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Abstract We develop a theoretical formulation for the large-scale dynamics of
galaxy clusters involving two spherical ‘isothermal fluids’ coupled by their mutual
gravity and derive asymptotic similarity solutions analytically. One of the fluids
roughly approximates the massive dark matter halo, while the other describes
the hot gas, the relatively small mass contribution from the galaxies being sub-
sumed in the gas. By properly choosing the self-similar variables, it is possible to
consistently transform the set of time-dependent two-fluid equations of spherical
symmetry with self-gravity into a set of coupled nonlinear ordinary differential
equations (ODEs). We focus on the analytical analysis and discuss applications of
the solutions to galaxy clusters.
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1 INTRODUCTION

A cluster of galaxies with a size of several Mpcs across may consist of a few tens to several
hundreds or a thousand of galaxies bound together by gravity. Extensive X-ray observations
reveal that a typical galaxy cluster is pervaded with a hot fully ionized gas medium of a
temperature ranging from ∼ 107 − 108 K (e.g. Fabian 1988, 1994; Sarazin 1986, 1988; Fabian
et al. 2003). The confinement of such extended hot gas medium in space, the high velocity
dispersion of galaxies in clusters, and independent observations of gravitational lensing effects
point to the presence of an unseen dark matter halo with a mass typically ten times larger
than that of the gas medium in a galaxy cluster. In comparison, the mass of all cluster galaxies
takes up only a few percent. In addition, numerous observations have indicated the presence
of intracluster magnetic field of strengths >∼ 1 µG (Fabian 1994; Clarke et al. 2001; Carilli &
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Taylor 2002; Hu & Lou 2004a). By the equipartition argument, magnetic field strengths have
been estimated to be as high as ∼ 30−40 µG in the central core regions of some galaxy clusters.

It is of considerable interest to study and understand the large-scale hydrodynamics or
magnetohydrodynamics (MHD) of the hot gas medium, the gravitational interplay between the
gas medium and the dark matter halo, the heating of the gas and various roles of the intracluster
magnetic field. In particular, diagnostics of intracluster gas and magnetic field can be utilized to
probe the underlying large-scale dynamics of dark matter halo which is only known through its
Newtonian gravitational effects. In this paper, we formulate a highly idealized model yet with
plausible applications to galaxy clusters in mind. We hope that this much simplified approach
can offer useful concepts and insights for understanding certain large-scale aspects of galaxy
clusters. The hot intracluster gas medium is treated here as a fluid (e.g. Pringle 1989; Balbus
& Soker 1990). While we shall mainly focus on large-scale hydrodynamics in this paper, we
note in passing that when intracluster magnetic fields are involved, it should be a fairly good
approximation to apply the MHD equations for a magnetized hot gas medium. In particular,
the presence of magnetic field can make a collisionless gas medium to behave more like a fluid
An immediate example in mind is the successful MHD description for a collisionless plasma
of the magnetized solar wind in the interplanetary space. As for the dark matter halo, we
also invoke the ‘hydrodynamic approximation’ in the spirit of Jeans equation (e.g. Binney &
Tremaine 1987; Peebles & Vilenkin 1999; Peebles 2000; Subramanian 2000) as the first step.
We further introduce additional assumptions to simplify the mathematical treatment while
retaining the essential spirit of this fluid approach. For example, the random velocity dispersion
of ‘dark matter particles’ is associated with an ‘effective pressure’. Moreover, such a velocity
dispersion is presumed to be constant, equivalent to an ‘isothermal’ approximation for the ‘dark
matter fluid’. Conceptually, all these assumptions can be modified as we know little about dark
matter particles or fluids except for their ubiquitous manifestation of gravitational effects. We
are using a simple formulation to study large-scale dynamical interactions between the gas and
dark matter ‘fluids’ through self-gravity and mutual gravity. To make the problem manageable,
we assume spherical symmetry but allow for a time dependence. Our main goal is to derive and
construct possible similarity solutions for collapses, expansions, possible radial oscillations and
shocks in a composite spherical system of two coupled isothermal fluids (i.e. the hot gas and dark
matter halo). In addition to applications to galaxy clusters, this idealized model formulation
with proper adaptations should be of interests to other astrophysical systems as well.

We do not yet know the exact physical nature of dark matters except for their Newtonian
gravitational effects. Currently, the most common approach is to resort to the N-body numerical
simulation by assigning each ‘particle’ a mass and by computing mutual gravitational interac-
tions consistently for a large number (N) of ‘particles’ with prescribed initial and boundary
conditions for the entire system. In essence, this problem is quite similar to the dynamical
treatment of a collection of ∼ 1011 − 1012 stars in a galaxy. These visible stars are collisionless
and have mutual gravitational interactions. Depending on the level of physical information that
one would like to extract, one may use a N-body numerical simulation, a distribution function
approach, and a fluid approximation to model the collection of stars in a galactic system. The
most prominent example in mind is the density wave theory in spiral galaxies that has been
developed, analyzed and tested in N-body numerical simulations (e.g., Miller et al. 1970; Hohl
1971; Ostriker & Peebles 1973), in distribution function approach (e.g., Shu 1968; Binney &
Tremaine 1987) and in fluid approximation (e.g., Lin & Shu 1964; Goldreich & Tremaine 1978;
Lin 1987; Bertin & Lin 1996), respectively. For large-scale and relatively slow dynamics of a
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galaxy cluster without resonances and singularities, fluid approximation for gravitationally in-
teracting particles is justifiable, much simpler and should be sufficient to provide basic results.
As a result of gravitational stratification, the density of ‘dark matter’ in the central region
should be higher than in the outer region; a fluid approximation is therefore expected to be
better in the central region.

