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t For a 
omposite system of gravitationally 
oupled stellar and gaseousdis
s, we have 
arried out a linear stability analysis for axisymmetri
 
oplanar per-turbations using the two-
uid formalism. The ba
kground stellar and gaseous dis
sare taken to be s
ale-free with all physi
al variables varying as powers of the 
ylin-dri
al radius r with 
ompatible exponents. The unstable modes set in as neutralmodes or stationary perturbation 
on�gurations with angular frequen
y ! = 0. Theaxisymmetri
 stable range is bounded by two marginal stability 
urves derived fromstationary perturbation 
on�gurations. Be
ause of the gravitational 
oupling be-tween the stellar and the gaseous dis
s, one only needs to 
onsider the parameterregime of the stellar dis
. There exist two unstable regimes in general: a 
ollapseregime 
orresponding to large-s
ale perturbations and a ring-fragmentation regime
orresponding to short-wavelength perturbations. The 
omposite system will 
ol-lapse if it rotates too slowly and will su

umb to ring-fragmentation instabilities ifit rotates suÆ
iently fast. The overall stable range against axisymmetri
 perturba-tions is determined by a ne
essary D�
riterion involving the e�e
tive Ma
h numbersquaredD2s (the squared ratio of the stellar dis
 rotation speed to the stellar velo
itydispersion up to a numeri
al fa
tor). Di�erent mass ratio Æ and sound speed ratio� of the gaseous and stellar dis
 
omponents will alter the overall stability. Forspiral galaxies or 
ir
umnu
lear dis
s, we further in
lude the dynami
al e�e
t of amassive dark matter halo. Astrophysi
al appli
ations to dis
 galaxies, proto-stellardis
s and 
ir
umnu
lear dis
s are given as examples.Key words: hydrodynami
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542 Y. Shen & Y.-Q. Lou1 INTRODUCTIONAxisymmetri
 instabilities in models of dis
 galaxies have been investigated extensively inthe last 
entury (e.g., Safronov 1960; Toomre 1964; Binney & Tremaine 1987; Bertin & Lin1996). For a single dis
 of either gaseous or stellar 
ontent, Safronov (1960) and Toomre (1964)originally introdu
ed a dimensionless parameterQ su
h that Q > 1 means lo
al stability againstaxisymmetri
 ring-like disturban
es in the usual Wentzel-Kramers-Brillouin-Je�reys (WKBJ)or tight-winding approximation. A more realisti
 model of a dis
 galaxy would involve bothgas and stars as well as an unseen massive dark matter halo, all intera
ting gravitationallyamong themselves.1 Many theoreti
al investigations have been 
ondu
ted along this line witha 
omposite system of two 
oupled dis
s (Lin & Shu 1966; Kato 1972; Jog & Solomon 1984a, b;Bertin & Romeo 1988; Romeo 1992; Elmegreen 1995; Jog 1996; Lou & Fan 1998b). These earliertreatments use either a 
ombined approa
h of distribution fun
tion and 
uid or the formalism oftwo 
uids in a WKBJ model analysis. While the results of these models were initially derived invarious gala
ti
 
ontexts, they 
an also be applied, with proper quali�
ations, to self-gravitatingdis
 systems in
luding a

