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Global Axisymmetri Stability Analysis for a CompositeSystem of Two Gravitationally Coupled Sale-Free Diss �Yue Shen1 and Yu-Qing Lou1;2;31 Department of Physis & Center for Astrophysis, Tsinghua University, Beijing 100084;shenyue98�mails.tsinghua.edu.n; louyq�tsinghua.edu.n2 National Astronomial Observatories, Chinese Aademy of Sienes, Beijing 1000123 Department of Astronomy and Astrophysis, The University of Chiago, 5640 South EllisAvenue, Chiago, IL 60637 USA; lou�oddjob.uhiago.eduReeived 2004 Marh 9; aepted 2004 April 15Abstrat For a omposite system of gravitationally oupled stellar and gaseousdiss, we have arried out a linear stability analysis for axisymmetri oplanar per-turbations using the two-uid formalism. The bakground stellar and gaseous dissare taken to be sale-free with all physial variables varying as powers of the ylin-drial radius r with ompatible exponents. The unstable modes set in as neutralmodes or stationary perturbation on�gurations with angular frequeny ! = 0. Theaxisymmetri stable range is bounded by two marginal stability urves derived fromstationary perturbation on�gurations. Beause of the gravitational oupling be-tween the stellar and the gaseous diss, one only needs to onsider the parameterregime of the stellar dis. There exist two unstable regimes in general: a ollapseregime orresponding to large-sale perturbations and a ring-fragmentation regimeorresponding to short-wavelength perturbations. The omposite system will ol-lapse if it rotates too slowly and will suumb to ring-fragmentation instabilities ifit rotates suÆiently fast. The overall stable range against axisymmetri perturba-tions is determined by a neessary D�riterion involving the e�etive Mah numbersquaredD2s (the squared ratio of the stellar dis rotation speed to the stellar veloitydispersion up to a numerial fator). Di�erent mass ratio Æ and sound speed ratio� of the gaseous and stellar dis omponents will alter the overall stability. Forspiral galaxies or irumnulear diss, we further inlude the dynamial e�et of amassive dark matter halo. Astrophysial appliations to dis galaxies, proto-stellardiss and irumnulear diss are given as examples.Key words: hydrodynamis | ISM: general | galaxies: kinematis and dynam-is | galaxies: spiral | galaxies: struture | waves� Supported by the National Natural Siene Foundation of China.



542 Y. Shen & Y.-Q. Lou1 INTRODUCTIONAxisymmetri instabilities in models of dis galaxies have been investigated extensively inthe last entury (e.g., Safronov 1960; Toomre 1964; Binney & Tremaine 1987; Bertin & Lin1996). For a single dis of either gaseous or stellar ontent, Safronov (1960) and Toomre (1964)originally introdued a dimensionless parameterQ suh that Q > 1 means loal stability againstaxisymmetri ring-like disturbanes in the usual Wentzel-Kramers-Brillouin-Je�reys (WKBJ)or tight-winding approximation. A more realisti model of a dis galaxy would involve bothgas and stars as well as an unseen massive dark matter halo, all interating gravitationallyamong themselves.1 Many theoretial investigations have been onduted along this line witha omposite system of two oupled diss (Lin & Shu 1966; Kato 1972; Jog & Solomon 1984a, b;Bertin & Romeo 1988; Romeo 1992; Elmegreen 1995; Jog 1996; Lou & Fan 1998b). These earliertreatments use either a ombined approah of distribution funtion and uid or the formalism oftwo uids in a WKBJ model analysis. While the results of these models were initially derived invarious galati ontexts, they an also be applied, with proper quali�ations, to self-gravitatingdis systems inluding aretion diss, irumnulear, protostellar, planetary diss and so forth.The loal WKBJ or tight-winding approximation has been proven to be a powerful teh-nique in analysing the dynamis of waves in diss. Meanwhile, theorists have long been keenlyinterested in a lass of relatively simple dis models referred to as sale-free diss (Mestel 1963;Zang 1976; Lemos et al. 1991; Lynden-Bell & Lemos 1993; Syer & Tremaine 1996; Evans &Read 1998; Goodman & Evans 1999; Shu et al. 2000; Lou 2002; Lou & Fan 2002; Lou & Shen2003; Shen & Lou 2003; Lou & Zou 2004, 2005; Lou & Wu 2004; Shen, Liu & Lou 2004). Sale-free diss, where all pertinent physial variables (e.g., dis rotation speed, surfae mass density,angular speed, et.) sale as powers of the ylindrial radius r, have beome an e�etive andsimple means to explore dis