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Abstract The equations of state for degenerate electron and neutron gases are
studied in the presence of magnetic fields. After including quantum effects in the
investigation of the structural properties of these systems, it is found that some
hypermagnetized stars can be unstable according to the criterion of stability of
pressures. Highly magnetized white dwarfs should collapse producing a super-
nova type Ia, while superstrong magnetized neutron stars cannot stand their own
magnetic field and must implode, too. A comparison of our results with a set of
the available observational data of some compact stars is also presented, and the
agreement between this theory and observations is verified.
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1 INTRODUCTION

Many stellar objects are known to be endowed with large magnetic fields (Dryzek et al. 2002;
Heyl 1999, 2000). For instance, white dwarfs with surface magnetic fields ranging from 105 to
109 G have been discovered (see an earlier set of references in Kemp et al. 1970; Putney 1995;
Schmidt & Smith 1995; Reimers 1996; and the updated list of Suh & Mathews 2000). Moreover,
magnetic field strengths of the order of 1020 G have been suggested to exist in the core of neutron
stars or pulsars. Recently, in Refs. Chaichian et al. (2000) and Pérez et al. (2003), electron and
neutron gases in a strong magnetic field were considered with the aim to study the equation of
state of white dwarf stars, neutron stars and its relation to supernovae. A pure quantum effect
was found: the appearance of a ferromagnetic configuration in the neutron star interior, which
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is intrinsically related to the presence of the magnetic field. Such an effect opens the possibility
of a quantum magnetic collapse of the gas under consideration. This effect is related to the
density of the star and its magnetic field, and as such, it allows one to establish a criterion of
stability taking into account these physical properties.

The presence of a magnetic field drives the loss of the rotational symmetry of the particle
spectrum, which in turn manifests as an anisotropy in the thermodynamic properties of the
system. This behavior can be seen through the energy-momentum tensor Tµν , if we recall that
the external magnetic field H induces a magnetization M in the medium which is described
through the relation H = B − 4πM(B). Here B is the microscopic magnetic field, which is
assumed to point along the x3 axis in what follows. Starting from the energy-momentum tensor,
one can derive the expressions for the pressure components, longitudinal (p3) and perpendicular
(p⊥) to the magnetic field,

T⊥ = p⊥ = −Ω − BM , T33 = p3 = −Ω , (1)

where Ω is the thermodynamic potential.
In classical electrodynamics (Landau & Lifshitz 1970), i.e., when the spin interactions are

not taken into account, this anisotropy appears but the results are quite different. Since

p⊥ = p0 +
B2

4π
, p3 = p0 −

B2

4π
, (2)

where p0 is the isotropic pressure. One obtains at the classical level

p⊥ > p3 . (3)

This fact explains the oblateness of some astrophysical objects when one studies them in a
classical way. Proper examples of this are provided by Shapiro & Teukolsky (1983) in the case
of magnetic white dwarfs, and by Cardall, Prakash & Lattimer (2001) for highly magnetized
neutron stars. Contrary to these well-known effects, the interplay of magnetic and quantum
effects imply that some stars get a cigar-like shape along the x3 axis, and some of them may
even collapse.

The purpose of this paper is to discuss in more detail and to exploit some of the astrophys-
ical consequences of previous papers (Chaichian et al. 2000; Pérez et al. 2003) regarding the
appearance of hydrodynamic instabilities in strongly magnetized electron and neutron gases
taking place inside white dwarfs (WDs) and neutron stars (NSs), respectively. In particular,
these instabilities on the configuration of any super critically magnetized stellar object are shown
to appear due to the action of quantum-mechanical effects, as the occupation of the particle
Landau ground state, driven by cooperative particle spin-magnetic field coupling. These new
effects allow us to introduce a new model to show that some WDs may become ultramagnetized
and may collapse into a kind of type Ia SN, even without reaching the Chandrasekhar mass
limit. As a matter of consistency, we test this theoretical argument in a wide and extensively
studied set of astrophysical sources and show that the conclusions drawn from our analysis are
in complete agreement with present observations of compact remnant stars, while forbid them
to take on certain exotic configurations.

The structure of the paper is as follows: In Section 2 we present the physics of a magnetized
electron gas and apply it to examining stability conditions of white dwarfs. Based on this
physics, a new model for SN type Ia events is presented, which does not necessarily depend on
the WD reaching its critical mass. Section 3 considers the case of a neutron gas, as a model
for NSs. We show that the so-called magnetars cannot in principle be formed based on the
instability criterion of anisotropic pressures, while canonical pulsars could. Finally, in Section 4
we present our conclusions.
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2 MAGNETIZED ELECTRON GAS

In this section we shall check the thermodynamic properties of the degenerate electron gas in
very intense magnetic field and density regimes, which are of particular interest in astrophysical
scenarios. We shall find the conditions that may lead to the vanishing of the transverse pressure
of the electron gas, as a model of a white dwarf, which may then undergo a gravitational
collapse.

