̇S) of Damour & Schäfer is calculated in the coordinate system
with triad (K0, k, i), which is not at rest relative to SSB as shown in Fig. 2b. Obviously, i

(point A), which is the intersection of the plane of the sky and the orbital plane of the binary
system, is not static in the coordinate system (x′, y′, z′) of WK, and this applies also to k. In
other words, the triad (K0, k, i) has a non-zero acceleration relative to SSB. Therefore, effects
calculated based on such triad cannot be directly compared with observations.

Obviously, if Damour & Schäfer’s ω̇ was also calculated in the coordinate system as that
of WK, then Eq. (75) reduces to Eq. (73). Thus, the discrepancy between Damour & Schäfer
(1988) and WK is that the former calculated in a coordinate system which is not at rest to
SSB while the latter, at rest to SSB. On the other hand, the discrepancy between WK and this
paper is due to the different number of dimensions used in the calculation of the equation of
motion of a binary system. The relationship of the three expressions of the S-L coupling effect
is shown in Fig. 3 and Table 1.

Table 1 Comparison of S-L coupling induced variabilities given by different authors

DS (1988) WK (1999) This paper Evidence

Ω̇ in J-co 1PN 1PN

ω̇ in J-co 1PN 1.5PN

ω̇S ∼ Ω̇S (of Eq. (12)) −λ̇LJ cot i sin Ω ˙̟ − λ̇LJ cot i sin Ω

ω̇obs ω̇GR+1.5PN ω̇GR+1PN ω̇GR+1PN

Ṗb ṖGR

b |Ṗ obs

b | ≫ |ṖGR

b | |Ṗ obs

b | ≫ |ṖGR

b | |Ṗ obs

b | ≫ |ṖGR

b |

when i → π/2 Ṗ obs

b → ṖGR

b |Ṗ obs

b | ≫ |ṖGR

b |

J-co represents J-coordinate system, ṖGR

b represents orbital period change due to gravi-
tational radiation predicted by General Relativity. Ω̇S is given by Eq. (12) which is 1.5PN,
while Ω̇ and λ̇LJ are 1PN, as given by Eqs. (46) and (A5), respectively.
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Fig. 3 Relationship of the three expressions of the S-L coupling induced orbital effects.

7 CONFRONTATION WITH OBSERVATION

The precise timing measurement on two typical binary pulsars, PSR J2051–0827 and
PSR J1713+0747, provides evidence on whether ω̇S and Ṗb is 1PN or 1.5PN, but it still difficult
to distinguish which 1PN effect is valid, WK or this paper.

The orbital motion causes a delay of T = r1 ·K0/c = r1(t) sin ωobs(t) sin i(t)/c in the pulse
arrival time, where r is the pulsar position vector and K0 is the unit vector of the line of sight.
The residual δT = r1 ·K0/c−(r1 ·K0/c)K of the time delay compared with the Keplerian value
is of interest (Lai et al. 1995). Averaging over one orbit r ≈ a, and in the case t ≪ 1/|ω̇obs|,
the S-L coupling induced residual is,

δT =
ap

c
cos i

di

dt
t sinωobs +

ȧp sin i

c
t sin ωobs +

ap sin i

c
ω̇obst cosωobs

= ẋ1t sinωobs +
ȧ

a
xt sin ωobs + ω̇obsxt cosωobs . (78)

By Eq. (A1), we have ȧ/a ∼ J/a3 ∼ ω̇obs. Therefore, the second and third term on the right side
of Eq. (78) cannot be distinguished in the current treatment of pulsar timing. In other words,
the effect of ȧ can be absorbed in ω̇obs.