retion dis
s, 
ir
umnu
lear, protostellar, planetary dis
s and so forth.The lo
al WKBJ or tight-winding approximation has been proven to be a powerful te
h-nique in analysing the dynami
s of waves in dis
s. Meanwhile, theorists have long been keenlyinterested in a 
lass of relatively simple dis
 models referred to as s
ale-free dis
s (Mestel 1963;Zang 1976; Lemos et al. 1991; Lynden-Bell & Lemos 1993; Syer & Tremaine 1996; Evans &Read 1998; Goodman & Evans 1999; Shu et al. 2000; Lou 2002; Lou & Fan 2002; Lou & Shen2003; Shen & Lou 2003; Lou & Zou 2004, 2005; Lou & Wu 2004; Shen, Liu & Lou 2004). S
ale-free dis
s, where all pertinent physi
al variables (e.g., dis
 rotation speed, surfa
e mass density,angular speed, et
.) s
ale as powers of the 
ylindri
al radius r, have be
ome an e�e
tive andsimple means to explore dis
 dynami
s. Perhaps the most familiar 
ase is the so-
alled singularisothermal dis
 (SID) or Mestel dis
 with an isothermal equation of state and a 
at rotation
urve (Mestel 1963; Zang 1976; Goodman & Evans 1999; Shu et al. 2000; Lou 2002; Lou & Shen2003; Lou & Zou 2004, 2005; Lou & Wu 2004). In 
ontrast to the usual WKBJ approximationfor perturbations, perturbations in axisymmetri
 s
ale-free dis
s in some 
ases 
an be treatedglobally and exa
tly without the lo
al restri
tion to the short-wavelength regime. It is thenpossible to derive global properties of perturbations. Using s
ale-free dis
 models, Lemos etal. (1991) and Syer & Tremaine (1996) both studied the axisymmetri
 stability problem for asingle dis
 and found that instabilities �rst set in as neutral modes or stationary 
on�gurationswith angular frequen
y ! = 0.The main motivation of this paper is to examine the global axisymmetri
 stability prob-lem for 
omposite systems of two gravitationally 
oupled s
ale-free dis
s. As a more generalextension to the previous two-SID analysis (Lou & Shen 2003; Shen & Lou 2003), we further
onsider a mu
h broader 
lass of rotation 
urves as well as the equation of state. We shallgive an expli
it proof that stationary 
on�gurations (! = 0) do mark marginal stability in thetwo-
uid system, a 
ogent supplement to our re
ent investigation on stationary perturbation
on�gurations (Shen & Lou 2004).1 Magneti
 �eld and 
osmi
-ray gas 
omponent are dynami
ally important on large s
ales (Fan & Lou 1996;Lou & Fan 1998a, 2003; Lou & Zou 2004 and referen
es therein) in the gala
ti
 gas dis
 of interstellar medium(ISM) but are not 
onsidered here for simpli
ity.



Axisymmetri
 Stability Analysis 5432 TWO-FLUID FORMALISMAs an expedient approximation, we treat both dis
s as razor-thin dis
s and use supers
riptsand subs
ripts s and g to refer to the stellar and gaseous dis
, respe
tively. Large-s
ale 
ouplingbetween the two dis
s is primarily 
aused by mutual gravitational intera
tion. In the presentformulation of large-s
ale perturbations, we ignore non-ideal di�usive e�e
ts su
h as vis
osity,resistivity and thermal 
ondu
tion, et
. It is then straightforward to write down the set of basi

oplanar 
uid equations for the stellar dis
 in 
ylindri
al 
oordinates (r; �; z) in the z = 0plane, namely ��s�t + 1r ��r (r�sus) + 1r2 ��� (�sjs) = 0 ; (1)�us�t + us �us�r + jsr2 �us�� � js2r3 = � 1�s ��s�r � ���r ; (2)�js�t + us �js�r + jsr2 �js�� = � 1�s ��s�� � ���� ; (3)where �s is the surfa
e mass density, us is the radial bulk 
ow velo
ity, js is the spe
i�
 angularmomentum about the rotation axis along the z�dire
tion, �s is the verti
ally integrated e�e
-tive (two-dimensional) pressure due to stellar velo
ity dispersion and � is the total gravitationalpotential. For the gaseous dis
, we simply repla
e supers
ript or subs
ript s by g in the abovethree equations. The 
oupling of the two sets of 
uid equations is due to the gravitationalpotential through the Poisson integral,�(r; �; t) = I d Z 10 �G�(r0;  ; t)r0dr0[r02 + r2 � 2rr0 
os( � �)℄1=2 ; (4)where � = �s +�g is the total surfa
e mass density of the 
omposite dis
 system.The barotropi
 equation of state assumes a relation between the two-dimensional pressureand surfa
e mass density of the form of � = K�n; (5)where the 
oeÆ
ients K � 0 and n > 0 are 
onstant. This dire
tly leads to the sound speed 2a de�ned by a2 = d�0d�0 = nK�n�10 ; (6)whi
h s
ales as / �n�10 . The 
ase of n = 1 
orresponds to an isothermal sound speed a.From the above basi
 
uid equations for the stellar and gaseous dis
s (the latter are notwritten out expli
itly), we may derive the axisymmetri
 equilibrium ba
kground properties(Shen & Lou 2004). We presume that in the equilibrium ba
kground with axisymmetry, therotation 
urves of the two dis
s both s
ale as / r�� and both their surfa
e mass densities s
aleas / r��, where � and � are two 
onstant exponents and the 
oeÆ
ients of proportionality areallowed to be di�erent in general. By assuming the same power-law index for the stellar andgaseous dis
 rotation 
urves (or equivalently the surfa
e mass density pro�les), it is possibleto 
onsistently 
onstru
t a global axisymmetri
 ba
kground equilibrium for the 
omposite dis
system that meets the requirement that the radial for
es balan
e out at all radii (see Eq. (2)and the 
orresponding equation with the supers
ript s repla
ed by g) and that simultaneouslysatis�es the Poisson integral (4) (see Shen & Lou (2004), Eq. 10).2 In a stellar dis
, the velo
ity dispersion mimi
s the sound speed to some extent.