dynamis. Perhaps the most familiar ase is the so-alled singularisothermal dis (SID) or Mestel dis with an isothermal equation of state and a at rotationurve (Mestel 1963; Zang 1976; Goodman & Evans 1999; Shu et al. 2000; Lou 2002; Lou & Shen2003; Lou & Zou 2004, 2005; Lou & Wu 2004). In ontrast to the usual WKBJ approximationfor perturbations, perturbations in axisymmetri sale-free diss in some ases an be treatedglobally and exatly without the loal restrition to the short-wavelength regime. It is thenpossible to derive global properties of perturbations. Using sale-free dis models, Lemos etal. (1991) and Syer & Tremaine (1996) both studied the axisymmetri stability problem for asingle dis and found that instabilities �rst set in as neutral modes or stationary on�gurationswith angular frequeny ! = 0.The main motivation of this paper is to examine the global axisymmetri stability prob-lem for omposite systems of two gravitationally oupled sale-free diss. As a more generalextension to the previous two-SID analysis (Lou & Shen 2003; Shen & Lou 2003), we furtheronsider a muh broader lass of rotation urves as well as the equation of state. We shallgive an expliit proof that stationary on�gurations (! = 0) do mark marginal stability in thetwo-uid system, a ogent supplement to our reent investigation on stationary perturbationon�gurations (Shen & Lou 2004).1 Magneti �eld and osmi-ray gas omponent are dynamially important on large sales (Fan & Lou 1996;Lou & Fan 1998a, 2003; Lou & Zou 2004 and referenes therein) in the galati gas dis of interstellar medium(ISM) but are not onsidered here for simpliity.



Axisymmetri Stability Analysis 5432 TWO-FLUID FORMALISMAs an expedient approximation, we treat both diss as razor-thin diss and use supersriptsand subsripts s and g to refer to the stellar and gaseous dis, respetively. Large-sale ouplingbetween the two diss is primarily aused by mutual gravitational interation. In the presentformulation of large-sale perturbations, we ignore non-ideal di�usive e�ets suh as visosity,resistivity and thermal ondution, et. It is then straightforward to write down the set of basioplanar uid equations for the stellar dis in ylindrial oordinates (r; �; z) in the z = 0plane, namely ��s�t + 1r ��r (r�sus) + 1r2 ��� (�sjs) = 0 ; (1)�us�t + us �us�r + jsr2 �us�� � js2r3 = � 1�s ��s�r � ���r ; (2)�js�t + us �js�r + jsr2 �js�� = � 1�s ��s�� � ���� ; (3)where �s is the surfae mass density, us is the radial bulk ow veloity, js is the spei� angularmomentum about the rotation axis along the z�diretion, �s is the vertially integrated e�e-tive (two-dimensional) pressure due to stellar veloity dispersion and � is the total gravitationalpotential. For the gaseous dis, we simply replae supersript or subsript s by g in the abovethree equations. The oupling of the two sets of uid equations is due to the gravitationalpotential through the Poisson integral,�(r; �; t) = I d Z 10 �G�(r0;  ; t)r0dr0[r02 + r2 � 2rr0 os( � �)℄1=2 ; (4)where � = �s +�g is the total surfae mass density of the omposite dis system.The barotropi equation of state assumes a relation between the two-dimensional pressureand surfae mass density of the form of � = K�n; (5)where the oeÆients K � 0 and n > 0 are onstant. This diretly leads to the sound speed 2a de�ned by a2 = d�0d�0 = nK�n�10 ; (6)whih sales as / �n�10 . The ase of n = 1 orresponds to an isothermal sound speed a.From the above basi uid equations for the stellar and gaseous diss (the latter are notwritten out expliitly), we may derive the axisymmetri equilibrium bakground properties(Shen & Lou 2004). We presume that in the equilibrium bakground with axisymmetry, therotation urves of the two diss both sale as / r�� and both their surfae mass densities saleas / r��, where � and � are two onstant exponents and the oeÆients of proportionality areallowed to be di�erent in general. By assuming the same power-law index for the stellar andgaseous dis rotation urves (or equivalently the surfae mass density pro�les), it is possibleto onsistently onstrut a global axisymmetri bakground equilibrium for the omposite dissystem that meets the requirement that the radial fores balane out at all radii (see Eq. (2)and the orresponding equation with the supersript s replaed by g) and that simultaneouslysatis�es the Poisson integral (4) (see Shen & Lou (2004), Eq. 10).2 In a stellar dis, the veloity dispersion mimis the sound speed to some extent.