We venture into this more challenging theoretical problem of a composite system of two
gravitating fluids in spherical geometry because we have gained considerable knowledge and
experience regarding a closely related problem of self-similar collapses and outflows in a single
isothermal fluid of spherical symmetry (Lou & Shen 2004; Shen & Lou 2004). In fact, this
classical single fluid problem has been extensively examined in the past (Larson 1969; Penston
1969; Lazarus 1981; Shu 1977; Hunter 1977, 1986; Whitworth & Summers 1985; Ori & Piran
1988; Foster & Chevalier 1993; Tsai & Shu 1995; Shu et al. 2002) in various contexts of star
or cloud formation (Hayashi 1966; Hunter 1967; Shu et al. 1987). Replacing the isothermal
assumption by the polytropic approximation (Cheng 1978; Goldreich & Weber 1980; Yahil
1983; Bouquet et al. 1985; Suto & Silk 1988; Antonova & Kazhdan 2000), this single fluid
problem has been investigated in various contexts of core collapses and supernova explosions
(e.g., Lattimer & Prakash 2004). We have recently pursued this ‘polytropic problem’ (Lou &
Gao in preparation) for constructing global similarity solutions of envelope expansion with core
collapse (EECC) types (Lou & Shen 2004) and for inserting a similarity shock in an appropriate
place (Landau & Lifshitz 1959; Tsai & Hsu 1995; Shu et al. 2002; Shen & Lou 2004). One
important distinction between the ‘isothermal problem’ and the ‘polytropic problem’ is that
the asymptotic flow at large x can be constant in the former and always approaches zero in
the latter. Furthermore, it is possible to incorporate effects of radiative losses in the latter in a
more realistic manner (e.g., Rybicki & Lightman 1979; Boily & Lynden-Bell 1995).

In the context of galaxy cluster formation and evolution in an expanding universe, similarity
flow solutions have been sought for in the past (Gunn & Gott 1972; Fillmore & Goldreich 1984;
Bertschinger 1985). With more detections of high-redshift (z >∼ 6) quasars suspected to be
powered by supermassive black holes of mass ∼ 109M� (Fan et al. 2001, 2003; Willott et
al. 2003; Vestergaard 2004), accretion shocks in an infalling gas have been modeled around a
supermassive black hole of mass >∼ 109M� to form the first generation of quasars (e.g., Wandel
et al. 1984; Barkana & Loeb 2003) and produce characteristic radiative spectral features for
resonant Lyman α absorption. It was suggested that this happens in response to the gravity
pull of massive dark matter haloes ( >∼ 1012M�).

Although in a distinctly different geometry, we have been investigating a class of related
problems (with or without magnetic field) involving global perturbation structures in a com-
posite system of two disks coupled by mutual gravity (e.g., Lou & Fan 1998; Lou & Shen 2003;
Shen & Lou 2003, 2004a; Lou & Zou 2004; Lou & Wu 2005 submitted). While these compos-
ite disk problems have applications in other astrophysical contexts such as magnetized spiral
galaxies, they also pave the way of thinking and attacking the current problem conceptually
and technically. We now turn to Section 2 for the theoretical formulation and mathematical
development of the model analysis of two-fluid dynamics with spherical symmetry. In Section
3, we derive various analytical similarity solutions and examine their properties. Applications
of these solutions to galaxy clusters will be discussed in Section 4.
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2 TWO-FLUID DYNAMICS OF SPHERICAL SYMMETRY

The dynamical formulation of spherical collapse and outflows for a composite system of two
isothermal fluid spheres coupled by mutual gravity involves two mass conservation equations,
two radial momentum equations; the two isothermality conditions replace the two energy equa-
tions; and the Poisson equation is automatically satisfied by introducing the enclosed mass
M i(r, t) within r at time t. One major approximation here is the fluid approach for the collec-
tion of dark matter particles which might be collisionless. It is hoped that this simple approach
could catch some essential features of the large-scale dynamics. We also tacitly assume that
radiative losses are compensated by compressional heating of the gas medium. For a dynamical
system of spherical symmetry, there is no gravitational wave losses from the dark matter fluid.
In other words, it may be plausible to regard both the gas and dark matter fluids as approxi-
mately isothermal. It follows that both the gas pressure and the effective pressure of the dark
matter fluid are proportional to their respective densities. By the symmetry of the problem,
the relative roles of the two fluid spheres are identical − both involve spherical radial flows of
isothermal and self-gravitating fluids. At this stage, we ignore other factors, such as magnetic
field, radiation losses, rotation, turbulence and so forth for the sake of simplicity.