544 Y. Shen & Y.-Q. LouThe s
ale-free 
ondition requires the following relationship among �, � and n (see Syer &Tremaine 1996 and Shen & Lou 2004):� = 1 + 2� and n = 1 + 4�1 + 2� : (7)On
e the rotation 
urve is spe
i�ed, all the other physi
al variables are determined.With the knowledge of 
omputing the gravitational potential arising from an axisymmet-ri
 power-law surfa
e mass density in a ba
kground in rotational equilibrium (Kalnajs 1971;Qian 1992; Syer & Tremaine 1996), we 
an derive a self-
onsistent axisymmetri
 ba
kgroundequilibrium surfa
e mass density as�s0 = A2s(D2s + 1)2�G(2�P0)r1+2�(1 + Æ) and �g0 = A2g(D2g + 1)Æ2�G(2�P0)r1+2�(1 + Æ) ; (8)where the 
oeÆ
ient P0 is a fun
tion of � through the ��fun
tion,P0 � �(�� + 1=2)�(�)2�(�� + 1)�(� + 1=2) ; (9)with Æ � �g0=�s0 the ratio of the surfa
e mass density of the gaseous dis
 to that of the stellardis
, and A and D, two dimensionless parameters. We note that the value of 2�P0 falls within(0;1) for the pres
ribed range 3 of � 2 (�1=4; 1=2) and is equal to 1 when � ! 0 (i.e., the
ase of two gravitationally 
oupled SIDs).From the radial for
e balan
e of the ba
kground equilibrium, there also exists the followingrelation: A2s(D2s + 1) = A2g(D2g + 1) ; (10)when
e � � A2s=A2g = a2s=a2g is another handy dimensionless parameter for sound speed ratiosquared. We note that A is a
tually the redu
ed 4 e�e
tive sound speed (s
aled by a fa
tor(1 + 2�)1=2) and the parameter D � V=A where V is the redu
ed dis
 rotation speed, isthe e�e
tive Ma
h number (see Eqs. (11){(12) later). Condition (10) is very important inour analysis be
ause the rotations of the two dis
s are not independent of ea
h other but aredynami
ally 
oupled. It suÆ
es to examine the parameter regime of either the stellar or gaseousdis
. In dis
 galaxies, the typi
al velo
ity dispersion in a stellar dis
 ex
eeds the sound speed ina gaseous dis
, implying � > 1 so that the inequality D2g > D2s holds. Therefore, the physi
alrequirement D2s > 0 absolutely guarantees D2g > 0 and it suÆ
es to 
onsider the stabilityproblem in terms of D2s > 0 together with di�erent values of the parameters Æ and � (note thatD2g = �(D2s +1)� 1). With these explanations, we shall express the other equilibrium physi
alvariables in terms of the two parameters A and D.The spe
i�
 angular momenta js0 and jg0 about the z�axis and the sound speeds as and agin the two 
oupled equilibrium dis
s are expressed byjs0 = AsDsr1�� ; jg0 = AgDgr1�� ; (11)3 The valid range of � 2 (�1=4; 1=2) is determined by (1) the barotropi
 index n > 0 for warm dis
s, (2)the surfa
e mass density exponent � < 2 su
h that the 
entral point mass does not diverge, and (3) this � rangeis 
ontained within a wider range of � 2 (�1=2; 1=2) (for a 
old dis
 system) when the 
omputed for
e arisingfrom the ba
kground potential remains �nite (Syer & Tremaine 1996).4 By \redu
ed", we refer to the part of a physi
al variable after removing the power-law radial dependen
e.For example, in the dis
 rotation speed v = Vr�� , the quantity V is referred to as the redu
ed dis
 rotationspeed.