We start by defining the thermodynamic potential as1

Ω = −T lnZ , (4)

where T is the gas temperature and Z the partition function. In the case of a magnetized
degenerate electron gas, the sum over Landau levels appeared in the electron gas configuration
and, therefore, the thermodynamic potential can be expressed as

Ωe = −Ω0

nµ
∑

0

anB

[

x
√

x2 − 1 − 2nB/Bc − (1 + 2nB/Bc) × ln

(

x +
√

x2 − 1 − 2nB/Bc

√

1 + 2nB/Bc

)]

, (5)

where we define Ω0 = em2/(4π2
~

2c2), an = 2− δ0n, x = µe/me, Bc = m2
e/(e~c), with µe as the

chemical potential for electrons and nµ corresponds to the maximum Landau level for a given
Fermi energy and magnetic field strength. The maximum occupancy of these Landau levels is
defined as

nµ = I

[

Bc

2B

(

x2 − 1
)

]

, (6)

I[x] denotes the integer part of x.
The mean density of particles is given by Ne = −∂Ωe/∂µe. In the degenerate limit, i.e., at

zero temperature, one obtains

Ne = N0

(

B

Bc

) nµ
∑

0

an

√

x2 − 1 − 2nB/Bc , (7)

where N0 = m3
e/(4π2

~
3c3). Bearing in mind that the magnetization is defined as Me =

−∂Ωe/∂B , from Eq. (5) one obtains

Me = M0

nµ
∑

0

an

[

x
√

x2 − 1 − 2nB/Bc − (x2 + 4nB/Bc) × ln

(

x +
√

x2 − 1 − 2nB/Bc

√

1 + 2nB/Bc

)]

, (8)

where we define M0 = em2
e/(4π2

~
2c2). We stress that the magnetization, as well as other

thermodynamic quantities, is a function of B and Ne. Hence, one can write the expression of
Ωe in terms of the magnetization as

Ωe = −BMe − Ω0

nµ
∑

n=1

n ln

(

x +
√

x2 − 1 − 2nB/Bc
√

1 + 2nB/Bc

)

. (9)

Since the thermodynamic potential is a measure of the internal pressure in the gas, it is es-
pecially interesting to discuss the equation of state of the system at this point. It is worth noting
that the latter receives contributions from the partial pressures of the several species involved.
By calculating the energy-momentum tensor of this gas (made up of electrically charged parti-
cles) one obtains different equations of state for the directions parallel, p3, and perpendicular,
p⊥, to the magnetic field B. They read

p3 = −Ωe , (10)

1 Note that we are defining the thermodynamic potential per unit volume.
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and

p⊥ =
2e2B2

π2(~c)

nµ
∑

n=0

n ln

(

x +
√

x2 − 1 − 2nB/Bc
√

1 + 2nB/Bc

)

. (11)

It is readily verified from these expressions that for a positive magnetization the transversal
pressure exerted by the charged particles in the presence of a magnetic field is smaller than the
longitudinal one by the amount BMe.

There are some situations where the densities and magnetic fields are such that only the
first Landau level of the particle spectrum is occupied. Equation (11) shows that when the
electrons are confined to the Landau ground state, one can write

p⊥ = −Ωe − BMe = 0 , (12)

while higher excited Landau states provide a positive contribution to the pressure. If the domi-
nant contribution to the pressure comes from the electron gas, then the vanishing of p⊥ means
that the pressure due to the gravitational force, of order GM2/R4 (R is the radius of the star),
cannot be compensated, and thus there appears an instability which leads to an abrupt im-
plosion of the electron gas. It is interesting therefore to find the conditions for the occurrence
of this confinement to the ground state (n = 0) and, consequently, for the triggering of the
gravitational collapse of the star.

In general, from Eq. (6) one can write

nµ ≃ 2 × 10−21 N2
e

B3
, (13)

which essentially defines an instability criterion for all magnetized stars in the plane (Ne, B).
In Fig. 1 we show the instability region (dotted area) for a magnetized electron gas in that
plane. Any star for which its structural configuration placed it inside the dotted region should
undergo a transverse collapse due to the vanishing of the pressure transverse (perpendicular)
to the magnetic field.