We can readily write down the two-fluid equations (in the Eulerian form) of spherical
symmetry in spherical polar coordinates (r, ϑ, ϕ). Mass conservation separately for the two
fluids is given by

∂ρi

∂t
+

1
r2

∂

∂r
(r2ρiui) = 0 , (1)

where the superscript i = g or d stands for gas (‘g’) and dark matter (‘d’) ‘fluids’, respectively;
ρi(r, t) is the mass density; ui(r, t) is the bulk radial flow speed. Equivalently, we can write

∂M i

∂t
+ ui ∂M i

∂r
= 0 ,

∂M i

∂r
= 4πr2ρi , (2)

where M i(r, t) is the total mass of the gas or dark matter, enclosed within r at time t . The
radial momentum equation is,

∂ui

∂t
+ ui ∂ui

∂r
= − (ai)2

ρi

∂ρi

∂r
− GM

r2
, (3)

where M = Mg + Md and GM/r2 gives rise to the gravitational coupling between the gas
medium and the dark matter fluid with M denoting the sum of the enclosed gas and dark
matter masses; the flows here are taken to be isothermal and the pressure term here has been
replaced with (ai)2ρi according to the isothermal approximation; ai is the isothermal sound
speed. 1 In Eq. (3), we naturally identify

−∂Φ
∂r

≡ −GM(r, t)
r2

, (4)

where Φ is the total gravitational potential of the composite system of two fluids. Here, the
Poisson equation for the gravitational potential Φ is automatically satisfied. Meanwhile, the

1 For the dark matter ‘fluid’, the velocity dispersion is mimicked by an effective ‘sound speed’.
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energy conservation equation can be readily derived by combining Eqs. (1) and (3), namely

∂

∂t

{
ρg(ug)2

2
+

ρd(ud)2

2
− 1

8πG

(
∂φ

∂r

)2

+ (ag)2ρg

[
ln

(
ρg

ρg
c

)
− 1

]
+ (ad)2ρd

[
ln

(
ρd

ρd
c

)
− 1

]}

+
1
r2

∂

∂r

{
r2ρgug

[
(ug)2

2
+ (ag)2 ln

(
ρg

ρg
c

)]}
+

1
r2

∂

∂r

{
r2ρdud

[
(ud)2

2
+ (ad)2 ln

(
ρd

ρd
c

)]}

+
1
r2

∂

∂r

[
r2(ρg + ρd)(ug + ud)Φ +

r2Φ
4πG

∂2Φ
∂r∂t

]
= 0 , (5)

where ρg
c and ρd

c are two arbitrary constant density scales (Fan & Lou 1999; Lou & Shen 2004).
For this specific problem, the last term on the left-hand side of Eq. (5) explicitly related to
Φ(r, t) vanishes, as in the case of a single isothermal sphere (Lou & Shen 2004). In equation
(5), we can further identify the expressions for the energy density and the radial energy flux
density, respectively.

With the assumption that the central object has a negligible dimension in comparison
with the region of large-scale radial flows, the dimensional quantities in the problem under
consideration here are the gravitational constant G, the ‘isothermal sound speeds’ of gas and
dark matter ai, the radius r and the time t. We therefore define two independent similarity
variables in the form of

xg ≡ r/(agt) and xd ≡ r/(adt) . (6)

For constructing global self-similar solutions, we introduce the following similarity transforma-
tions for the dependent physical variables ρi, M i and ui with characteristic length scales ait,
mass scales (ai)3t/G and speed scales ai:

ρi(r, t) ≡ αi(xi)
4πGt2

, M i(r, t) ≡ (ai)3t
G

mi(xi) ,

ui(r, t) ≡ aivi(xi) , Φ(r, t) ≡ (ag)2φ(xi) , (7)

where the dimensionless dependent variables αi(xi), mi(xi) and vi(xi) are the reduced densities,
enclosed masses and radial flow speeds of gas or dark matter fluid, respectively. Our choice of
reduced gravitational potential variable is somewhat arbitrary here; it would be almost the
same should we set Φ(r, t) = φ(xi)(ad)2.

With the similarity transformations (7) in Eqs. (1) and (2), we have the following coupled
nonlinear ordinary differential equations (ODEs),

mi + (vi − xi)
dmi

dxi
= 0 ,

dmi

dxi
= (xi)2αi .