Axisymmetri
 Stability Analysis 545a2s = nKs(�s0)n�1 = A2s=[(1 + 2�)r2� ℄ ; a2g = nKg(�g0)n�1 = A2g=[(1 + 2�)r2� ℄ : (12)The dis
 angular rotation speed 
 � j0=r2 and the epi
y
li
 frequen
y � � [(2
=r)d(r2
)=dr℄1=2are similarly expressed in terms of A and D as
s = AsDsr�1�� ; �s = [2(1� �)℄1=2
s ;
g = AgDgr�1�� ; �g = [2(1� �)℄1=2
g ; (13)with dj0=dr = r�2=(2
) to simplify later derivations.2.1 Linear Perturbation EquationsFor a 
omposite system of two gravitationally 
oupled, axisymmetri
 dis
s in rotationalequilibrium , we introdu
e small 
oplanar perturbations indi
ated by subs
ript 1. The linearizedperturbation equations 
an be derived from the basi
 nonlinear Eqs. (1){(4) to be��s1�t + 1r ��r (r�s0us1) + 
s ��s1�� + �s0r2 �js1�� = 0 ;�us1�t +
s �us1�� � 2
s js1r = � ��r�a2s �s1�s0 + �1� ;�js1�t + r�2s2
s us1 +
s �js1�� = � ����a2s �s1�s0 + �1� ; (14)for the stellar dis
 as well as their 
ounterparts for the gaseous dis
, together with the Poissonintegral �1(r; �; t) = I d Z 10 �G(�s1 +�g1)r0dr0[r02 + r2 � 2rr0 
os( � �)℄1=2 ; (15)relating the total gravitational potential perturbation �1 and the total surfa
e mass densityperturbation �1 � �s1 +�g1.Given a Fourier periodi
 
omponent of the form of exp[i(!t�m�)℄ for a small perturbationin general (after taking the real part, without loss of generality we 
an assume m � 0), we writethe 
oplanar perturbations in the stellar dis
 in the form of,�s1 = �s(r)exp[i(!t�m�)℄ ;us1 = Us(r)exp[i(!t�m�)℄ ;js1 = Js(r)exp[i(!t�m�)℄ ; (16)as well as their 
ounterparts for the gaseous dis
, together with the total gravitational potentialperturbation �1 = V (r)exp[i(!t�m�)℄ ; (17)where the integer m is taken to be non-negative. For axisymmetri
 m = 0 perturbations, weintrodu
e Fourier de
ompositions in the Eqs. (14){(15) for the stellar dis
 to derivei!�s + 1r ddr (r�s0Us) = 0 ;i!Us � 2
s Jsr = � ddr�a2s �s�s0 + V � ;i!Js + r�2s2
sUs = 0 : (18)We do the same for the gaseous dis
 to derive



546 Y. Shen & Y.-Q. Loui!�g + 1r ddr (r�g0Ug) = 0 ;i!Ug � 2
g Jgr = � ddr�a2g �g�g0 + V � ;i!Jg + r�2g2
gUg = 0 : (19)For the total gravitational potential perturbation, we simply haveV (r) = I d Z 10 �G(�s + �g) 
os(m )r0dr0(r02 + r2 � 2rr0 
os )1=2 : (20)Equations (18)�(20) are the basi
 