2.1 White Dwarfs

Recent observations have pointed out that supernovae type Ia (SNIa), considered as standard
candles in the redshift range 0.1 ≤ z ≤ 1, seem to provide evidence for our Universe to be
accelerating (Riess et al. 1998; Perlmutter et al. 1999), driven by some kind of dark energy:
a cosmological constant or quintessence field. However, the premise underlying this suggestion
needs to be firmly established on astrophysical foundations. In order to settle this issue in
a conclusive way, the redshift independent nature of SNIa should be demonstrated (Karl et
al. 2003; Napiwotzki et al. 2003; Hillebrandt et al. 2003), since only a complete understanding
of those events can give the required confidence, if any, to the idea that they are indeed standard
candles. In this paper we introduce a new scenario for the SN type Ia events based on the physics
presented above, which indicates that another kind of collapse may produce SNIa outbursts.

The leading scenario for SNIa suggests that these explosions stem from the complete disrup-
tion of a white dwarf (WD) induced by accretion of mass from a companion star, which forces
it to go past the WD Chandrasekhar mass limit Mcrit ∼ 1.445 M⊙ (Livio 2000). The abrupt
conversion of nearly 1 M⊙ of C/O to 56Ni and the 56Ni subsequent decay to 56Fe on the proper
timescale releases, an amount of energy just as large as needed to power the observed luminosity
and kinematics of a SNIa. In addition, this scenario provides a consistent explanation for the
absence of hydrogen in these events. Although this model is well motivated, it has been shown
to contain several drawbacks that tend to disfavor it (Hillebrandt et al. 2003).
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Fig. 1 Instability region (dotted area) in the (Ne, B)-plane for a magnetized electron gas. A
WD star whose configuration lies inside the dotted region collapses due to the vanishing of the
transverse pressure p⊥ = −Ωe − BMe . The labelled points represented by stars correspond
to some of the stable white dwarf configurations given in Table 1.

On an alternative view, recent Hubble Space Telescope observations suggest that a good
candidate of SN type Ia progenitors could be coalescing binary WD-WD dubbed as blue strug-

glers. These objects are a class of stars that live in globular clusters orbiting in the outskirts of
spiral galaxies. A particular set of these candidates to SNIa is mergers of unequal mass WD-WD
binaries that come together because of angular momentum loss via gravitational radiation (GR)
emission (Karl et al. 2003; Napiwotzki et al. 2003). The timescale (∼ 106 yr) for the system to
coalesce is dictated by GR, so that the donor companion has the right time scale to fill its Roche
lobe so driving the mass transfer onto its heavier orbital partner (Nomoto 1998). However, there
exists a debate in the literature whether an explosion does occur under such a dynamics. Some
authors contend that view and suggest that, more likely, a “silent” accretion-induced collapse
(AIC) to form a remnant neutron star must take place (Mochkovitch et al. 1997). Overall, the
issue seems contentious.

2.2 Quantum-Magnetic Collapse of a WD as Model of SNIa

On the lines of a previous theory (Pérez et al. 2003), we suggest here a rather different mech-
anism in which, for the case of young, rapidly rotating, highly magnetized and massive C/O
WDs, a direct collapse of a single WD should indeed occur. The overall process is driven by
both the quantum and magnetic effects described above.

Rapidly rotating white dwarfs have been studied theoretically (see Shapiro & Teukolsky
(1983) and the extended list of references therein). Despite earlier thoughts dismissing that
possibility, based on the fact that the then observed H lines in most WD spectra exhibited nar-
row cores, recent observations, however, confirmed that such objects do exist (Karl et al. 2001)
among the more than 2400 WDs catalogued up to now. The shortest rotation period that has
been clearly measured is the 33 s of AE Aqr, while a good candidate for a slightly faster spin is
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Table 1 Mass M , electron number density Ne and surface magnetic field B for some typical

magnetic white dwarfs: A = PG 0136 + 251, B = PG 2329 + 267, C = 1RXS J0823.6–2525,

D = PG 1658 + 441, E = LB 11146B, F = Grw + 70◦8247, G = RE J0317–858, H = PG

1031 + 234 , I = GD 229. The above data were taken from Suh & Mathews (2000). Here

N0 = m3

e
/(4π2

~
3c3) ≃ 5.9 × 1029 cm−3 and M⊙ ≃ 1.99 × 1033 g is the solar mass.

WD M/M⊙ Ne/N0 B (in Gauss)

A 1.28 1.4 1.3 × 106

B 0.9 0.6 2.3 × 106

C 1.2 1.2 3 × 106

D 1.31 1.7 3.5 × 106

E 0.76 - 1.0 0.3 − 0.9 > 3 × 108

F > 1.0 0.9 3.2 × 108

G 1.35 1.9 6.6 × 108

H ? ? ≃ 109

I ? ? & 109

WZ Sge with a period of 28 s. Nonetheless, there appears to exist a faster class of WDs spinning
with periods of Pcrit ∼ 27 s, dubbed as DQ Herculis, which, on the other hand, are magnetized
WD accreting matter in binaries christened cataclysmic variables.