By eliminating the term dmi/dxi, the reduced mass mi can be obtained in the form of

mi = (xi)2αi(xi − vi) , (8)

where xi must be larger than vi in order to guarantee a positive mi for t > 0.
A direct substitution of Eqs. (7) and (8) and some manipulations allow us to transform

Eqs. (2) and (3) into the following coupled sets of ordinary differential equations,

[(xg − vg)2 − 1]
1
αg

dαg

dxg
=

[
αg − 2

xg
(xg − vg)

]
(xg − vg) + αd(xd − vd)

ad

ag
, (9)
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[(xg − vg)2 − 1]
dvg

dxg
=

[
αg(xg − vg) + αd(xd − vd)

ad

ag
− 2

xg

]
(xg − vg) , (10)

[(xd − vd)2 − 1]
1
αd

dαd

dxd
=

[
αd − 2

xd
(xd − vd)

]
(xd − vd) + αg(xg − vg)

ag

ad
, (11)

[(xd − vd)2 − 1]
dvd

dxd
=

[
αd(xd − vd) + αg(xg − vg)

ag

ad
− 2

xd

]
(xd − vd) . (12)

These coupled nonlinear ODEs bear a strong resemblance to the self-similar nonlinear ODEs for
a single isothermal sphere (Larson 1969; Penston 1969; Shu 1977; Lou & Shen 2004; Shen & Lou
2004). Here, the mutual gravitational interaction couples the collapse and outflow behaviors of
the two isothermal fluid spheres.

As the two independent similarity variables xd and xg are related by xd = xgag/ad ≡ xgβ,
where β is defined to be the ratio of ag to ad, we can rewrite Eqs. (9)−(12) above in terms of
one single independent similarity variable xg as

[(xg − vg)2 − 1]
1
αg

dαg

dxg
=

[
αg − 2

xg
(xg − vg)

]
(xg − vg) + αd(xg − vD) , (13)

[(xg − vg)2 − 1]
dvg

dxg
=

[
αg(xg − vg) + αd(xg − vD) − 2

xg

]
(xg − vg) , (14)

[
(xg − vD)2 − 1

β2

]
1
αd

dαd

dxg
=

[
αd − 2

xg
(xg − vD)

]
(xg − vD) + αg(xg − vg) , (15)

[
(xg − vD)2 − 1

β2

]
dvD

dxg
=

[
αd(xg − vD) + αg(xg − vg) − 2

xgβ2

]
(xg − vD) , (16)

where vD ≡ vd/β is a rescaled value of the reduced radial flow speed of the dark matter. Here β2

represents the ratio of the ‘temperatures’ of gas to dark matter fluid. In fact, physical variables
of gas and dark matter are symmetric in Eqs. (9)−(12). We explore possible solutions for β > 1
and then derive the corresponding solutions for β < 1 by interchanging the roles of the two
‘fluids’. From now on, we write x ≡ xg for convenience.

We can also derive two Bernoulli relations along streamlines from the basic two-fluid equa-
tions (1)−(3), or equivalently, from the self-similar nonlinear ODEs (13)−(16), namely

fg − x
dfg

dx
+

(vg)2

2
+ lnαg + φ = const. , (17)

fd − x
dfd

dx
+

(vd)2

2
+ lnαd + β2φ = const. , (18)

where f i(x) and φ(x) are functions of x only and satisfy the following equations

df i(x)
dx

= vi , (19)

dφ(x)
dx

=
mg

x2
+

md

x2β3
= αg(x − vg) + αd(x − vD) . (20)

3 SIMILARITY SOLUTIONS FOR COUPLED FLOWS

In Sect. 3 here, we derive various analytical similarity solutions and examine their properties.
Applications of these solutions to galaxy clusters will be discussed in Sect. 4.
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3.1 Global Analytical Dynamic Solutions

For spherical collapses and outflows in a single isothermal self-gravitating fluid, there exist
several known exact global analytical solutions. The first one is the self-similar hydrostatic
state (Ebert 1955; Bonner 1956; Chandrasekhar 1957; Shu 1977). While a hydrostatic solution
in a composite system does exist under a special constraint between ρd and ρg, there is no
self-similar counterpart of this first solution for a composite system of two fluids coupled by
their mutual gravity (see discussions after solution (13) in Lou & Shen 2004). The second self-
similar solution describes a nonrelativistic ‘Hubble expansion’ in the Einstein-de Sitter universe
(Whitworth & Summers 1985; Shu et al. 2002; Lou & Shen 2004). The self-similar counterpart
of this second solution in a composite system of two isothermal fluids is

vg =
2
3
x , vD =

2
3
x , αg + αd =

2
3

,

mg =
αgx3

3
, md =

β3αdx3

3
,

dφ

dx
=

2x

9
, (21)

where αg and αd are two positive constants constrained by the third condition in Eq. (21).
Note that this solution represents global similarity outflows that may be relevant in various
astrophysical systems (e.g. possible winds from clusters of galaxies).

We now proceed to demonstrate why the self-similar hydrostatic solution does not exist in
a composite system of two coupled fluids below.