oplanar perturbation equations used in our axisymmetri
stability analysis.2.2 Axisymmetri
 Stability AnalysisFor axisymmetri
 stability analysis with radial os
illations, we 
hose the Kalnajs potential-density pairs below be
ause the perturbations 
an be generally expanded in terms of these
omplete basis fun
tions (Kalnajs 1971; Binney & Tremaine 1987; Lemos et al. 1991; Lou &Shen 2003). Spe
i�
ally, we take�s = �sr�3=2 exp(i� ln r) ; �g = �gr�3=2 exp(i� ln r) ;V = �2�Gr(�s + �g)Nm(�) ; (21)where � is a \wavenumber" 
hara
terizing the s
ale of the radial variation, �s and �g are twosmall real 
oeÆ
ients and the parameter fun
tionNm(�) = �(m=2 + i�=2 + 1=4)�(m=2� i�=2 + 1=4)2�(m=2 + i�=2 + 3=4)�(m=2� i�=2 + 3=4) (22)is the Kalnajs fun
tion (Kalnajs 1971) involving ��fun
tions of 
omplex arguments. Note thatNm is even in �. It then suÆ
es to 
onsider only � � 0.Using the �rst mass 
onservations in Eqs. (18) and (19), we infer U / i!r1=2+2�+i� (seealso Lou & Zou 2004). Using the potential-density pair (21), Eqs. (18) and (19) are redu
ed to(!2 �H1)Us = �G2Ug ;(!2 �H2)Ug = �G1Us ; (23)in the limit of ! ! 0, where the parameter fun
tions H1, H2, G1 and G2 are expli
itly de�nedby H1 � �2s +� a2sr � 2�GN0�s0� (�2+1=4)r ;H2 � �2g +�a2gr � 2�GN0�g0� (�2+1=4)r ;G1 � 2�GN0�s0 (�2+1=4)r > 0 ;G2 � 2�GN0�g0 (�2+1=4)r > 0 : (24)The axisymmetri
 dispersion relation in the 
omposite disk system follows from Eq. (23)!4 � (H1 +H2)!2 + (H1H2 �G1G2) = 0 (25)in the limit of ! ! 0. This is identi
al in form with the earlier results obtained in the WKBJregime (Jog & Solomon 1984a; Shen & Lou 2003). It may be of interest to note that the
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onditions for the stellar dis
 and the gaseous dis
 to be separately stable are H1 > 0 andH2 > 0, respe
tively. We may also re
all here that in the familiar WKBJ regime, the dispersionrelation in a single dis
 is !2 = �2 + k2a2 � 2�Gjkj�0 ; (26)where k is the radial wavenumber, whereas in the present global analysis as applied to a singledis
, we have in the limit of ! ! 0,!2 = �2 + (�2 + 1=4)r2 a2s � 2�G (�2 + 1=4)N0r �0 : (27)If we repla
e N0(�) approximately by (�2 + 1=4)�1=2 in the asymptoti
 regime of � � 1, wereadily identify the 
orresponden
e between the e�e
tive wavenumber (�2+1=4)1=2 and the jkjrin the WKBJ limit of jkjr � 1 by dire
tly 
omparing the dispersion relations (26) and (27).Physi
ally, the dispersion relation (27) is more generally appli
able beyond the WKBJ regimeand is globally a

urate only in the limit of ! ! 0 (Shu et al. 2000).Returning to the 
omposite system, Eq. (25) has two real roots 5 of !2:!2� = 12f(H1 +H2)� [(H1 +H2)2 � 4(H1H2 �G1G2)℄1=2g ; (28)with !2+ being always positive 6 (Shen & Lou 2003). For the purpose of axisymmetri
 stabilityanalysis, we only need to examine the root !2�, namely!2� = 12f(H1 +H2)� [(H1 +H2)2 � 4(H1H2 �G1G2)℄1=2g : (29)As the right-hand side of the above Eq. (29) is always real, axisymmetri
 instability sets in asstationary perturbation 
on�gurations with !2� = 0 and this leads to the marginal stability
ondition H1H2 = G1G2 ; (30)whi
h requires the inequality H1 +H2 � 0. This inequality 
an be shown in a straightforwardmanner to be automati
ally satis�ed if Eq. (30) holds true. Let us �rst writeH1 = F1 �G1 and H2 = F2 �G2 ; (31)where F1 and F2 are expli
itly de�ned byF1 � �2s + (�2 + 1=4)r2 a2s > 0 and F2 � �2g + (�2 + 1=4)r2 a2g > 0 : (32)It then follows from the 
ondition (30) H1H2 = G1G2 thatF1F2 = F1G2 + F2G1 : (33)As F1, F2, G1 and G2 are all positive, we immediately 
on
lude thatF1 �G1 > 0 and F2 �G2 > 0 ; (34)5 One 
an show that the determinant of equation (25) � � (H1 �H2)2 + 4G1G2 > 0 is always true.6 If H1 +H2 � 0, then !2+ > 0; otherwise if H1 +H2 < 0, then at least one of H1 and H2 is negative. Ittherefore follows that H1H2 �G1G2 < 0 and hen
e !2+ > 0.
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h �nally lead to H1 +H2 > 0 : (35)The 
omposite dis
 system be
omes inevitably unstable for H1+H2 < 0 be
ause !2� < 0. Elseif H1 +H2 � 0 but with H1H2 �G1G2 < 0, we again have !2� < 0 for instability. Only whenH1 +H2 � 0 and H1H2 �G1G2 > 0 at the same time 
an the 
omposite dis
 system be stableagainst axisymmetri
 