For non-magnetic white dwarfs, meanwhile, the theoretical view suggests that there exists
a critical rotation period (or frequency) of uniformly spinning WDs in which mass shedding at
the star equator takes place. The instability sets in for a Keplerian rotation frequency

ΩK = 0.67(πGρ̄)1/2 , (14)

where ρ̄ is the WD mean density. That relation implies a rotation period PK ∼ 17 s, for stars
with mean density in the range 104 g cm−3 ≤ ρ ≤ 107 g cm−3. However, for WD stars rotating
differentially at the relevant temperature the threshold period can be much smaller than the
above limit. This is a crucial issue that we will take advantage of in developing our model.
According to Shapiro & Teukolsky (1983), in a differentially rotating WD the ratio between the
frequency at the center and at its surface is

Ωequator

Ωcenter

≤ 1

5
, (15)

for almost all the equilibrium configurations with masses in the range 0.4 − 0.9 M⊙. Massive
WD models above 1.4 M⊙ possess surface velocities around 3000–7000 km s−1, which suggests
periods around 1 s. A WD in a binary system may accrete material from its orbital partner in
such a way that its angular momentum can rise significantly, and it may rotate differentially.
As the material accreted transfers energy and angular momentum, the primary WD star will
be spun-up over the time scale

∆T s
u ≃ J

J̇
=

2MR2Ω

5(GMR)1/2

1

Ṁ
= 4 × 106 yr.

(

M

M⊙

)1/2

×
(

R

10−2R⊙

)3/2(
1 s

P

)(

10−8M⊙y−1

Ṁ

)

, (16)

where J is the angular momentum accreted from the companion, J̇ the applied torque, P the
rotation period, Ṁ the accretion rate, and R the WD radius in units of the solar radius R⊙.
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Note that a higher accretion rate, as in unequal WD-WD binaries, may reduce the spin-up time
scale. Therefore, an essential ingredient of this model is the existence of a WD primary in a
binary system which is old enough to have had time to accrete up to the point of being spun-up
to its break-up velocity at the equator.

Once we have the star differentially rotating near its break-up period, the conditions
are reached for the α − Ω dynamo mechanism (Duncan & Thompson 1992; Thompson &
Duncan 1993, 1995, 1996) to start to amplify the WD initial magnetic field. The maximum
magnetic field achievable through this process can be as strong as equipartition of pressure and
kinetic energy)

B2

8π
=

MWDΩ2
WDR2

WD

(8π/3)R3
WD

−→ Bs
c ∼ 3 × 1014

(

Pi

1 s

)−1

G , (17)

Bs
c being the supercritical B-field and Pi the shortest period reached upon undergoing the

α−Ω dynamo phase. This Bs
c should be generated as the differential rotation is smoothed out

by growing magnetic stresses inside the WD star. For the typical WD mass, radius and rotation
frequency given above, the associated spin energy in the process reads

EΩi =
1

2
MWDΩ2

WDR2
WD ∼ 1051

(

Pi

1 s

)−2

erg , (18)

which is similar to the characteristic energy of most SNIa events. This energy plus the gravita-
tional binding energy, which is of the same order of magnitude as the above, would be released
during the implosion of the star. The computed amplified magnetic field2 plus the matter den-
sity of a typical WD will put the star in the instability region shown in Fig. 1, according to
Eq. (12), where it must undergo gravitational collapse. Thus, the higher the WDs initial B-field,
the shorter the break-up spin-up time scale. This process may take place well before the star
reaches the Chandrasekhar critical mass of 1.445 M⊙.

Since the time scale estimated above is shorter than the age of our universe, certainly old
WD stars may have accreted enough material so as to rotate at its break-up velocity. At that
point the initial B-field might be enlarged via the dynamo mechanism, which in turn may drive
the star to explode as a consequence of the quantum-magnetic collapse it undergoes. Those
systems may have been triggering the observed SNIa events.

Whenever the physical properties of the WD star (see Table 1) places it above the instability
region marked in Fig. 1, the WD must implode triggering a supernova-like event with SNIa
characteristics. The WD dynamical timescale and the abrupt combustion of its constituent
material (electron capture into protons, and rapid process nucleosynthesis to 56Ni) are such as
to produce the energetics required by the observations. The main reason for this claim is that
both characteristics, i.e. the WD rapid spinning and age, can amplify (via the α − Ω dynamo
mechanism) the remnant magnetic field (∼ 108 G) up to a critical value at which it becomes
unstable and so it collapses. In fact, there is strong evidence for young and highly magnetized
WDs, for instance, the object RE J0317–858 listed in Table 1. The process we describe is like
the accretion induced collapse quoted above, but it originates from a cooperative action of two
different physical effects. At the end, the SNIa explosion must be accompanied by a gamma-
ray burst of energy ∼ 1051 erg. This is an interesting signature to look for. A further testable
prediction of this picture could be to find no remnant at all after a SNIa! Such a result could
be interpreted as the WD having collapsed into a black hole or a black string, driven by the
combination of the quantum and magnetic effects discussed here, and purported in Pérez et
al. (2003).