3.2 Hydrostatic Equilibria

Static solutions represent a very special subclass. In contrast to a single isothermal self-
gravitating fluid, a ‘hydrostatic self-similar solution’ does not exist, because when vg = vD = 0,
Eqs. (14) and (16) cannot be satisfied except for the special β = 1 case for a single isothermal
fluid. However, based on the original radial momentum equations, hydrostatic equilibrium for
a composite system of two isothermal self-gravitating fluids can be constructed by solving the
following ODEs [see Eqs. (1)−(3)],

∂ρg

∂t
=

∂ρd

∂t
= 0 , (22)

− (ag)2

ρg

∂ρg

∂r
− GM

r2
= − (ad)2

ρd

∂ρd

∂r
− GM

r2
= 0 . (23)

By the similarity transformations (7) of ρi, the above condition (23) indicates two apparently
inconsistent relations

d ln αg

dxg
=

d ln αd

dxd
β

and
d ln αg

dxg
β =

d ln αd

dxd
,

separately, unless β = 1 for a single isothermal fluid.
On the other hand, by making the substitution of a specific density relation ρd = K(ρg)β2

derived directly from the static equilibrium condition (23), where K is a constant parameter,
into Eq. (23), the radial force balance can be readily cast in the form

(ag)2

r2

d

dr

(
r2 d ln ρg

dr

)
= −4πG[ρg + K(ρg)β2

] , (24)
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in terms of the gas density ρg(r) and radius r. By a proper variable transformation, we introduce
a new pair of dependent and independent variables ϕ(ζ) and ζ such that

ρg = λe−ϕ , r =
[

(ag)2

4πGλ

]1/2

ζ ≡ σζ , (25)

where λ is, for the present, an arbitrary constant and σ ≡ [(ag)2/(4πGλ)]1/2 represents a length
scale. It follows immediately that Eq. (24) with δ = 0 reduces to

1
ζ2

d

dζ

(
ζ2 dϕ

dζ

)
= e−ϕ + Kλβ2−1e−β2ϕ . (26)

If the central densities remain finite as r → 0 , we may choose λ and Kλβ2
as the central

densities of the gas and the dark matter ‘fluids’, respectively. In terms of an asymptotic series
expansion near ζ = 0, we show a few leading terms sufficiently accurate to compute ϕ(ζ),
namely

ϕ =
(1 + Q)

6
ζ2 − (1 + Q)(1 + Qβ2)

120
ζ4 + · · · (27)

where Q ≡ Kλβ2−1 is the ratio of the central density of dark matter fluid to the central density
of gas. We emphasize that without the special density relation ρd = K(ρg)β2

, a static equilib-
rium of two isothermal fluids under self-gravity and with spherical symmetry is impossible. In
modeling galaxy clusters both theoretically and observationally, it is most common to invoke a
static equilibrium to begin with. As ρg and ρd can be inferred observationally and by the law
of gravity, it is then possible to test the applicability of various assumptions involved in the
formulation. The main point here is not necessarily the reality of the isothermal assumption for
the two ‘fluids’ as this is taken for simplicity and illustration; if two different temperature pro-
files are prescribed for the two ‘fluids’, another ρd and ρg relation of the sort would be implied
and can be tested by observational and theoretical inferences. This appears to be a practical
way of learning more physical properties of dark matters in galaxy clusters.

3.3 Asymptotic Behaviors of Dynamic Solutions

It is plausible to presume that the reduced radial speeds vi(x) approach finite values at the
’initial instant’ or x → +∞. Such solutions can describe either outflows when vi(x) > 0 or
inflows when vi(x) < 0 as x → +∞. Based on our knowledge and experience with similarity
flow solutions in a single isothermal fluid (Lou & Shen 2004), we further anticipate global
similarity solutions of envelope expansion with core collapse (EECC) for a composite system
of two coupled isothermal flows in appropriate parameter regimes. With these possibilities in
mind, we derive the following asymptotic behaviors at large x of the similarity solutions:

αg → A

x2
− (A + B − 2)A

2x4
+ · · · ,

vg → C − A + B − 2
x

− (A + B − 2)C − (AC + BD)
2x2

+ · · · ,

αd → B

x2
− (A + B − 2/β2)B

2x4
+ · · · ,

vD → D − A + B − 2/β2

x
+

(AC + BD) − (A + B − 2/β2)D
2x2

+ · · · , (28)
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where A and B are two constants representing the leading terms of the asymptotic densities of
the gas and dark matter fluids at large x, and C and D are two other constants for the leading
terms of the asymptotic radial flow speeds of the gas and dark matter fluids at large x. To the
leading order, we have in the limit of t → 0+

ρi(r, 0) =
(ai)2Λi

4πG
r−2 , (29)

where we write Λg = A and Λd = B. Apparently, such r−2 scalings of mass densities remain
valid for a composite system of two mutually gravitating fluids at large x.

Near the ‘origin’ (x → 0+), the asymptotic behaviors of the similarity solutions can be
readily obtained from the same basic nonlinear ODEs (13)−(16). One possible asymptotic
solution is that the core mass accretion rates of gas and dark matter fluids remain constant,
while the density profiles and radial infall speeds diverge, that is,

αg →
[

(mg
0)

2

2(mg
0 + md

0)x3

]1/2

, vg → −
[
2(mg

0 + md
0)

x

]1/2

,

αd →
[

(md
0)

2

2(mg
0 + md

0)x3

]1/2

, vD → −
[
2(mg

0 + md
0)

x

]1/2

,

mg → mg
0 , md → md

0 , (30)

where mg
0 and md

0 determine the central mass accretion rates for the core collapse [see trans-
formations (7)].