oplanar perturbations. This is an important ne
essary stability 
riterionfor a 
omposite system of two gravitationally 
oupled dis
s. In other words, on
e one dis
 isunstable by itself (i.e., H1 < 0 or H2 < 0 or both), the two-dis
 system must be unstable; evenif the two dis
s are both separately stable, the 
omposite dis
 system 
an still be
ome unstable(i.e., H1 > 0 and H2 > 0 but H1H2 �G1G2 < 0).By inserting the expressions of H1, H2, G1 and G2 into the marginal stability 
ondition(30) together with the requirement of ba
kground rotational equilibrium, we readily derive aquadrati
 equation in y � D2s , namelyC2y2 + C1y + C0 = 0 ; (36)where the 
oeÆ
ients are expli
itly de�ned byC2 � B0H0� ;C1 � �(B0 �A0)H0 + (A0+B0)(H0�B0)(1+Æ) �� � (A0+B0)(H0+B0Æ)(1+Æ) ;C0 � ��A0H0 + (A0+B0)(H0�B0)(1+Æ) �� + (A0 + B0)2 � (A0+B0)(H0+B0Æ)(1+Æ) ; (37)and A0(�) � �2 + 1=4 ;B0(�) � (1 + 2�)(�2 + 2�) ;C(�) � (1 + 2�)=(2�P0) ;H0(�; �) � CN0A0 + B0 : (38)This quadrati
 equation (36) 
an be readily proven to always have two real solutions (Shen &Lou 2004). Only positive solutions 
an be regarded as physi
ally a

eptable. Typi
ally, thereexist two di�erent regimes bounded by the marginalD2s stability 
urves that are unstable againstaxisymmetri
 perturbations, one is the 
ollapse regime for long-wavelength perturbations, theother is the ring-fragmentation regime for short-wavelength perturbations. In 
ontrast to theshort-wavelength WKBJ approximation, the 
ollapse regime is novel and exa
t. Systems withtoo fast a rotation parameter D2s will fall into the ring-fragmentation regime (Safronov 1960;Toomre 1964; Syer & Tremaine 1996; Lou & Fan 1998a, b; Shu et al. 2000; Lou 2002; Lou& Shen 2003, 2004; Shen & Lou 2003), while those with too slow a D2s parameter will fallinto the 
ollapse regime. Shown in Fig. 1 is an illustrative example with � = 1=4, � = 1 andan un
onstrained Æ. We note that 
ases with � = 1 are essentially the same as those of asingle dis
 (Shen & Lou 2004). The boundaries of the two unstable regimes shown in Fig. 1vary with di�erent parameters � > 1 and Æ for a 
hosen value of � whi
h �xes the entires
ale-free radial pro�le of the 
omposite system (i.e., the rotation 
urves, surfa
e mass densitiesand barotropi
 equation of state). Qualitatively, an in
rease of either � and Æ will aggravatethe ring-fragmentation instability and suppress the large-s
ale 
ollapse instability (Shen & Lou2003). While this 
an be dire
tly seen from Eq. (36) in the relevant parameter regime, it 
an
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ally in terms of the dynami
al 
oupling between the two dis
s throughthe 
ondition (10) imposed upon by the s
ale-free 
onditions. For a larger �, the redu
ed gasdis
 rotation speed Vg will ex
eed the redu
ed stellar dis
 rotation speed Vs by a larger marginand this will tend to prevent an overall 
ollapse of the 
omposite system. In other words, agaseous dis
 
omponent with a relatively lower sound speed apparently inhibits 
ollapse (Shen& Lou 2003). More details and examples 
an be found in Shen & Lou (2004).It is well known that a Q parameter 
an be de�ned to determine lo
al axisymmetri
 stabilityof a single-dis
 system (Safronov 1960; Toomre 1964; Binney & Tremaine 1987). For a 
ompositedis
 system, it has been attempted to introdu
e an e�e
tive Qe� parameter (Elmegreen 1995;Jog 1996; Lou & Fan 1998b). As a result of a straightforward numeri
al 
omputation, wehave re
ently introdu
ed a powerful D�
riterion for axisymmetri
 stability of a 
ompositesystem of two 
oupled SIDs (Shen & Lou 2003). It is natural to generalize this D�
riterion foraxisymmetri
 stability of a 
omposite system of two 
oupled barotropi
 dis
s by straightforwardnumeri
al 
omputations as shown in Fig. 1. In the present 
ase, it is more pra
ti
al and simplerto use the D2s parameter.