2 Notice that the final B-field is almost independent of the WD initial B-field.
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If this model, i.e. the collapse of heavy and strongly magnetized WD, realizes in nature,
it would significantly help to clarify whether SNIa could indeed be considered as legitimate
standard candles, since for the collapse to take place in this way the WD mass must be in
the range 0.9 − 1.35 M⊙, for which the total binding energy released is practically the same
∼ 1051 erg. Of course, some other observational constraints may play some role too, for instance
the statistics of massive WD-WD binaries, which is relatively small (Karl et al. 2003; Napiwotzki
et al. 2003).

In brief, several WDs endowed with strong magnetic fields have been observed and studied
(Kemp et al. 1970; Suh & Mathews 2000, see Table 1). From the analysis of the observational
data (Barstow et al. 1995; Greenstein et al. 1982) one can see that our model is in close agreement
with those observations. These stars are stable objects. On the other hand, if those WDs listed
in Table 1 were given an amplified supercritical (Bs

u) magnetic field, then they must implode.

3 MAGNETIZED NEUTRON GAS

Most of the observed neutron stars are pulsars, i.e., fast rotating neutron stars with strong
magnetic fields (Lorimer 1999). They consist mainly of neutron matter with a high central
density. As in the case of WDs, a similar study can be made for neutron stars which are
properly described by a degenerate neutron gas (Shapiro & Teukolsky 1983). In this case, it is
straightforward to calculate the thermodynamic quantities starting from the neutron density
Nn. Assuming that the uniform magnetic field B is along the x3-axis, and using the Dirac
equation for neutral particles with anomalous magnetic moment (Bagrov & Gitman 1990)
propagating through this field, we obtain the spectrum as

En(p, B, η) =

√

p2
3 +

(

√

p2
⊥

+ m2
n + η|qn|B

)2

, (19)

where p3, p⊥ are the momentum components along and perpendicular to B, respectively; mn is
the neutron mass, qn ≃ −1.91µN is the neutron magnetic moment (µN = e/(2mp) is the nuclear
magneton), and η = ±1 are the σ3 eigenvalues corresponding to the two possible orientations
(parallel or antiparallel) of the neutron magnetic moment with respect to the magnetic field.

The thermodynamic properties of a degenerate neutron gas are easily obtained following
the same procedure as in Section 2 and it is the scenario of Pérez et al. (2003). We now revisit
to discuss their astrophysical implications.

First, the neutron density Nn, thermodynamical potential Ωn, and magnetization Mn read,
respectively,

Nn = N0

∑

η=1,−1

[

f3
η

3
+

ηy(1 + ηy)fη

2
− ηyx2

2
sη

]

, (20)

Ωn = −Ω0

∑

η=1,−1

[

xf3
η

12
+

(1 + ηy)(5ηy − 3)xfη

24
+

(1 + ηy)3(3 − ηy)

24
Lη − ηyx3

6
sη

]

, (21)

Mn = −M0

∑

η=1,−1

η

[

(1 − 2ηy)xfη

6
− (1 + ηy)2(1 − ηy/2)

3
Lη +

x3

6
sη

]

. (22)

Here the numerical constants are set at N0 = m3
n/(4π2

~
3c3) ≃ 2.73×1039 cm−3, Ω0 = N0mn ≃

4.11 × 1036 erg cm−3 and M0 = N0qn ≃ 2.63 × 1016 erg (G cm
3
)−1. We also set

x =
µn

mn
, y =

B

Bn
, (23)
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with Bn = mn/qn ≃ 1.56 × 1020 G, and introduce the notations:

fη =
√

x2 − (1 + ηy)2, sη =
π

2
− arcsin

(

1 + ηy

x

)

, Lη = ln

(

x + fη

1 + ηy

)

. (24)

In the limit B = 0, Eqs. (20) and (21) reproduce the usual density and thermodynamic
potential of a relativistic Fermi gas at zero temperature (Fradkin 1967). We see that the mag-
netization Mn is a nonlinear function of B, and since Mn ≥ 0 the magnetic response of the
neutron gas is ferromagnetic (Pérez et al. 2003).

As we mentioned in the Introduction, the key ingredient brought in by the pressure
anisotropy is precisely that the magnetization is positive. In fact, one finds that the condi-
tion p3 > p⊥ holds for any highly magnetized Fermi gas. In particular, we remark that for a
neutron gas with anomalous magnetic moment this condition is fulfilled.