7.1 PSR J2051–0827

As discussed above, the second term at the right side of Eq. (59) can be absorbed by ω̇obs,
therefore, ẋ ≈ ẋ1, and by Eq. (57) we have

Ω̇ = − ẋ

x

tan i

sinλLJ sinΩ0
= −di

dt

1

sin λLJ sin Ω0
. (79)

According to optical observations, the system is likely to be moderately inclined with an
inclination angle i ∼ 40◦ (Stappers et al. 2001). By the measured results of x = 0.045 s,
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ẋ = −23(3) × 10−14 (Doroshenko et al. 2001), and by assuming sinλLJ sin Ω0 = 2 × 10−3,
Eq. (79) can be written in magnitude,

Ω̇ =
( ẋ

2.3 × 10−13

)( x

0.045

)
−1( tan i

tan 40◦

)(sin λLJ sin Ω0

2 × 10−3

)
−1

∼ 2 × 10−9 (s−1) . (80)

In the following estimations in this section all values are absolute values. By Eq. (51) we can
assume ω̈S ∼ (ω̇S)2 ∼ Ω̇2 ≈ 4 × 10−18. Usually ω̈S can vary over a large range, i.e., ω̈S >
(ω̇S)2, depending on the combination of parameters, such as binary parameters, magnitude and
orientation of S1 and S2. In this paper we assume that ω̈S ∼ (ω̇S)2. Then from Eq. (69) we
have

Ṗb =
1

2π

( ω̈S

4 × 10−18

)( Pb

0.099 d

)2

∼ 5 × 10−11(s s−1) . (81)

By Eq. (64) we can estimate d3ωS/dt3 ∼ Ω̇3 ≈ 8 × 10−27 s−3, and similarly we can estimate
d4ωS/dt4 ∼ Ω̇4 ≈ 16× 10−36 s−4. Hence, by Eqs. (70) and (71) we have P̈b ∼ 9× 10−20 s−1 and
d3Pb/dt3 ∼ 2 × 10−28 s−2. By Eqs. (59) and (60), ẍ/ẋ ∼ Ω̇ ∼ 2 × 10−9s−1, which is consistent
with the observations as shown in Table 2.

Table 2 Measured parameters compared with the geodetic precession induced

ones in PSR J2051−0827

Observation WK & this paper

ẋobs ≈ −23(3) × 10−14 ẋ = ẋobs

(ẍ/ẋ)obs ≤ −3.0 × 10−9s−1 |ẍ/ẋ| ≈ 2 × 10−9s−1

Ṗ obs

b = −15.5(8) × 10−12 |Ṗb| = |
ω̈

S
P

2

b

2π
| ∼ 5 × 10−11

P̈ obs

b = 2.1(3) × 10−20s−1 |P̈b| = |
P

2

b

2π

d
3
ω

S

dt3
| ∼ 9 × 10−20s−1

d
3
P

obs

b

dt3
= 3.6(6) × 10−28s−2 | d

3
Pb

dt3
| = |

P
2

b

2π

d
4
ω

S

dt4
| ∼ 2 × 10−28s−2

Therefore, once ẋ is in agreement with the observation, the corresponding ω̇S can make the
derivatives of Pb consistent with the observation as shown in Table 2. In contrast, the effect
derived from Damour & Schäfer’s equation cannot explain the significant derivatives of Pb.

7.2 PSR J1713+0747

By the measured parameters, x = 32.3 s, |ẋ| = 5(12)× 10−15, i = 70◦ (Camilo et al. 1994), and
by assuming sinλLJ sin Ω0 = 1 × 10−4, we have, in order of magnitude,

Ω̇ =
( ẋ

5 × 10−15

)( x

32.3

)
−1( tan i

tan 70◦

)( sinλLJ sinΩ0

1 × 10−4

)
−1

∼ 4 × 10−12(s−1) , (82)

and similarly we have

Ṗb =
1

2π

( ω̈S

16 × 10−26

)( Pb

67.8 d

)2

∼ 1 × 10−10(s s−1) . (83)

A comparison of the observed and predicted variabilities is shown in Table 3. The variabil-
ities are shown to be well consistent with one another. Note that ẋobs and Ṗ obs

b measured in
these two typical binary pulsars cannot be interpreted by the gravitational radiation induced ẋ
and Ṗb, since they are 3 or 4 order of magnitude apart.
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Table 3 Measured values in PSR J1713+0747 compared with

the calculated, geodetic precession induced values

Observation WK & this paper

|ẋ|obs = 5(12) × 10−15 ẋ = ẋobs

Ṗ obs

b = 1(29) × 10−11 |Ṗb| = |
ω̈

S
P

2

b

2π
| ∼ 1 × 10−10

7.3 PSRs J0737–3039 A and B

PSRs J0737–3039 A and B is a double-pulsar system with Pb = 0.102251563(1)day, advance of
periastron, ω̇ = 16.90(1)deg yr−1 and orbital inclination angle i = 87.7+17

−29 (Burgay et al. 2003;
Lyne et al. 2004). This binary pulsar system with i ≈ π/2 may tell us not only whether ω̇S and
Ṗb are significant or not, but also which one of the two (WK or this paper) is valid.