Fig. 1 Two unstable regimes in the 
ase of m = 0, � = 1=4 and � = 1. The 
ollapseregime is at the lower-left 
orner, while the ring-fragmentation regime is at the upper-right
orner. In this spe
ial 
ase of � = 1, the parameter Æ 
an be arbitrary as 
an be seen fromequation (37), that is, when � = 1 the 
oeÆ
ients C2, C1 and C0 turn out to be independentof Æ. The verti
al dash-dotted line is the lo
ation of �
 where H0 = 0 and C2 vanishes. Thesolid line and the dashed line bound the 
ollapse regime and the ring fragmentation regime,respe
tively. Only when D2s falls within the range between the top of the 
ollapse regimeand the bottom of the ring fragmentation regime 
an a 
omposite dis
 system be
ome stableagainst all axisymmetri
 
oplanar perturbations.2.3 Partial Dis
 Systems and Appli
ations to Dis
 GalaxiesFrom observations of more or less 
at rotation 
urves of most dis
 galaxies, massive darkmatter halos have been inferred to exist ubiquitously as long as Newtonian gravity remains validon gala
ti
 s
ales. If we naively attempt to relate the theoreti
al results obtained in Se
tion 2.2to a typi
al dis
 galaxy, we may take the simple isothermal equation of state as an illustrative



550 Y. Shen & Y.-Q. Louexample. The relevant parameters for a 
omposite SID system are then given as � = 0 andas = 50 km s�1, Vs = 220 km s�1, Æ = 0:1 and � = 50. Unfortunately, su
h a 
omposite systemof two 
oupled SIDs is inevitably unstable against ring-fragmentation perturbations be
ause wehave a D2s ' 20 far ex
eeding the maximum value for stability against ring fragmentation. Thisdilemma 
an be resolved by attributing to an additional gravitational potential asso
iated withan unseen massive dark matter halo. We refer to a 
omposite dis
 system in asso
iation withan axisymmetri
 dark matter halo as a 
omposite system of partial dis
s (e.g. Syer & Tremaine1996; Shu et al. 2000; Lou 2002; Lou & Fan 2002; Shen & Lou 2003, 2004; Lou & Zou 2004,2005; Lou & Wu 2004). In a simple treatment, the dynami
al e�e
t of a dark matter halois assumed only to 
ontribute an axisymmetri
 gravitational potential � in the ba
kgroundrotational equilibrium but not to respond to 
oplanar perturbations in the 
omposite disksystem. With �T � � + �, we 
onveniently introdu
e a dimensionless parameter F � �=�T ,the ratio of the potential arising from the 
omposite dis
 system to that of the entire systemin
luding the presumed axisymmetri
 dark matter halo. A full-dis
 system 
orresponds toF = 1 (i.e., � = 0) and a partial-dis
 system 
orresponds to 0 < F < 1 (i.e., � 6= 0). Fora 
omposite system of two gravitationally 
oupled partial dis
s, we follow the same pro
edureof analysing 
oplanar perturbations in full dis
s to derive a similar quadrati
 equation of D2sas the stationary dispersion relation. In a nutshell, we 
an simply repla
e all N0(�) in ourtheoreti
al results by FN0(�) to e�e
t this generalization or extension. The introdu
tion of theratio parameter F will signi�
antly redu
e both the ring-fragmentation regime and the 
ollapseregime, as 
an already be seen from a 
omparative study of the WKBJ and global approa
hes(Shen & Lou 2003).For the purpose of illustrating the stabilizing e�e
t of a partial-dis
 system, we simply takeF = 0:1 with other parameters used earlier in this se
tion. The minimum value of D2s forunstable ring fragmentations now be
omes � 650, far beyond the a
tual value of D2s ' 20in a dis
 galaxy. Meanwhile, the 
ollapse regime disappears 
ompletely. Therefore, a typi
al
omposite system of two 
oupled partial dis
s is fairly stable against axisymmetri
 
