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Abstract By means of a population synthesis code, we investigate the Mira
variables. Their birth rate (over 0.65 yr−1) and their number (∼ 130 000) in the
Galaxy are estimated. For all possible Mira variables, ranges of their initial masses,
pulsating periods, mass losses and lifetimes are given. We check our model with
the observed Mira variables near the Sun and our results prove to be valid.
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1 INTRODUCTION

As stars ascend the asymptotic giant branch (AGB): it appears that they begin to pulsate
when their effective temperature drops below a certain level (usually taken to be 3800K (Percy
1997)) and the luminosity increases to a certain value. The amplitude tends to increase with
decreasing temperature and appreciable periodicity which starts in a high radial overtone will
gradually drop into lower overtones, then the stars approach the Mira stage. Mira variables are
late M-type giant stars, pulsating with periods of 80 to 1000 days with visual amplitudes more
than 2.5 magnitudes. They are the coolest and most luminous AGB stars, having a carbon core,
and surrounded by helium-rich layers, then in turn surrounded by a hydrogen-rich envelope.
At the AGB stage, two significant processes occur: (1) in the interior, due to instabilities in
the thermonuclear reactions in the thin shell of helium, which flashes every few thousand years
or so, causing cyclic changes in the temperature, luminosity, and pulsation period (Vassiliadis
& Wood 1993); (2) in the outer layers, mass loss occurs as a result of the low escape velocity,
the radiation field of the star and dust formation. The mass loss is enhanced by the pulsation
of the star (Bowen & Willson 1991) and the star can lose a significant fraction of its mass
within a million years. However, the study of the Mira variables has always been a very difficult
task (Wood 1990). Theoretical analysis of the properties of the envelope has been made very
uncertain by the problem of convective energy transport, while the study of the atmospheres
needs a clear knowledge of the opacity resulting from the huge number of lines of molecules such
as CN, CO, TiO, H2O and so on. Although the models of atmospheres for Mira variables have
been constructed by Bessell et al. (1989), we will investigate Mira variables from an evolutionary
stand.

In this paper we attempt to find all possible Mira variables and to estimate their birth rates
and lifetimes with an evolutionary population synthesis code. We shall evaluate the number of
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Mira variables in the Galaxy, and obtain their distributions over potential observable ranges of
masses, pulsating periods, mass-loss rates and so on. In Section 2 we present our assumptions
and describe some details of the algorithm. In Section 3 we discuss our main results. A brief
conclusion will be given in Section 4.

2 MODEL

We use the rapid single star evolution code of Hurley et al. (2000) for the single star tracks.
Below we describe our algorithm and give some details that are important for the understanding
of our model.

2.1 Model Input and Monte Carlo Simulations

For the population synthesis of a single stellar population the main input parameters are: (1)
the initial mass function; (2) the lower and upper mass cut-offs Ml and Mu to the initial
mass function; (3) the metallicity Z of the stars; (4) and the relative age of the single stellar
population.

A simple approximation to the IMF of Miller & Scalo (1979) is used. The primary mass
is generated with the formula of Eggleton, Fitchett & Tout (1989) (also Han et al. 1995; Han
1998),

M1 =
0.19X

(1 − X)0.75 + 0.032(1− X)0.25
, (1)

where X is a random variable uniformly distributed in the range [0, 1]. If M1 is larger than
8.0M⊙, the number of stars is very small and the lifetimes on the stage of AGB are too short.
The lower mass cut-off is taken 0.1M⊙. So M1 is the stellar mass from 0.1–8M⊙. We take
the solar metallicity (Z = 0.02) throughout this work. The maximum age of the single stellar
population is 15Gyr.

2.2 The Position of Mira Variables in the HR-diagram

The large amplitude pulsations exhibited by the stars when they become Miras are generally
thought to drive the observed massive mass-loss of such stars in the upper part of the AGB.
A good review is in Willson (2000). These stars appear in a limited region in the HR-diagram
which has been discussed in Wood & Zarro (1981), Groenewegen & de Jong (1994) and Gautschy
(1999). A most focused attempt to determine the region in the L − Teff-plane where stars be-
come Mira variables is the work of Gautschy (1999), on which we will base our calculations.
The effective temperature determined by Gautschy is a kind of equilibrium temperature which
corresponds to the equilibrium states of the atmosphere. These temperature are therefore ap-
propriate and can directly be related to the effective temperatures calculated for the envelopes
of the single stellar population. We use the results of Gautschy (1999) for fundamental mode
pulsators, since Mira variables are nearly certainly fundamental mode pulsators (Wood et al.
1999).