We also note that if x = 1 + ηy, then fη = sη = Lη = 0. For x < 1 + y the thermody-
namic potential Ωn, and consequently, all the thermodynamic quantities in the system become
complex. The condition x = 1+y defines a curve in the (Nn, B)-plane described by the relation

Nn = N0

{

y5/2 +
5

3
y3/2 +

1

2
y(1 + y)2

[

π

2
− arcsin

(

1 − y

1 + y

)]}

, (25)

which delimits the region where the pressure becomes complex. Since y ≪ 1 for magnetic field
strengths under consideration (Bs ∼ 1015 G in the NS surface), we can expand Eq. (25) around
y = 0 to obtain the approximate expression

Nn ≃ 8

3
N0 y3/2. (26)

It is also straightforward to find the curve which corresponds to the vanishing of p⊥. Writing
x = 1 + (1 + a)y, with a > 0 in Eqs. (20)–(22), and expanding around y = 0 we obtain to the
leading order in y:

Nn ≃ 2
√

2

3
N0 y3/2

[

(a + 2)3/2 + a3/2
]

, (27)

p⊥ ≃ 2
√

2

15
Ω0

y5/2

√
2 + a

[

2a3 + 7a2 + 4a + a3/2(5 + 2a)
√

2 + a − 4
]

. (28)

The solution of the equation p⊥ = 0 is given by a = a0 ≡ 3
5

√
5− 1 ≃ 0.34. Substituting this

value into Eq. (27) we find

Nn ≃ 2
√

2

3
N0 y3/2

[

(

3

5

√
5 + 1

)3/2

+

(

3

5

√
5 − 1

)3/2
]

≃ 3.57N0 y3/2 . (29)

In Table 2 we present some results for neutron stars obtained by using other equations
of state (EOS), and taking into account that the B-fields in the core may follow the dipolar
law, i.e., that B obeys the relation B = Bs(R

3
s/r3), at least for the dipole component; here

Rs is the star (surface) radius and r is any inner radius of the star. Our results are based on
the data from Cardall, Prakash & Lattimer (2001), where the authors performed “realistic”
numerical simulations of strongly magnetized neutron stars. We identify Bs = Bpole, as was
done in Cardall, Prakash & Lattimer (2001). Under these conditions, and based on the proposed
criterion of stability, we can conclude that those neutron stars would be unstable objects.

In Fig. 2 we plot the curve defined by Eq. (29) in the (Nn, B)-plane. For values of x >
1 + (1 + a0)y the gas pressure is positive and the neutron gas is stable. One can verify, on the
other hand, that if x ≤ 1 + (1 + a0)y the pressure will become negative or vanish, leading to
transverse collapse of the star.
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Table 2 Mass M , neutron number density Nn and magnetic field B for some neutron star
equilibrium configurations computed in Cardall, Prakash & Lattimer (2001) using different
equations of state (EOS). Here N0 = m3

n
/(4π2

~
3c3) ≃ 2.73 × 1039 cm−3.

NS EOS M/M⊙ Nn/N0 B (in Gauss)

A Pol2 2.31 0.019 5.1 × 1020

B Pol2 2.37 0.11 1.48 × 1020

C BJI 1.96 0.18 9.1 × 1020

D BJI 2.12 0.25 2.86 × 1021

E PandN 1.72 0.26 5.8 × 1020

F PandN 1.86 0.35 1.6 × 1021

G Akmal 2.22 0.21 6.4 × 1020

H Akmal 2.53 0.19 3.2 × 1021

I PCL 2.09 0.054 8.7 × 1020

J PCL 1.91 0.25 1.6 × 1021

K PCLhyp 2.02 0.30 6.9 × 1020

L PCLhyp 1.76 0.04 1.38 × 1021
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Fig. 2 Instability region in the (Nn, B)-plane for a magnetized neutron gas, as a model of
a pulsar. A star whose configuration lies above the solid curve defined by Eq. (29) should
collapse due to the vanishing of the transverse pressure p⊥ = −Ωn − BMn . The labelled
points represented by stars correspond to the neutron star configurations listed in Table 2
and computed using different EOS. The core of any star trapped in the instability region
must implode or collapse as in the quark-nova model (Ouyed et al. 2002).
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3.1 Magnetars