oplanarperturbations.3 DISCUSSION AND SUMMARYThe main thrust of this investigation is to model linear 
oplanar axisymmetri
 (m = 0)perturbations in a 
omposite system of two-
uid s
ale-free dis
s, one stellar and one gaseous.The two dis
s are dynami
ally 
oupled through mutual gravitational intera
tion. In order toin
lude the dynami
al e�e
t of a massive axisymmetri
 dark matter halo, we further des
ribea 
omposite system of two 
oupled partial dis
s (e.g. Syer & Tremaine 1996; Shu et al. 2000;Lou 2002; Lou & Shen 2003; Lou & Zou 2004, 2005; Lou & Wu 2004; Shen, Liu & Lou 2004).In a global perturbation analysis, we show that axisymmetri
 instabilities set in as stationaryperturbation 
on�gurations with ! = 0. The marginal D2s stability 
urve (
hara
terized bythe stationary 
on�gurations) delineates two di�erent unstable regimes, namely, the 
ollapseregime for large-s
ale perturbations and the ring-fragmentation regime for short-wavelengthperturbations. Apparently, the 
omposite dis
 system be
omes less stable than a single-dis
system and 
an be unstable while the two dis
s are separately stable (Lou & Fan 1998b). In ouranalysis, stationary perturbation 
on�gurations turn out to be more than just an alternativeequilibrium state, espe
ially in view of the stability properties.The basi
 results of this paper are generally appli
able to self-gravitating dis
 systems with
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 dark matter halos. The two-
uid treatment 
ontains more realisti
elements than a single-dis
 formulation in the 
ontext of dis
 galaxies. In addition to astro-physi
al appli
ations to dis
 galaxies, the studies presented here 
an be valuable for exploringthe dynami
al evolution of protostellar dis
s and 
ir
umnu
lear dis
s.In the 
ontext of proto-stellar dis
, it is usual to ignore the self-gravity e�e
t. By 
on-sidering the self-gravity of a 
omposite dis
 system, our analysis indi
ates several qualitativeyet interesting results. For example, if the initial dis
 system rotates suÆ
iently fast, the ringfragmentation (see the upper-right part of Fig. 1) 
an o

ur at relatively small radial s
ales. Byfurther non-axisymmetri
 fragmentations, these 
ondensed rings of materials may eventuallybe
ome birthpla
es of planets. On the other hand, if the initial dis
 system rotates suÆ
ientlyslowly, then gravitational 
ollapse 
an be indu
ed by perturbations of relatively large radials
ales (see the lower left 
orner of Fig. 1). On
e su
h a perturbation develops in the ba
kgroundequilibrium dis
, it grows rapidly and destabilizes the dis
. Subsequently, the system under-goes global Jeans 
ollapse to form a 
entral young stellar obje
t. Finally, if the initial dis
system rotates in a regime that is stable against all axisymmetri
 perturbations (see Fig. 1),then there may be two possibilities: (1) the 
omposite dis
 system may be
ome unstable fromnon-axisymmetri
 perturbations (not analyzed here) and (2) the dis
 rotation may be grad-ually slowed down by some braking me
hanisms (e.g. magneti
 �eld not in
luded here andout
ows or winds) and the dis
 eventually su

umbs to a 
entral 
ollapse indu
ed by large-s
aleperturbations.Likewise, in the 
ontext of a 
ir
umnu
lear dis
 around the 
enter of a galaxy, we 
anreadily 
on
eive similar physi
al pro
esses taking pla
e. One important distin
tion is that adark-matter halo should play an important dynami
al role so that a formulation of a partial
omposite dis
 system would be more appropriate. Here, ring fragmentation 
an be indu
edby relatively small-s
ale perturbations in a dis
 system of suÆ
iently fast rotation. Su
h aring of relatively dense materials around the gala
ti
 
enter would be a natural birthpla
e for
ir
umnu
lear starburst a
tivities (e.g. Lou et al. 2001). Depending on the evolution history of a
ir
umnu
lear dis
 system, it may be stable initially and may gradually lose angular momentumthrough the generation and damping of spiral magnetohydrodynami
 (MHD) density waves(Lou et al. 2001). When the dis
 rotation be
omes suÆ
iently slow, Jeans 
ollapse indu
ed bylarge-s
ale perturbations 
an set in to form a bulge or a super massive bla
k hole.In summary, our global analysis shows the possible presen
e of an evolutionary stage for a
omposite dis
 system against all axisymmetri
 
oplanar perturbations. More importantly, wereveal the parameter regime of ring fragmentation and that of large-s
ale 
ollapse. Astrophysi
alappli
ations are dis
ussed in the 
ontexts of dis
 galaxies, proto-stellar dis
s and 
ir
umnu
leardis
s.A
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