For the Galaxy Gautschy (1999) found the blue edge of the Mira instability strip to be
located at log Teff = 3.49. The red edge is not well defined because of the low number of data
points, possibly it is located below log Teff = 3.43. This would be in accord with the theoretical
results of Xiong et al. (1998). The lower border of luminosity is not well defined, but in Gautschy
(1999) it is about at log L/L⊙ = 3.20.

In our model we only care about the blue edge and lower border of the Mira instability strip
which are taken respectively log Teff = 3.49 and log L/L⊙ = 3.25 (Ferrerotti & Gail 2005). We
consider that the stage of Mira variables to be over when the stars finish the AGB evolution.
So the lifetime of Mira variables in our model will be longer than that of observed.
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2.3 The Mass-Loss Rates and Pulsating Periods

No complete theory of mass loss from AGB stars exists at present. In this paper, we use the
empirical formula relating the mass-loss rate to the pulsating period (Vassiliadis & Wood 1993),
in which the authors assumed that Mira variables and dust-enshrouded variable AGB stars are
pulsating in the fundamental mode. The pulsating period is calculated using the period-mass-
radius relation:

log P (days) = −2.07 + 1.94 logR/R⊙ − 0.90 log M/M⊙, (2)

with R and M being the stellar radius and mass respectively. If M <2.5M⊙, the mass-loss rate
(M⊙ yr−1) is

log Ṁ = −11.40 + 1.23 × 10−2P. (3)

For M ≥ 2.5M⊙,

log Ṁ = −11.40 + 1.23 × 10−2(P − 100(M/M⊙ − 2.5)). (4)

When P ∼ 500 days, there will be super wind. The mass-loss rate will be

Ṁ = 2.1 × 10−8
L/L⊙

v∞
(km s−1), (5)

and
v∞ = −13.50 + 5.60 × 10−2P km s−1, (6)

where v∞ is the terminal velocity of the wind.

3 RESULTS AND DISCUSSION

We calculate 1×105 single stars and pick out all possible Mira variables. Our results and analysis
are as follows.

3.1 The Distribution of Initial Masses, Birth Rate and Lifetime

In our models, there are 11342 Mira variables in 1 × 105 stars. That is, a 1/10 of stars goes
through the Mira instability strip. From Fig. 1 the initial masses lie at 1.01M⊙ ∼ 4.0 M⊙, with
the majority smaller than 1.7M⊙. Stars with initial masses less than 1.0M⊙ cannot evolve to
the Mira instability strip because they have evolved to post-AGB and turned into white dwarfs
before their effective temperatures do not drop to the blue edge of the Mira instability strip.
For stars with too small initial mass, they cannot evolve to AGB in Hubble time. In this paper,
we assume that the Galaxy makes 1 yr−1 star with mass larger than 0.8M⊙ (Kenyon 1994;
Yungelson et al. 1995). Then the birth rate of Mira variables is ∼ 0.65yr−1. Figure 2 shows the
lifetimes of the Mira variables of different initial masses. We estimate the average lifetime of
Mira variables to be ∼ 2 × 105 yr. The observations suggest a mean Mira lifetime of ∼ 6 × 104

(Wood 1990). The most important reason for the discrepancy is our assumption in Section 2.2.
Then the number of Mira variables in the Galaxy is about ∼ 1.3 × 105.

3.2 The Distribution of Pulsating Periods and Mass Loss of Mira Variables

Two main characteristics are the pulsating period and mass loss. In Fig. 3, we give the dis-
tribution of the minimal pulsating periods of Mira variables. Most of the minimal pulsating
periods are smaller than 375 days. Figure 4 shows the range of pulsating periods for all the
Mira variables of different initial masses. For the most parts the pulsating periods are less than
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Fig. 1 Distribution of initial masses of Mira
variables.