As given by Eq. (63) the measured ω̇ is the sum of the relativistic advance of periastron and
the S-L coupling induced advance of periastron,

ω̇obs = ω̇GR + ω̇S = 16.90 (deg yr−1) . (84)

where ω̇GR and ω̇S are both 1PN. In order of magnitude one can estimate

ω̇S ∼ ω̇obs = 16.90 (deg yr−1) . (85)

Thus we have ω̈S ∼ (ω̇S)2 ≈ 8.8× 10−17s−2. If the eccentricity of PSRs J0737–3039 A and B is
neglected, then in the same way as PSR J2051–0827 and PSR J1713+0747, we have

Ṗb =
1

2π

( ω̈S

8.8 × 10−17

)( Pb

0.1 d

)2

∼ 1 × 10−9(s s−1) . (86)

The treatment ω̇S ∼ ω̇obs and ω̈S ∼ (ω̇S)2 might over estimate the S-L coupling induced Ṗb

by one or even two orders of magnitude. Nevertheless, the S-L coupling induced Ṗb is likely
to be much larger than that caused by the gravitational radiation, ṖGR

b = −1.2 × 10−12 s s−1

(Burgay et al. 2003). Since the observational Ṗb will be given soon, whether Ṗb is significant or
not can be tested on this binary pulsar system.

The particular orbital inclination of this binary pulsar system can tell us more about the
S-L coupling induced effects. With i = 87.7+17

−29 for this system, we have cot i ≈ 0.04, WK’s ω̇S

given by Eq. (73) should be much smaller than this paper’s ω̇S given by Eq. (72). Thus we have
two ways of testing the validity of the S-L coupling effect given by WK and by this paper.

The first is by means of ω̈S ∼ (ω̇S)2 ∝ (cot i)2, and Ṗb ∝ (ω̇S)2. We find (Ṗb)WK ∼
(cot i)2Ṗb. Thus the magnitude of Ṗb corresponding to WK’s value should not exceed 1.6×10−12

s s−1, which is close to the gravitational wave induced Ṗb.
In other words if the measured magnitude of Ṗb of PSRs J0737–3039 A and B is not much

larger than the gravitational wave induced Ṗb, then the expression of this paper can be excluded.
The second is based on Eqs. (69)–(71), from which we have

|P̈b|
|d3Pb/dt3| ∼

|Ṗb|
|P̈b|

∼ 1

|ω̇S | . (87)

For WK, ω̇S is nearly two orders of magnitude smaller than the relativistic advance of perias-
tron, ω̇GR; for this paper, they are of the same order of magnitude. Therefore, if the ratio of
Eq. (87) is close to 1/ω̇GR then this paper is supported. Precise measurement of the derivative
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of Pb in this binary pulsar system may show which is favored. Actually Eq. (86) is one way of
absorbing the Spin-Orbit coupling induced ω̈S . This effect can be attributed to the spin period,
P , to ω̈S itself, or to other parameters. However, the relation of Eq. (87) still hold in such
cases, the difference is that the derivative and derivatives of Pb are replaced by that of other
parameters.

8 DISCUSSION AND CONCLUSIONS

BO and AK’s orbital precession velocity has been treated as equivalent, since BO and AK
gave equivalent torque, L̇, as shown in Eqs. (9) and (18) respectively. However, Eqs. (9) and
(18) actually correspond to two different orbital precession velocities, Eqs. (12) and (19), this
is because the same torque can cause different effects when the dynamic system is calculated
under different dimensions. BO’s orbital precession velocity was obtained for a system of 10;
while AK’s, for eight dimensions. The former violates the triangle constraint and the latter
satisfies it.