544 Y. Shen & Y.-Q. LouThe sale-free ondition requires the following relationship among �, � and n (see Syer &Tremaine 1996 and Shen & Lou 2004):� = 1 + 2� and n = 1 + 4�1 + 2� : (7)One the rotation urve is spei�ed, all the other physial variables are determined.With the knowledge of omputing the gravitational potential arising from an axisymmet-ri power-law surfae mass density in a bakground in rotational equilibrium (Kalnajs 1971;Qian 1992; Syer & Tremaine 1996), we an derive a self-onsistent axisymmetri bakgroundequilibrium surfae mass density as�s0 = A2s(D2s + 1)2�G(2�P0)r1+2�(1 + Æ) and �g0 = A2g(D2g + 1)Æ2�G(2�P0)r1+2�(1 + Æ) ; (8)where the oeÆient P0 is a funtion of � through the ��funtion,P0 � �(�� + 1=2)�(�)2�(�� + 1)�(� + 1=2) ; (9)with Æ � �g0=�s0 the ratio of the surfae mass density of the gaseous dis to that of the stellardis, and A and D, two dimensionless parameters. We note that the value of 2�P0 falls within(0;1) for the presribed range 3 of � 2 (�1=4; 1=2) and is equal to 1 when � ! 0 (i.e., thease of two gravitationally oupled SIDs).From the radial fore balane of the bakground equilibrium, there also exists the followingrelation: A2s(D2s + 1) = A2g(D2g + 1) ; (10)whene � � A2s=A2g = a2s=a2g is another handy dimensionless parameter for sound speed ratiosquared. We note that A is atually the redued 4 e�etive sound speed (saled by a fator(1 + 2�)1=2) and the parameter D � V=A where V is the redued dis rotation speed, isthe e�etive Mah number (see Eqs. (11){(12) later). Condition (10) is very important inour analysis beause the rotations of the two diss are not independent of eah other but aredynamially oupled. It suÆes to examine the parameter regime of either the stellar or gaseousdis. In dis galaxies, the typial veloity dispersion in a stellar dis exeeds the sound speed ina gaseous dis, implying � > 1 so that the inequality D2g > D2s holds. Therefore, the physialrequirement D2s > 0 absolutely guarantees D2g > 0 and it suÆes to onsider the stabilityproblem in terms of D2s > 0 together with di�erent values of the parameters Æ and � (note thatD2g = �(D2s +1)� 1). With these explanations, we shall express the other equilibrium physialvariables in terms of the two parameters A and D.The spei� angular momenta js0 and jg0 about the z�axis and the sound speeds as and agin the two oupled equilibrium diss are expressed byjs0 = AsDsr1�� ; jg0 = AgDgr1�� ; (11)3 The valid range of � 2 (�1=4; 1=2) is determined by (1) the barotropi index n > 0 for warm diss, (2)the surfae mass density exponent � < 2 suh that the entral point mass does not diverge, and (3) this � rangeis ontained within a wider range of � 2 (�1=2; 1=2) (for a old dis system) when the omputed fore arisingfrom the bakground potential remains �nite (Syer & Tremaine 1996).4 By \redued", we refer to the part of a physial variable after removing the power-law radial dependene.For example, in the dis rotation speed v = Vr�� , the quantity V is referred to as the redued dis rotationspeed.