By Eq. (20), this solution further implies a diverging total gravitational potential φ(x) ∝ x−1

as x → 0+ (see Lou & Shen 2004).
Another asymptotic solution of interest as x → 0 is that the core mass accretion rates of

both gas and dark matter fluids approach very small values as the reduced radial speeds vanish.
Both reduced mass densities then approach certain constant values, namely

αg → g0 + [g0/9 − g0(g0 + d0)/6]x2 , vg → 2x/3 ,

αd → d0 + [d0/9 − d0(g0 + d0)/6]x2 , vD → 2x/3 ,

mg → g0x
3

3
, md → β3d0x

3

3
, (31)

where g0 and d0 are two positive constant parameters (Lou & Shen 2004). The above asymptotic
solutions are necessary for constructing global similarity solutions through numerical integra-
tions from either x → +∞ radially inward or from x → 0+ radially outward.

By examining the coefficients of the derivatives in the nonlinear ODEs (13)−(16), it is clear
that x = 1 + vg is a singular point of the ODEs (13) and (14), while x = 1/β + vD is yet
another singular point of the ODEs (15) and (16). It should be noted that the conjugate pairs
x = −1 + vg and x = −1/β + vD are also singular points of the nonlinear ODEs (13)−(16) at
negative x.

For the similarity flows to pass smoothly (or analytically in mathematical terms) through
such singular points, we must impose the conditions that αg(x − vg) + αd(x − vD) be equal to
2/x at x = 1 + vg and to 2/(xβ2) at x = 1/β + vD. More specifically, we shall refer to these
points as ’critical points’, namely, G critical point for the gas fluid and D critical point for the
dark matter ’fluid’. Physically, these singularities are transonic points that separate regions of
subsonic and supersonic flows in the similarity expansion profile. In order to construct global
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similarity solutions that are smooth everywhere, analytical solution behaviors in the vicinity
of these transonic points are necessary. If weak discontinuities (Lazarus 1981; Whitworth &
Summers 1985) or strong shocks (Courant & Friedrichs 1976; Spitzer 1978; Tsai & Hsu 1995;
Shu et al. 2002; Shen & Lou 2004) are allowed across these sonic critical lines, then it would
be technically much easier to construct the global similarity solutions. 2 More explicitly, for
smooth global similarity solutions across the sonic critical lines, we must impose the following
conditions,

αg(x − vg) + αd(x − vD) = 2/x for x − vg = 1 ; (32)

αg(x − vg) + αd(x − vD) = 2/(xβ2) for x − vD = 1/β . (33)

For local solutions satisfying the critical conditions (32) or (33), we obtain the Taylor series
expansions by applying the L’Hôpital rule in the neighborhood of x = x∗, where x∗ > 0 is
the value of x at the critical point (Jordan & Smith 1977; Bender & Orszag 1978; Shu 1977;
Whitworth & Summers 1985; Lou & Shen 2004) and analyze their properties in the vicinity
of x∗.

4 APPLICATIONS TO CLUSTERS OF GALAXIES

Regarding the applicability of the two-fluid formalism to clusters of galaxies, we shall first use
the example of large-scale galactic dynamics as a closely parallel analogy. As a first approxima-
tion, one may treat the interstellar gas medium as a fluid and the collection of ∼ 1011 − 1012

stars as another ‘fluid’ on large scales (e.g. Bertin & Lin 1996). While mathematically complex
and involved, a much better treatment for the latter would be a distribution function approach
(e.g. Lin & Shu 1966; Lin 1987; Binney & Tremaine 1987). Usually for large-scale dynamics and
away from singularities, a fluid formalism for the stellar disk would suffice (e.g. Goldreich &
Tremaine 1981). The gas and stellar ‘fluid’ disks are coupled through mutual gravity (e.g. Lou
& Shen 2003). In a galactic system, a third important component is the dark matter ‘halo’ that
exerts a gravitational effect on both the gas and star disks. Except for the gravitational effect,
the study of the dark matter halo has to rely on assumptions and approximations together
with a clever use of observational diagnostics. Extensive numerical simulations have adopted
the so-called N-body formulation for the dark matter halo by assigning a mass to each parti-
cle, the total particle number N being limited by the computer capability and the state-of-art
algorithm. Only in the sense of very large N, might a fluid description for a dark matter halo
be justifiable.

Modelling the dynamics of a cluster of galaxies can be based on a similar rationale. For a
typical galaxy cluster, the mass in all the stars is much smaller than the mass in the gas which
in turn is much smaller than the mass of the dark matter halo. As a first approximation, there
is no problem of adopting an isothermal fluid for the hot gas component which is empirically
justifiable by the extensive X-ray observations (e.g. Sarazin 1988; Fabian 1994). The use of a fluid
approach to the dark matter halo is an approximation (e.g. Peebles 2000; Subramanian 2000)
and the ‘isothermal’ assumption for the ‘dark matter fluid’ must be tested against observations
for the properties of the hot gas component. One major point of this paper is to propose a way
of probing the equation of state for the dark matter halo.