Fig. 2 Average lifetimes of Mira variables
plotted against initial stellar masses.

Fig. 3 Distribution of pulsating periods on stars evolving to the stage of Mira variables.

1000 days. Wood (1990) considered that Mira variables with very long periods (P > 1000 days)
can only be produced by relatively massive AGB stars with initial masses ≥ 1.5 M⊙. This is
consistent with our results. From Figs. 3 and 4, our minimal pulsating period is larger than 320
days, which is not identical with the observations. In Wood & Cahn (1977) and Wyatt & Cahn
(1983), there are some periods of Mira variables shorter than 300 days. The main reason is that
our blue edge of the Mira instability strip is a crude one: in Fig. 5, we take log Teff = 3.50 as
the blue edge, but the minimal pulsating period is very sensitive to a change in the selected
temperature.
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Fig. 4 Pulsating periods given by different initial masses. The solid line refers to
the time of entry into the Mira instability strip; the dash line, the time of exit.

Fig. 5 Same as Fig. 4, but with the blue edge of the Mira instability strip ending
at log Teff = 3.50.

From Fig. 6, the mass loss during the Mira stage is dominant over the whole life of the
star although Mira instability strip only last ∼ 105 years. The determination of the amount
of material injected by stars into the interstellar medium is a pre-requisite for any attempt to
model the evolution of the interstellar matter of the galaxy and Mira variables play a key role
here.

3.3 Mira Variables in the Vicinity of the Sun

Many observed Mira variables are located near the Sun. In Fig. 7 the observed periods are
plotted against the calculated initial masses from kinematic properties, using the data in Wyatt
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Fig. 6 Mass loss for different initial masses. The dash line shows the mass loss on the Mira
instability strip, the solid line, the same relative to the total mass loss.

Fig. 7 Periods and the initial masses of 124 Mira variables taken from Wyatt & Cahn (1983).
Details can be seen in the text.

& Cahn (1983). We assume that all stars near the Sun have about the same metallicity (Z ∼

0.02). The Mira variables in the solar neighborhood probably have the following properties:
(1) According to Figs. 1 and 2, most of initial masses are between ∼ 1.0 M⊙ and 2.0M⊙.

Wyatt & Cahn (1983) derived a mass range between 1.00M⊙ and 1.66M⊙ for the progenitor
main sequence stars of 124 Miras in the greater solar neighborhood from an analysis of their
kinematic properties (only 10 percent of these are larger than 1.4M⊙, see also Fig. 7).
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(2) According to Figs. 3, 4 and 5, the pulsating periods should be between ∼ 200 days and
∼ 600 days. Wood & Cahn (1977) found that most Mira variables have periods between 320
days and 420 days in the solar neighborhood.

(3) Based on the distribution of Mira variables observed for a region near the galactic plane,
Wood & Cahn (1977) estimated that the space density of Mira variables is 245 Miras kpc−3,
the mean lifetime is 7×105 yr, and the birth rate is 3.0×10−4 Miras yr−1 kpc−1. If we crudely
assume that the stars are distributed in a galactic plane volume of ∼ 103 kpc3, then the birth
rate of stars per kpc3 is ∼ 10−3 and the birth rate of Mira variables is ∼ 6 × 10−4 kpc−3. In
the present work, the mean lifetime of Mira variables is ∼ 2 × 105 yr, then the space density
is ∼ 102 Miras kpc−3. Wood & Cahn (1977) may have overestimated the mean lifetime. Oort
& van Tulder (1942) derived a space density of ∼ 100 Miras kpc−3. If we take 4000kpc3 as
the volume of the galactic plane, then near the Sun we have 2.5 times the birth rate of Mira
variables. From the above comparison, it can be verified that our model is valid in the solar
neighborhood.

4 CONCLUSIONS

Basing on the stellar evolution given by the evolutionary population synthesis of a single stellar
population, we derive some properties of Mira variables. It is crucial for our model to precisely
pin down the Mira instability strip. Because of limited data, the blue edge, lower border and
the red edge of the Mira instability strip in Gautschy (1999) need to be revised. With more
observations and theoretical study, our model would become more realistic.
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