Axisymmetri Stability Analysis 545a2s = nKs(�s0)n�1 = A2s=[(1 + 2�)r2� ℄ ; a2g = nKg(�g0)n�1 = A2g=[(1 + 2�)r2� ℄ : (12)The dis angular rotation speed 
 � j0=r2 and the epiyli frequeny � � [(2
=r)d(r2
)=dr℄1=2are similarly expressed in terms of A and D as
s = AsDsr�1�� ; �s = [2(1� �)℄1=2
s ;
g = AgDgr�1�� ; �g = [2(1� �)℄1=2
g ; (13)with dj0=dr = r�2=(2
) to simplify later derivations.2.1 Linear Perturbation EquationsFor a omposite system of two gravitationally oupled, axisymmetri diss in rotationalequilibrium , we introdue small oplanar perturbations indiated by subsript 1. The linearizedperturbation equations an be derived from the basi nonlinear Eqs. (1){(4) to be��s1�t + 1r ��r (r�s0us1) + 
s ��s1�� + �s0r2 �js1�� = 0 ;�us1�t +
s �us1�� � 2
s js1r = � ��r�a2s �s1�s0 + �1� ;�js1�t + r�2s2
s us1 +
s �js1�� = � ����a2s �s1�s0 + �1� ; (14)for the stellar dis as well as their ounterparts for the gaseous dis, together with the Poissonintegral �1(r; �; t) = I d Z 10 �G(�s1 +�g1)r0dr0[r02 + r2 � 2rr0 os( � �)℄1=2 ; (15)relating the total gravitational potential perturbation �1 and the total surfae mass densityperturbation �1 � �s1 +�g1.Given a Fourier periodi omponent of the form of exp[i(!t�m�)℄ for a small perturbationin general (after taking the real part, without loss of generality we an assume m � 0), we writethe oplanar perturbations in the stellar dis in the form of,�s1 = �s(r)exp[i(!t�m�)℄ ;us1 = Us(r)exp[i(!t�m�)℄ ;js1 = Js(r)exp[i(!t�m�)℄ ; (16)as well as their ounterparts for the gaseous dis, together with the total gravitational potentialperturbation �1 = V (r)exp[i(!t�m�)℄ ; (17)where the integer m is taken to be non-negative. For axisymmetri m = 0 perturbations, weintrodue Fourier deompositions in the Eqs. (14){(15) for the stellar dis to derivei!�s + 1r ddr (r�s0Us) = 0 ;i!Us � 2
s Jsr = � ddr�a2s �s�s0 + V � ;i!Js + r�2s2
sUs = 0 : (18)We do the same for the gaseous dis to derive



546 Y. Shen & Y.-Q. Loui!�g + 1r ddr (r�g0Ug) = 0 ;i!Ug � 2
g Jgr = � ddr�a2g �g�g0 + V � ;i!Jg + r�2g2
gUg = 0 : (19)For the total gravitational potential perturbation, we simply haveV (r) = I d Z 10 �G(�s + �g) os(m )r0dr0(r02 + r2 � 2rr0 os )1=2 : (20)Equations (18)�(20) are the basi oplanar perturbation equations used in our axisymmetristability analysis.2.2 Axisymmetri Stability AnalysisFor axisymmetri stability analysis with radial osillations, we hose the Kalnajs potential-density pairs below beause the perturbations an be generally expanded in terms of theseomplete basis funtions (Kalnajs 1971; Binney & Tremaine 1987; Lemos et al. 1991; Lou &Shen 2003). Spei�ally, we take�s = �sr�3=2 exp(i� ln r) ; �g = �gr�3=2 exp(i� ln r) ;V = �2�Gr(�s + �g)Nm(�) ; (21)where � is a \wavenumber" haraterizing the sale of the radial variation, �s and �g are twosmall real oeÆients and the parameter funtionNm(�) = �(m=2 + i�=2 + 1=4)�(m=2� i�=2 + 1=4)2�(m=2 + i�=2 + 3=4)�(m=2� i�=2 + 3=4) (22)is the Kalnajs funtion (Kalnajs 1971) involving ��funtions of omplex arguments. Note thatNm is even in �. It then suÆes to onsider only � � 0.Using the �rst mass onservations in Eqs. (18) and (19), we infer U / i!r1=2+2�+i� (seealso Lou & Zou 2004). Using the potential-density pair (21), Eqs. (18) and (19) are redued to(!2 �H1)Us = �G2Ug ;(!2 �H2)Ug = �G1Us ; (23)in the limit of ! ! 