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Abstract For a composite system of gravitationally coupled stellar and gaseous
discs, we have carried out a linear stability analysis for axisymmetric coplanar per-
turbations using the two-fluid formalism. The background stellar and gaseous discs
are taken to be scale-free with all physical variables varying as powers of the cylin-
drical radius r with compatible exponents. The unstable modes set in as neutral
modes or stationary perturbation configurations with angular frequency w = 0. The
axisymmetric stable range is bounded by two marginal stability curves derived from
stationary perturbation configurations. Because of the gravitational coupling be-
tween the stellar and the gaseous discs, one only needs to consider the parameter
regime of the stellar disc. There exist two unstable regimes in general: a collapse
regime corresponding to large-scale perturbations and a ring-fragmentation regime
corresponding to short-wavelength perturbations. The composite system will col-
lapse if it rotates too slowly and will succumb to ring-fragmentation instabilities if
it rotates sufficiently fast. The overall stable range against axisymmetric perturba-
tions is determined by a necessary D—criterion involving the effective Mach number
squared D? (the squared ratio of the stellar disc rotation speed to the stellar velocity
dispersion up to a numerical factor). Different mass ratio § and sound speed ratio
n of the gaseous and stellar disc components will alter the overall stability. For
spiral galaxies or circumnuclear discs, we further include the dynamical effect of a
massive dark matter halo. Astrophysical applications to disc galaxies, proto-stellar
discs and circumnuclear discs are given as examples.
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1 INTRODUCTION

Axisymmetric instabilities in models of disc galaxies have been investigated extensively in
the last century (e.g., Safronov 1960; Toomre 1964; Binney & Tremaine 1987; Bertin & Lin
1996). For a single disc of either gaseous or stellar content, Safronov (1960) and Toomre (1964)
originally introduced a dimensionless parameter () such that () > 1 means local stability against
axisymmetric ring-like disturbances in the usual Wentzel-Kramers-Brillouin-Jeffreys (WKBJ)
or tight-winding approximation. A more realistic model of a disc galaxy would involve both
gas and stars as well as an unseen massive dark matter halo, all interacting gravitationally
among themselves.! Many theoretical investigations have been conducted along this line with
a composite system of two coupled discs (Lin & Shu 1966; Kato 1972; Jog & Solomon 1984a, b;
Bertin & Romeo 1988; Romeo 1992; Elmegreen 1995; Jog 1996; Lou & Fan 1998b). These earlier
treatments use either a combined approach of distribution function and fluid or the formalism of
two fluids in a WKB.J model analysis. While the results of these models were initially derived in
various galactic contexts, they can also be applied, with proper qualifications, to self-gravitating
disc systems including accretion discs, circumnuclear, protostellar, planetary discs and so forth.

The local WKBJ or tight-winding approximation has been proven to be a powerful tech-
nique in analysing the dynamics of waves in discs. Meanwhile, theorists have long been keenly
interested in a class of relatively simple disc models referred to as scale-free discs (Mestel 1963;
Zang 1976; Lemos et al. 1991; Lynden-Bell & Lemos 1993; Syer & Tremaine 1996; Evans &
Read 1998; Goodman & Evans 1999; Shu et al. 2000; Lou 2002; Lou & Fan 2002; Lou & Shen
2003; Shen & Lou 2003; Lou & Zou 2004, 2005; Lou & Wu 2004; Shen, Liu & Lou 2004). Scale-
free discs, where all pertinent physical variables (e.g., disc rotation speed, surface mass density,
angular speed, etc.) scale as powers of the cylindrical radius r, have become an effective and
simple means to explore disc dynamics. Perhaps the most familiar case is the so-called singular
isothermal disc (SID) or Mestel disc with an isothermal equation of state and a flat rotation
curve (Mestel 1963; Zang 1976; Goodman & Evans 1999; Shu et al. 2000; Lou 2002; Lou & Shen
2003; Lou & Zou 2004, 2005; Lou & Wu 2004). In contrast to the usual WKBJ approximation
for perturbations, perturbations in axisymmetric scale-free discs in some cases can be treated
globally and exactly without the local restriction to the short-wavelength regime. It is then
possible to derive global properties of perturbations. Using scale-free disc models, Lemos et
al. (1991) and Syer & Tremaine (1996) both studied the axisymmetric stability problem for a
single disc and found that instabilities first set in as neutral modes or stationary configurations
with angular frequency w = 0.