It has been recently suggested that there might be stellar objects, known as soft gamma re-
peaters (SGR), whose magnetic field inferred from the spindown of their supposed associated
pulsars3 seems to exceed the critical value: Bc = m2

e/(e~c) ≃ 4.41 × 1013 G. In particular, it
is claimed that these are newly born neutron stars (Mazets et al. 1979; Murakami et al. 1984;
Kouveliotou et al. 1999), also called magnetars (Duncan & Thompson 1992; Thompson &
Duncan 1993, 1995, 1996, with surface magnetic fields as strong as 1015 G. According to Duncan
& Thompson (1992), Thompson & Duncan (1993, 1995, 1996), a neutron star with period
Pi ∼ 1ms can support an efficient α−Ω dynamo. Since neutron stars are formed with significant
differential rotation, the associated energy is EΩi ∼ 1052(Pi/1 ms)−2 erg. Thus magnetic fields
as strong as 3×1017(Pi/1 ms)−1 G can be generated when the differential rotation is smoothed
out by growing magnetic stresses inside the star. After the available energy is released in the
outermost parts of the star, vigorous convection continues to generate much stronger magnetic
fields than any previous phase of stellar convection, producing fields larger than the one required
to balance the gravitational binding energy density (Duncan & Thompson 1992; Thompson &
Duncan 1993, 1995, 1996). Thus their result suggests that the α−Ω dynamo operating in 1ms
neutron stars might generate surface dipole fields much stronger than 1013 G.

For this class of compact magnetized stars with Bs ∼ 3×1017(Pi/1 ms)−1 G, our description
above predicts that such objects should implode to a magnetically (B ≤ Bc) stable configura-
tion that is not a magnetar! This result, previously obtained in Pérez et al. (2003), was later
confirmed by (Khalilov 2002) and Chakrabarty’s group in a very interesting series of papers
(Ghosh & Chakrabarty 2001; Ghosh et al. 2002; Mandal & Chakrabarty 2002a, 2002b, 2004). In
particular, Khalilov in his stability analysis of a degenerate neutron gas in chemical equilibrium
with a background of electrons and protons, also included contribution from the anomalous
magnetic moment of the fermions composing the star, as was done in Pérez et al. (2003). We
note, however, that in Khalilov (2002) a longitudinal collapse is found instead of a transver-
sal one. A detailed discussion of the approach followed in the latter work, which seems to us
inappropriate, will be presented elsewhere (Pérez et al. 2005).

As commented above (cf. Fig. 2) some neutron stars described by other EOS producing
Bs ∼ 3×1017 G fall in the region of instability defined by our theory. The attentive reader may
have noted that this magnetic field strength is identical to the one invoked by Kondratyev (2002)
in an attempt to explain the statistical properties of magnetars. By relating intervals of intense
activity with sharp, step-like changes of magnetization, due to structural inhomogeneities in
the crust and release of its stored magnetic energy, Kondratyev’s Letter claimed that this could
be the mechanism that triggers SGR activity. The demagnetization takes place as random
jumps associated with magnetic avalanches and sharp energy injection into the magnetosphere
develop. Because the nucleons populate discrete energy levels in such a matter, for field strengths
B ∼ 1016 − 1017 G (and density near ρnuclear), where the energy levels crossover, the nuclei
structure changes abruptly to a stepwise field dependence of the nucleus magnetic moment on
the nucleon magneton. According to this author, the decay of this configuration would then
drive the bursting phase of the SGR.

However, for a crustal multipolar field configuration one can expect, at the stellar interior,
a field strength much higher than B ∼ 1017 G, at least for the dipole component. This is an
idea the astrophysical community is well acquainted with. If this is the case, then our analysis
jumps into a setting where (see Fig. 2) the neutron star should have collapsed much earlier
on in its life. Note further that Woods et al. (2002), after studying large torque variations in
two SGRs, concluded that within the context of the magnetar model seismic activity cannot

3 See also Cuesta (2000) for a different approach.
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account for both the bursts and long-term torque changes unless the seismically active regions
are decoupled from one another. The idea is that since the observed changes in spindown rate
do not correlate with burst activity then the physical mechanisms behind either phenomena are
more likely to be unrelated. Whether the magnetar model is able to cope with this observational
requirement is not apparent.

4 CONCLUDING REMARKS

If a hypermagnetized neutron star could somehow be formed in a supernova explosion, the
abrupt amplification of its magnetic field will drive it into collapse. Since magnetic flux is
dissipated during the implosion via a process analogous to the Sun’s coronal mass ejections (as
in Malheiro et al. 2004), the most likely outcome of such a collapse is a remnant strange star
of canonical magnetic field, a black hole or even an exotic black string. Once again, the violent
“consumption” of the neutron star nuclear material may trigger the emission of a gamma-ray
burst of overall energy ∼ 1052 erg, much as in the quark-nova model (Ouyed et al. 2002).

In the case of neutron stars such as the suggested magnetars, the pressure anisotropy must
naturally develop, and the condition for the collapse in the direction perpendicular to the dipole
magnetic field could be satisfied (Fig. 2) for the typical values of density and magnetic field
strength routinely quoted for these stars.