0, where the parameter funtions H1, H2, G1 and G2 are expliitly de�nedby H1 � �2s +� a2sr � 2�GN0�s0� (�2+1=4)r ;H2 � �2g +�a2gr � 2�GN0�g0� (�2+1=4)r ;G1 � 2�GN0�s0 (�2+1=4)r > 0 ;G2 � 2�GN0�g0 (�2+1=4)r > 0 : (24)The axisymmetri dispersion relation in the omposite disk system follows from Eq. (23)!4 � (H1 +H2)!2 + (H1H2 �G1G2) = 0 (25)in the limit of ! ! 0. This is idential in form with the earlier results obtained in the WKBJregime (Jog & Solomon 1984a; Shen & Lou 2003). It may be of interest to note that the



Axisymmetri Stability Analysis 547onditions for the stellar dis and the gaseous dis to be separately stable are H1 > 0 andH2 > 0, respetively. We may also reall here that in the familiar WKBJ regime, the dispersionrelation in a single dis is !2 = �2 + k2a2 � 2�Gjkj�0 ; (26)where k is the radial wavenumber, whereas in the present global analysis as applied to a singledis, we have in the limit of ! ! 0,!2 = �2 + (�2 + 1=4)r2 a2s � 2�G (�2 + 1=4)N0r �0 : (27)If we replae N0(�) approximately by (�2 + 1=4)�1=2 in the asymptoti regime of � � 1, wereadily identify the orrespondene between the e�etive wavenumber (�2+1=4)1=2 and the jkjrin the WKBJ limit of jkjr � 1 by diretly omparing the dispersion relations (26) and (27).Physially, the dispersion relation (27) is more generally appliable beyond the WKBJ regimeand is globally aurate only in the limit of ! ! 0 (Shu et al. 2000).Returning to the omposite system, Eq. (25) has two real roots 5 of !2:!2� = 12f(H1 +H2)� [(H1 +H2)2 � 4(H1H2 �G1G2)℄1=2g ; (28)with !2+ being always positive 6 (Shen & Lou 2003). For the purpose of axisymmetri stabilityanalysis, we only need to examine the root !2�, namely!2� = 12f(H1 +H2)� [(H1 +H2)2 � 4(H1H2 �G1G2)℄1=2g : (29)As the right-hand side of the above Eq. (29) is always real, axisymmetri instability sets in asstationary perturbation on�gurations with !2� = 0 and this leads to the marginal stabilityondition H1H2 = G1G2 ; (30)whih requires the inequality H1 +H2 � 0. This inequality an be shown in a straightforwardmanner to be automatially satis�ed if Eq. (30) holds true. Let us �rst writeH1 = F1 �G1 and H2 = F2 �G2 ; (31)where F1 and F2 are expliitly de�ned byF1 � �2s + (�2 + 1=4)r2 a2s > 0 and F2 � �2g + (�2 + 1=4)r2 a2g > 0 : (32)It then follows from the ondition (30) H1H2 = G1G2 thatF1F2 = F1G2 + F2G1 : (33)As F1, F2, G1 and G2 are all positive, we immediately onlude thatF1 �G1 > 0 and F2 �G2 > 0 ; (34)5 One an show that the determinant of equation (25) � � (H1 �H2)2 + 4G1G2 > 0 is always true.6 If H1 +H2 � 0, then !2+ > 0; otherwise if H1 +H2 < 0, then at least one of H1 and H2 is negative. Ittherefore follows that H1H2 �G1G2 < 0 and hene !2+ > 0.