The difference in physics leads to difference in observable effects. Eqs. (12) and (19) cor-
respond to different combinations of Ω and ω (Ω and ω are defined in Fig. 2), and since the
observational effect depends on Ω and ω, rather than on L̇, the equivalent value in L̇ may
correspond to different observational effects. Specifically, BO and AK gave the same Ω, but
different ω (note that Ω and ω are components of the vectors given by Eqs. (12) or (19)). By
Eqs. (61) and (62), the observed advance of periastron depends on both Ω and ω, thus BO and
AK must correspond to different observational effects.

In the calculations of Sections 4 and 5, we can see the influence of the dimension and
physical constraint on the results of the equation of motion, perturbation and observational
effects.

The S-L coupling induced precession of orbit can cause an additional time delay to the time
of arrival (TOA), which can be absorbed in the orbital period. Since the additional time delay
itself is a function of time, a change in the orbital period, Ṗb, appears. Actually Ṗb corresponds
to ω̈S as shown in Eq. (69), which cannot be absorbed by ω̇GR (ω̇S can be absorbed by ω̇GR).
Therefore, the higher order derivatives of orbital period provide a good means of testing different
models. The observation of Ṗb, P̈b and d3Pb/dt3 in PSR J 2051–0827 supports significant S-L
coupling induced effects.

This paper for the first time points out that WK’s expression actually corresponds to
significant ω̇S and Ṗb which, however are not equivalent to the significant ω̇S and Ṗb given by
this paper. Precise measurement of Ṗb, P̈b and d3Pb/dt3 of specific binary pulsars with orbital
inclination i → π/2, like PSRs 0737–3039 A and B, may provide a test of the discrimination
between WK and this paper.

Acknowledgements I thank T. Huang for help in clarifying the theoretical part of this paper.
I thank R.N. Manchester for his help in understanding pulsar timing and measurement. I thank
T. Lu for useful comments during this work. I thank W.T. Ni and C.M. Xu for useful suggestions
in the presentation of this paper. I thank E.K. Hu, A. Rüdiger, K.S. Cheng, N.S. Zhong, and
Z.G. Dai for continual encouragement and help. I also thank Y. Li, Z.X. Yu, C.M. Zhang,
L. Zhang, Z. Li, H. Zhang, S.Y. Liu, X.N. Lou, X.S. Wan for useful discussions.



398 B. P. Gong

APPENDIX

By S̃ = aso · n̂ and T = aso · t̂, dΩ
dt and dω

dt have been given by Eqs. (45), (46), (49) and (51),
following the standard procedure for computing perturbations of orbital elements Roy (1991).
Similarly, four other elements can be given:

da

dt
=

2

n
√

1 − e2
(S̃e sin f +

pT̃

r
) , (A1)

〈da

dt

〉
=

σ1J(1 + e2)

(1 − e2)5/2a2
(PyQx − PxQy) , (A2)

de

dt
=

√
1 − e2

na
[S̃ sin f + T̃ (cosE + cos f)] , (A3)

〈de

dt

〉
=

σ1Je

(1 − e2)3/2a3
(PyQx − PxQy) , (A4)

dλLJ

dt
=

W̃ r cos(ω + f)

na2
√

1 − e2

1

sinλLJ
, (A5)

〈dλLJ

dt

〉
=

3 cosλLJ

2a3(1 − e2)3/2 sinλLJ
(Pz cosω + Qx sinω)[(PyQz − PzQy)(Sxσ1 + S2xσ2)

+(PzQx − PxQz)(Syσ1 + S2yσ2) + (PxQy − PyQx)(Szσ1 + S2zσ2)] , (A6)

dǫ

dt
=

e2

1 +
√

1 − e2

d̟

dt
+ 2

dΩ

dt
(1 − e2)1/2(sin2 λLJ

2
) − 2rS̃

na2
, (A7)

where
d̟

dt
=

dω′

dt
+ 2

dΩ

dt

(
sin2 λLJ

2

)
,

〈dǫ

dt

〉
=

e2

1 +
√

1 − e2

〈d̟

dt

〉
+2
〈dΩ

dt

〉
(1−e2)1/2

(
sin2 λLJ

2

)
− σ1J

a3(1 − e2)
(PyQx−PxQy) . (A8)
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