To summarize, we have presented a consistent theory to discuss the stability of compact
remnant stars whose structure is dictated by a combination of quantum and magnetic effects.
We have shown that, in general, the theory agrees quite well with current observational data for
magnetic WDs (Shapiro & Teukolsky 1983), canonical pulsars (Lorimer 1999), and the realistic
relativistic models of Cardall, Prakash & Lattimer (2001). A major outcome is the fact that
some special configurations of highly magnetized WDs could collapse and trigger an explosion
similar to an SNIa. Besides, some neutron stars endowed with superstrong magnetic fields are
shown to be naturally unstable, and therefore should collapse, for their quoted surface magnetic
fields. This would drive a powerful supernova explosion followed by a gamma-ray burst, too.
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(FAPERJ), Brazil, under the contract E-26/151.684/2002, and thanks OEA-ICTP for hospi-
tality in Havana through NET-35.

References

Bagrov V. G., Gitman D. M., 1990, Exact Solutions of Relativistic Wave Equations, Kluwer Acad.

Publ.

Barstow M. A., Jordan S., O’Donoghue D. et al., 1995, MNRAS, 277, 971

Cardall C. Y., Prakash M., Lattimer J. M., 2001, ApJ, 554, 322

Chaichian M., Masood S., Montonen C. et al., 2000, Phys. Rev. Lett., 84, 5261

Dryzek J. et al., 2002, Int. Journ. Mod. Phys. D, 11, 417

Duncan R. C., Thompson C., 1992, ApJ, 392, L9

Fradkin E. S., 1967, Quantum Field Theory and Hydrodynamics, Proceedings of the P. N. Lebedev

Institute No. 29, Consultans Bureau

Ghosh T., Chakrabarty S., 2001, Phys. Rev. D, 63, 043006

Ghosh S., Mandal S., Chakrabarty S., 2002, astro-ph/0207492



Quantum Instability of Magnetized Stellar Objects 411

Greenstein J. L., J. B. Oke, 1982, ApJ, 252, 285

Heyl J., 1999, MNRAS, 306, 333

Heyl J., 2000, MNRAS, 317, 310

Hillebrandt W., Niemeyer J. C., Reinecke M. et al., 2003, Mem. Soc. Astron. Ital., 74, 942

Karl C. et al., 2001, Rotation velocities of white dwarfs, Astronm. Gessellsch. Abst. Series, 18, S0918,

and references therein

Karl C. et al., 2003, A&A, 410, 663

Kemp J. C., Swedlund J. B., Landstreet J. D., Angel J. R. P., 1970, ApJ, 161, L77

Khalilov V. R., 2002, Phys. Rev. D, 65, 056001

Kondratyev V. N., 2002, Phys. Rev. Lett., 88, 221101

Kouveliotou C. et al., 1999, Nature, 391, 235

Landau L. D., Lifshitz E. M., 1970, Classical Electrodynamics, J. Wiley & Sons, New York

Livio M., 2000, in The greatest explosions since the Big Bang: Supernovae and Gamma-Ray Bursts,

Space Telescope Science Institute

Lorimer D. R., 1999, The neutron star - black hole connection, Proceedings of the NATO Advanced

Study Institute, Elounda, Crete, Greece, 7–18 June 1999, Eds. Chryssa Kouveliotou, Joseph Ventura

and Ed Van den Heuvel; Dordrecht: Kluwer Academic Publishers, 2001. NATO science series C:

Mathematical and physical sciences, 567, p.3 and 21

Malheiro M., Ray S., Mosquera Cuesta H. J., Dey J., 2004, astro-ph/0411675

Mandal S., Chakrabarty S., 2002a, astro-ph/0209462

Mandal S., Chakrabarty S., 2002b, astro-ph/0209015

Mandal S., Chakrabarty S., 2004, Int. J. Mod. Phys. D, 13, 1157

Mazets E. P. et al., 1979, Nature, 282, 587

Mochkovitch R., Guerrero J., Segretain L., 1997, in Thermonuclear Supernovae, Eds. R. Ruiz-Lapuente,

R. Canal, R. Isern, Kluwer Publishers, 187

Mosquera Cuesta H. J., 2000, Soft gamma-ray repeaters as white dwarf - neutron star relativistic

binaries, CBPF preprint NF-080-00

Murakami et al., 1984, Nature, 368, 432

Napiwotzki R. et al., 2003, ESO Msngr, 112, 25

Nomoto K., 1998, Nucleosynthesis in type Ia supernovae and constraints on progenitors, XVIIIth

Texas Symposium on Relativistic Astrophysics and Cosmology. Eds. A. V. Olinto, J. Frieman, D.

N. Schramm, River Edge, N. J., World Scientific

Ouyed R. et al., 2002, A&A, 390, L390
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