548 Y. Shen & Y.-Q. Louwhih �nally lead to H1 +H2 > 0 : (35)The omposite dis system beomes inevitably unstable for H1+H2 < 0 beause !2� < 0. Elseif H1 +H2 � 0 but with H1H2 �G1G2 < 0, we again have !2� < 0 for instability. Only whenH1 +H2 � 0 and H1H2 �G1G2 > 0 at the same time an the omposite dis system be stableagainst axisymmetri oplanar perturbations. This is an important neessary stability riterionfor a omposite system of two gravitationally oupled diss. In other words, one one dis isunstable by itself (i.e., H1 < 0 or H2 < 0 or both), the two-dis system must be unstable; evenif the two diss are both separately stable, the omposite dis system an still beome unstable(i.e., H1 > 0 and H2 > 0 but H1H2 �G1G2 < 0).By inserting the expressions of H1, H2, G1 and G2 into the marginal stability ondition(30) together with the requirement of bakground rotational equilibrium, we readily derive aquadrati equation in y � D2s , namelyC2y2 + C1y + C0 = 0 ; (36)where the oeÆients are expliitly de�ned byC2 � B0H0� ;C1 � �(B0 �A0)H0 + (A0+B0)(H0�B0)(1+Æ) �� � (A0+B0)(H0+B0Æ)(1+Æ) ;C0 � ��A0H0 + (A0+B0)(H0�B0)(1+Æ) �� + (A0 + B0)2 � (A0+B0)(H0+B0Æ)(1+Æ) ; (37)and A0(�) � �2 + 1=4 ;B0(�) � (1 + 2�)(�2 + 2�) ;C(�) � (1 + 2�)=(2�P0) ;H0(�; �) � CN0A0 + B0 : (38)This quadrati equation (36) an be readily proven to always have two real solutions (Shen &Lou 2004). Only positive solutions an be regarded as physially aeptable. Typially, thereexist two di�erent regimes bounded by the marginalD2s stability urves that are unstable againstaxisymmetri perturbations, one is the ollapse regime for long-wavelength perturbations, theother is the ring-fragmentation regime for short-wavelength perturbations. In ontrast to theshort-wavelength WKBJ approximation, the ollapse regime is novel and exat. Systems withtoo fast a rotation parameter D2s will fall into the ring-fragmentation regime (Safronov 1960;Toomre 1964; Syer & Tremaine 1996; Lou & Fan 1998a, b; Shu et al. 2000; Lou 2002; Lou& Shen 2003, 2004; Shen & Lou 2003), while those with too slow a D2s parameter will fallinto the ollapse regime. Shown in Fig. 1 is an illustrative example with � = 1=4, � = 1 andan unonstrained Æ. We note that ases with � = 1 are essentially the same as those of asingle dis (Shen & Lou 2004). The boundaries of the two unstable regimes shown in Fig. 1vary with di�erent parameters � > 1 and Æ for a hosen value of � whih �xes the entiresale-free radial pro�le of the omposite system (i.e., the rotation urves, surfae mass densitiesand barotropi equation of state). Qualitatively, an inrease of either � and Æ will aggravatethe ring-fragmentation instability and suppress the large-sale ollapse instability (Shen & Lou2003). While this an be diretly seen from Eq. (36) in the relevant parameter regime, it an



Axisymmetri Stability Analysis 549also be understood physially in terms of the dynamial oupling between the two diss throughthe ondition (10) imposed upon by the sale-free onditions. For a larger �, the redued gasdis rotation speed Vg will exeed the redued stellar dis rotation speed Vs by a larger marginand this will tend to prevent an overall ollapse of the omposite system. In other words, agaseous dis omponent with a relatively lower sound speed apparently inhibits ollapse (Shen& Lou 2003). More details and examples an be found in Shen & Lou (2004).It is well known that a Q parameter an be de�ned to determine loal axisymmetri stabilityof a single-dis system (Safronov 1960; Toomre 1964; Binney & Tremaine 1987). For a ompositedis system, it has been attempted to introdue an e�etive Qe� parameter (Elmegreen 1995;Jog 1996; Lou & Fan 1998b). As a result of a straightforward numerial omputation, wehave reently introdued a powerful D�riterion for axisymmetri stability of a ompositesystem of two oupled SIDs (Shen & Lou 2003). It is natural to generalize this D�riterion foraxisymmetri stability of a omposite system of two oupled barotropi diss by straightforwardnumerial omputations as shown in Fig. 1. In the present ase, it is more pratial and simplerto use the D2s parameter.