With the limitations and qualifications of our model analysis, we attempt to describe several
applications pertinent to galaxy clusters and address relevant issues.

2 Weak discontinuities are really weak shocks (Landau & Lifshitz 1959; Boily & Lynden-Bell 1995).
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4.1 Hydrostatic Model for a Cluster of Galaxies

As a first approximation, one often invokes the so-called isothermal β−model to describe a
static cluster of galaxies (e.g., Sarazin 1986, 1988; Fabian 1994). Given our formalism for two
‘isothermal fluids’ with spherical symmetry in hydrostatic equilibrium, we should require, for
consistency,

(ag)2

r2

d

dr

(
r2 d ln ρg

dr

)
= −4πG(ρg + ρd) (34)

and
(ad)2

r2

d

dr

(
r2 d ln ρd

dr

)
= −4πG(ρg + ρd) . (35)

With a few simplifying assumptions, usual approach is to estimate the radial distribution of
gas density ρg(r) and (ag)2 from diagnostics of X-ray observations of a galaxy cluster. One can
then use the static condition (34) to infer the radial distribution of the dark matter fluid mass
density ρd(r). Given our ‘isothermal’ assumption for the dark matter ‘fluid’, we can now use
the condition (35) to readily estimate the value of (ad)2 and then infer the ‘velocity dispersion’
(assumed to be independent of r) of the dark matter fluid. Or the other way around, we can
check whether the empirically inferred ρd(r) can be fitted with the special density relation
ρd = K(ρg)β2

as implied by the hydrostatic condition under spherical symmetry. From the
perspective of utilizing effects of gravitational lensing, it might be eventually possible to infer
M(r) and then ρd(r) + ρg(r) within a cluster of galaxies. This is just an illustrative example
for probing the equation of state of dark matter halo on the scale of a galaxy cluster. On the
basic assumption that dark matter ‘fluids’ on the galactic scale, the galaxy cluster scale and
the cosmological scale are of the same physical nature, we can develop a systematic procedure
to study the properties of dark matter ‘fluids’. For example, in the context of galaxy clusters,
we may relax the assumption of isothermality and introduce the polytropic or the barotropic
approximation instead for the two gravitationally coupled ‘fluids’. It is then possible to infer the
properties of the dark matter ‘fluid’ in galaxy clusters or to test various hypotheses on them.

We note in passing that such a hydrostatic equilibrium when perturbed can, in general, sup-
port trapped acoustic waves (p−modes) and trapped internal gravity waves (g−modes) (Pringle
1989; Balbus & Soker 1990). In contrast to solar and stellar oscillations, a hot intracluster gas
is optically thin and it is possible to reveal patterns of g−modes trapped around the core re-
gion. For a composite system of two gravitationally coupled fluid spheres, one would expect two
classes of p−modes and two classes of g−modes (e.g. Lou & Fan 1998; Lou & Shen 2003). In
the first class of modes, density perturbations in the gas and dark matter are in phase, while
in the second class, they are out of phase (e.g., Lou & Shen 2003; Lou & Zou 2004). For the
large-scale X-ray patterns revealed by CHANDRA observations in the central Perseus galaxy
cluster (Fabian 2004), an acoustic waves interpretation has been proposed. We emphasize here
that in addition to possible acoustic waves, internal gravity waves caused by nonspherical per-
turbations are equally possible. It appears that such large-scale wavy patterns are fairly generic
in central regions of galaxy clusters (Fabian 2004, private communications). Another example
is the X-ray triple rings in the central regions of the Virgo cluster seemingly associated with the
M87 jet (Feng, Zhang, Lou & Li 2004; Forman et al. 2004); these may be caused by nonlinear
acoustic waves, internal gravity waves and/or shocks. In ‘cooling flow’ clusters with unusual
X-ray bright cores (e.g., Bertschinger 1989 and references therein), galaxy cluster p−mode and
g−mode oscillations may be induced and sustained by an infalling gas of ∼ 10 − 15 percent
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of mass fraction which is gravitationally coupled with the dark matter fluid such that the en-
tire system oscillates globally. If the dark matter particles are collisionless, then either acoustic
waves or internal gravity waves would be damped by the Laudau damping mechanism. With
this process ongoing, the gravitational potential energy can then be utilized to generate waves
and then compensate radiative losses.