Fig. 1 Two unstable regimes in the ase of m = 0, � = 1=4 and � = 1. The ollapseregime is at the lower-left orner, while the ring-fragmentation regime is at the upper-rightorner. In this speial ase of � = 1, the parameter Æ an be arbitrary as an be seen fromequation (37), that is, when � = 1 the oeÆients C2, C1 and C0 turn out to be independentof Æ. The vertial dash-dotted line is the loation of � where H0 = 0 and C2 vanishes. Thesolid line and the dashed line bound the ollapse regime and the ring fragmentation regime,respetively. Only when D2s falls within the range between the top of the ollapse regimeand the bottom of the ring fragmentation regime an a omposite dis system beome stableagainst all axisymmetri oplanar perturbations.2.3 Partial Dis Systems and Appliations to Dis GalaxiesFrom observations of more or less at rotation urves of most dis galaxies, massive darkmatter halos have been inferred to exist ubiquitously as long as Newtonian gravity remains validon galati sales. If we naively attempt to relate the theoretial results obtained in Setion 2.2to a typial dis galaxy, we may take the simple isothermal equation of state as an illustrative



550 Y. Shen & Y.-Q. Louexample. The relevant parameters for a omposite SID system are then given as � = 0 andas = 50 km s�1, Vs = 220 km s�1, Æ = 0:1 and � = 50. Unfortunately, suh a omposite systemof two oupled SIDs is inevitably unstable against ring-fragmentation perturbations beause wehave a D2s ' 20 far exeeding the maximum value for stability against ring fragmentation. Thisdilemma an be resolved by attributing to an additional gravitational potential assoiated withan unseen massive dark matter halo. We refer to a omposite dis system in assoiation withan axisymmetri dark matter halo as a omposite system of partial diss (e.g. Syer & Tremaine1996; Shu et al. 2000; Lou 2002; Lou & Fan 2002; Shen & Lou 2003, 2004; Lou & Zou 2004,2005; Lou & Wu 2004). In a simple treatment, the dynamial e�et of a dark matter halois assumed only to ontribute an axisymmetri gravitational potential � in the bakgroundrotational equilibrium but not to respond to oplanar perturbations in the omposite disksystem. With �T � � + �, we onveniently introdue a dimensionless parameter F � �=�T ,the ratio of the potential arising from the omposite dis system to that of the entire systeminluding the presumed axisymmetri dark matter halo. A full-dis system orresponds toF = 1 (i.e., � = 0) and a partial-dis system orresponds to 0 < F < 1 (i.e., � 6= 0). Fora omposite system of two gravitationally oupled partial diss, we follow the same proedureof analysing oplanar perturbations in full diss to derive a similar quadrati equation of D2sas the stationary dispersion relation. In a nutshell, we an simply replae all N0(�) in ourtheoretial results by FN0(�) to e�et this generalization or extension. The introdution of theratio parameter F will signi�antly redue both the ring-fragmentation regime and the ollapseregime, as an already be seen from a omparative study of the WKBJ and global approahes(Shen & Lou 2003).For the purpose of illustrating the stabilizing e�et of a partial-dis system, we simply takeF = 0:1 with other parameters used earlier in this setion. The minimum value of D2s forunstable ring fragmentations now beomes � 650, far beyond the atual value of D2s ' 20in a dis galaxy. Meanwhile, the ollapse regime disappears ompletely. Therefore, a typialomposite system of two oupled partial diss is fairly stable against axisymmetri oplanarperturbations.3 DISCUSSION AND SUMMARYThe main thrust of this investigation is to model linear oplanar axisymmetri (m = 0)perturbations in a omposite system of two-uid sale-free diss, one stellar and one gaseous.The two diss are dynamially oupled through mutual gravitational interation. In order toinlude the dynamial e�et of a massive axisymmetri dark matter halo, we further desribea omposite system of two oupled partial diss (e.g. Syer & Tremaine 1996; Shu et al. 2000;Lou 2002; Lou & Shen 2003; Lou & Zou 2004, 2005; Lou & Wu 2004; Shen, Liu & Lou 2004).In a global perturbation analysis, we show that axisymmetri instabilities set in as stationaryperturbation on�gurations with ! = 0. The marginal D2s stability urve (haraterized bythe stationary on�gurations) delineates two di�erent unstable regimes, namely, the ollapseregime for large-sale perturbations and the ring-fragmentation regime for short-wavelengthperturbations. Apparently, the omposite dis system beomes less stable than a single-dissystem and an be unstable while the two diss are separately stable (Lou & Fan 1998b). In ouranalysis, stationary perturbation on�gurations turn out to be more than just an alternativeequilibrium state, espeially in view of the stability properties.The basi results of this paper are generally appliable to self-gravitating dis systems with



Axisymmetri Stability Analysis 551or without axisymmetri dark matter halos. The two-uid treatment ontains more realistielements than a single-dis formulation in the ontext of dis galaxies. In addition to astro-physial appliations to dis galaxies, the studies presented here an be valuable for exploringthe dynamial evolution of protostellar diss and irumnulear diss.In the ontext of proto-stellar dis, it is usual to ignore the self-gravity e�et. By on-sidering the self-gravity of a omposite dis system, our analysis indiates several qualitativeyet interesting results. For example, if the initial dis system rotates suÆiently fast, the ringfragmentation (see the upper-right part of Fig. 1) an our at relatively small radial sales. Byfurther non-axisymmetri fragmentations, these ondensed rings of materials may eventuallybeome birthplaes of planets. On the other hand, if the initial dis system rotates suÆientlyslowly, then gravitational ollapse an be indued by perturbations of relatively large radialsales (see the lower left orner of Fig. 1). One suh a perturbation develops in the bakgroundequilibrium dis, it grows rapidly and destabilizes the dis. Subsequently, the system under-goes global Jeans ollapse to form a entral young stellar objet. Finally, if the initial dissystem rotates in a regime that is stable against all axisymmetri perturbations (see Fig. 1),then there may be two possibilities: (1) the omposite dis system may beome unstable fromnon-axisymmetri perturbations (not analyzed here) and (2) the dis rotation may be grad-ually slowed down by some braking mehanisms (e.g. magneti �eld not inluded here andoutows or winds) and the dis eventually suumbs to a entral ollapse indued by large-saleperturbations.Likewise, in the ontext of a irumnulear dis around the enter of a galaxy, we anreadily oneive similar physial proesses taking plae. One important distintion is that adark-matter halo should play an important dynamial role so that a formulation of a partialomposite dis system would be more appropriate. Here, ring fragmentation an be induedby relatively small-sale perturbations in a dis system of suÆiently fast rotation. Suh aring of relatively dense materials around the galati enter would be a natural birthplae forirumnulear starburst ativities (e.g. Lou et al. 2001). Depending on the evolution history of airumnulear dis system, it may be stable initially and may gradually lose angular momentumthrough the generation and damping of spiral magnetohydrodynami (MHD) density waves(Lou et al. 2001). When the dis rotation beomes suÆiently slow, Jeans ollapse indued bylarge-sale perturbations an set in to form a bulge or a super massive blak hole.In summary, our global analysis shows the possible presene of an evolutionary stage for aomposite dis system against all axisymmetri oplanar perturbations. More importantly, wereveal the parameter regime of ring fragmentation and that of large-sale ollapse. Astrophysialappliations are disussed in the ontexts of dis galaxies, proto-stellar diss and irumnuleardiss.Aknowledgements This researh has been supported in part by the ASCI Center forAstrophysial Thermonulear Flashes at the University of Chiago under Department of Energyontrat B341495, by the Speial Funds for Major State Basi Siene Researh Projets ofChina, by the Tsinghua Center for Astrophysis (THCA), by the Collaborative Researh Fundfrom the NSF of China (NSFC) for Young Outstanding Overseas Chinese Sholars (NSFC10028306) at the National Astronomial Observatories, Chinese Aademy of Sienes, by NSFCgrant 10373009 at the Tsinghua University, and by the Yangtze Endowment from the Ministryof Eduation through the Tsinghua University. The aÆliated institutions of Y.Q.L. share reditof this ontribution.
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