4.2 Magnetohydrostatic Model for a Cluster of Galaxies

It is now known that the hot gas trapped in a galaxy cluster is permeated with magnetic field
of strengths greater than ∼ 1 µG (Clarke et al. 2001). In the central regions of some galaxy
clusters, the magnetic field has been estimated to be as high as 30 ∼ 40 µG (Fabian 1994; Carilli
& Taylor 2002; Hu & Lou 2004a). Here we qualitatively describe a magnetohydrostatic model
for a cluster of galaxies to illustrate the essential points. Let us presume that a ‘ball’ of random
magnetic fields is trapped in a galaxy cluster and provides a magnetic pressure. This random
magnetic field directly interacts with the ionized hot gas but not the dark matter fluid. For
magnetostatic equilibrium in a composite system, the condition (35) remains valid, while the
condition (34) should be modified to

1
r2

d

dr

(
r2

ρg

dPM

dr

)
+

(ag)2

r2

d

dr

(
r2 d ln ρg

dr

)
= −4πG(ρg + ρd) , (36)

where PM (r) ≡ 〈B2〉/(8π) stands for an isotropic magnetic pressure associated with the ‘ball’
of random magnetic fields. We now examine the equations (35) and (36) together. With ρg(r)
inferred empirically from X-ray observations of a galaxy cluster, we may solve the equation
(35) for ρd(r) with appropriate boundary conditions, treating (ad)2 as a parameter. With the
derived solution of ρd(r) and observationally estimated (ag)2 and ρg(r) in Eq. (36), we can then
infer information on the magnetic pressure PM (r). In this procedure, the unknown parameter
(ad)2 may be estimated by assuming that the dark matter fluid has been virialized completely
in the total gravitational potential well.

As global oscillations of a galaxy cluster, acoustic waves should now be replaced by mag-
netosonic waves while internal gravity waves, by internal magneto-gravity waves (Lou 1996).
Moreover, the presence of cluster magnetic field should lead to anisotropic electron velocity dis-
tributions parallel and perpendicular to the local magnetic field. By assuming a bi-Maxwellian
relativistic distribution for hot electrons, we were able to compute the magnetic Sunyaev-
Zel’dovich effect in the galaxy cluster Abell 2163 (Hu & Lou 2004a) and inferred a core magnetic
field strength of ∼ 36 µG. We have also applied the same analysis to the Coma galaxy cluster
and estimated a core magnetic field strength of <∼ 10 µG, consistent with other magnetic field
observations (Hu & Lou 2004b).

4.3 Galaxy Cluster Winds or Outflows with or without Shocks

During a certain evolutionary phase of a galaxy cluster, the system may approach a global self-
similar behavior. Based on the similarity solution (28) for large x, it is possible for a composite
fluid system to support outflows or ‘galaxy cluster winds’ with both density profiles ∝ r−2. This
could happen in several ways. First, both the gas and dark matter may flow outward without
crossing the sonic critical points. Secondly, the dark matter flows inward while the gas flows
outward. Thirdly, asymptotic outflows with shocks across the sonic critical lines (Shen & Lou
2004). Observationally, such a spherical shock in the hot gas would appear as an X-ray bright
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ring or shell. According to the property of our self-similar solution, such a ring should travel
outward with a constant speed. It should be noted that such outflows and central infalls or
collapses are related to each other.

4.4 Classification of Galaxy Clusters

In terms of X-ray observations, there are broadly two classes of galaxy clusters, in one, the
central or core X-ray brightness is relatively smooth and normal, in the other, it is unusually
luminous or spiky (frequently referred to as ‘cooling flow’ clusters). The key physical question
is to find a dynamical basis for such a bifurcation of qualitatively different galaxy clusters.
For galaxy clusters (e.g., Sarazin 1988; Fabian 1994), if their evolutionary histories involve
a self-similar phase of central collapse (e.g. Gunn & Gott 1972; Fillmore & Goldreich 1984;
Bertschinger 1985; Navarro et al. 1997), then isothermal similarity solutions (30) and (31) sug-
gest two possible classes of galaxy clusters that emit X-rays through hot gases virialized in
gravitational potential wells, namely, those with steep gravitational potential wells and hence
extremely high X-ray core luminosities, and those with relatively smooth and shallow gravi-
tational potential wells and hence normal X-ray core luminosities. While we do not yet know
from the theoretical point of view what initial or boundary conditions that would lead to the
appearance of two different similarity evolutionary phases (30) and (31) for small x, it is indeed
very tempting to propose, based on the properties of these two possible similarity solutions (30)
and (31) for x → 0+, that they correspond to the two broad classes of galaxy clusters in X-ray
brightness observations. In particular, as solutions (30) are characterized by diverging gravita-
tional potentials, they describe galaxy clusters with unusually luminous central or core X-ray
brightness. The main reason for this identification is that by virialization, a deeper gravita-
tional potential well would give rise to a higher gas temperature and density around the central
singularity and hence a stronger core X-ray luminosity. It should be noted that according to
the similarity solutions (30), the central infall speed scales as r−1/2 and the core density scales
as r−3/2; this core density scaling is steeper than the r−1 density scaling found in numerical
simulations (e.g., Navaro, Frenk & White 1995, 1996, 1997). In comparison, the solutions (31)
are characterized by finite and smooth gravitational potentials and they describe galaxy clus-
ters with normal central or core X-ray brightness. The solutions in (31) can be matched with
self-similar oscillations, shocks across sonic critical lines, and asymptotic inflows or outflows
(Lou & Shen 2004; Shen & Lou 2004).
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