The main motivation of this paper is to examine the global axisymmetric stability prob-
lem for composite systems of two gravitationally coupled scale-free discs. As a more general
extension to the previous two-SID analysis (Lou & Shen 2003; Shen & Lou 2003), we further
consider a much broader class of rotation curves as well as the equation of state. We shall
give an explicit proof that stationary configurations (w = 0) do mark marginal stability in the
two-fluid system, a cogent supplement to our recent investigation on stationary perturbation
configurations (Shen & Lou 2004).

1 Magnetic field and cosmic-ray gas component are dynamically important on large scales (Fan & Lou 1996;
Lou & Fan 1998a, 2003; Lou & Zou 2004 and references therein) in the galactic gas disc of interstellar medium
(ISM) but are not considered here for simplicity.
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2 TWO-FLUID FORMALISM

As an expedient approximation, we treat both discs as razor-thin discs and use superscripts
and subscripts s and g to refer to the stellar and gaseous disc, respectively. Large-scale coupling
between the two discs is primarily caused by mutual gravitational interaction. In the present
formulation of large-scale perturbations, we ignore non-ideal diffusive effects such as viscosity,
resistivity and thermal conduction, etc. It is then straightforward to write down the set of basic
coplanar fluid equations for the stellar disc in cylindrical coordinates (r, 6, z) in the z = 0
plane, namely
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where X¢ is the surface mass density, u® is the radial bulk flow velocity, j* is the specific angular
momentum about the rotation axis along the z—direction, II® is the vertically integrated effec-
tive (two-dimensional) pressure due to stellar velocity dispersion and ¢ is the total gravitational
potential. For the gaseous disc, we simply replace superscript or subscript s by g in the above
three equations. The coupling of the two sets of fluid equations is due to the gravitational
potential through the Poisson integral,

B oo —GX(r' o, t)r'dr'!
o(r,0,t) = %dd’/o [r'2 + 72 — 2rr! cos(y) — 6)]L/2 )

where ¥ = ¥® + X9 is the total surface mass density of the composite disc system.
The barotropic equation of state assumes a relation between the two-dimensional pressure
and surface mass density of the form of

II=K3", (5)

where the coefficients K > 0 and n > 0 are constant. This directly leads to the sound speed >

a defined by -
2 0 n—1
a® = = nKX{™", (6)
which scales as o 23*1. The case of n = 1 corresponds to an isothermal sound speed a.

From the above basic fluid equations for the stellar and gaseous discs (the latter are not
written out explicitly), we may derive the axisymmetric equilibrium background properties
(Shen & Lou 2004). We presume that in the equilibrium background with axisymmetry, the
rotation curves of the two discs both scale as oc 7~# and both their surface mass densities scale
as o« r~%, where a and § are two constant exponents and the coefficients of proportionality are
allowed to be different in general. By assuming the same power-law index for the stellar and
gaseous disc rotation curves (or equivalently the surface mass density profiles), it is possible
to consistently construct a global axisymmetric background equilibrium for the composite disc
system that meets the requirement that the radial forces balance out at all radii (see Eq.(2)
and the corresponding equation with the superscript s replaced by ¢) and that simultaneously

satisfies the Poisson integral (4) (see Shen & Lou (2004), Eq. 10).

2 In a stellar disc, the velocity dispersion mimics the sound speed to some extent.
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The scale-free condition requires the following relationship among «, 8 and n (see Syer &
Tremaine 1996 and Shen & Lou 2004):

_1+48

a=1+24 and n_1+25.

(7)

Once the rotation curve is specified, all the other physical variables are determined.

With the knowledge of computing the gravitational potential arising from an axisymmet-
ric power-law surface mass density in a background in rotational equilibrium (Kalnajs 1971;
Qian 1992; Syer & Tremaine 1996), we can derive a self-consistent axisymmetric background
equilibrium surface mass density as

s A%(D: +1)
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and

(8)
where the coefficient Pq is a function of 8 through the I'—function,

_ D(=B+1/2)T(B)
Po = ; (9)
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with § = X7 /%8 the ratio of the surface mass density of the gaseous disc to that of the stellar
disc, and A and D, two dimensionless parameters. We note that the value of 25P falls within
(0,00) for the prescribed range® of 8 € (—1/4,1/2) and is equal to 1 when 8 — 0 (i.e., the

case of two gravitationally coupled SIDs).
From the radial force balance of the background equilibrium, there also exists the following

relation:

A3(D: +1) = A2(D; +1) (10)

whence n = A3/A? = a2/a’ is another handy dimensionless parameter for sound speed ratio
squared. We note that A is actually the reduced? effective sound speed (scaled by a factor
(1 +28)'/?) and the parameter D = V/A where V is the reduced disc rotation speed, is
the effective Mach number (see Egs.(11)-(12) later). Condition (10) is very important in
our analysis because the rotations of the two discs are not independent of each other but are
dynamically coupled. It suffices to examine the parameter regime of either the stellar or gaseous
disc. In disc galaxies, the typical velocity dispersion in a stellar disc exceeds the sound speed in
a gaseous disc, implying 17 > 1 so that the inequality Dg > D? holds. Therefore, the physical
requirement, D7 > 0 absolutely guarantees D > 0 and it suffices to consider the stability
problem in terms of D? > 0 together with different values of the parameters § and 7 (note that
Dg =n(D?% +1) — 1). With these explanations, we shall express the other equilibrium physical
variables in terms of the two parameters A and D.

The specific angular momenta j§ and j§ about the z—axis and the sound speeds a5 and a,
in the two coupled equilibrium discs are expressed by

ji=A,Drt 8 j§ = AyDyrt 5 (11)

3 The valid range of 8 € (—1/4,1/2) is determined by (1) the barotropic index n > 0 for warm discs, (2)
the surface mass density exponent « < 2 such that the central point mass does not diverge, and (3) this 3 range
is contained within a wider range of 8 € (—1/2,1/2) (for a cold disc system) when the computed force arising
from the background potential remains finite (Syer & Tremaine 1996).

4 By “reduced”, we refer to the part of a physical variable after removing the power-law radial dependence.
For example, in the disc rotation speed v = Vr—#, the quantity V is referred to as the reduced disc rotation
speed.
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@ = nK, ()" = A1+ 28], ad =k, (S = AY/[(1+ 2807 . (12)
The disc angular rotation speed Q = jo/r? and the epicyclic frequency & = [(2Q/r)d(r?Q) /dr]'/?

are similarly expressed in terms of A and D as

Q = Astr_l_B , Kg = [2(1 - 6)}1/203

Qy = Ay Dgr='7F Ky = [2(1 = B)]'/2Q, ’: (13)

with djo/dr = r&?/(2) to simplify later derivations.

2.1 Linear Perturbation Equations

For a composite system of two gravitationally coupled, axisymmetric discs in rotational
equilibrium , we introduce small coplanar perturbations indicated by subscript 1. The linearized
perturbation equations can be derived from the basic nonlinear Egs. (1)—(4) to be

% 19 s axs | xf 948
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for the stellar disc as well as their counterparts for the gaseous disc, together with the Poisson

integral
G(Z5 + %9
1(r,0,1) fchp/ TE)rdr (15)
[r2 + 72 = 2rr! cos(v) — 0)] /

relating the total gravitational potential perturbation ¢; and the total surface mass density
perturbation ¥; = X§ + 29,

Given a Fourier periodic component of the form of exp[i(wt —m#é)] for a small perturbation
in general (after taking the real part, without loss of generality we can assume m > 0), we write
the coplanar perturbations in the stellar disc in the form of,

Y8 = pf(r)expli(wt — mb)] ,
uf = U*(r)expli(wt — mb)] (16
Ji = J*(r)expli(wt — mo)] ,

as well as their counterparts for the gaseous disc, together with the total gravitational potential
perturbation

61 = V(r)expli(wt — mé)] , (17)

where the integer m is taken to be non-negative. For axisymmetric m = 0 perturbations, we
introduce Fourier decompositions in the Eqs. (14)—(15) for the stellar disc to derive

iwp® + 1L (rE3U°) =
szS—QQSJTsz—%Gzﬁgg +V> : (18)

2
iwJ® + U =0 .

We do the same for the gaseous disc to derive
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iwpd + 1L (roiU9) =0,
iwl9 — 20,2 = -4 <a§§—i’, + V) : (19)
0

2
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For the total gravitational potential perturbation, we simply have

Vir) = %CMJ/OOO —G(p* + p9) cos(myp)r'dr' . (20)

(r'? 4+ 12 — 2rr' cosy)'/?

Equations (18)—(20) are the basic coplanar perturbation equations used in our axisymmetric
stability analysis.

2.2 Axisymmetric Stability Analysis

For axisymmetric stability analysis with radial oscillations, we chose the Kalnajs potential-
density pairs below because the perturbations can be generally expanded in terms of these
complete basis functions (Kalnajs 1971; Binney & Tremaine 1987; Lemos et al. 1991; Lou &
Shen 2003). Specifically, we take

p® = o*r—3/2exp(i€lnr) w9 =o9r 32 exp(i€lnr) ,

V = =27Gr(u® + p9)Nu(€) | (21)

where ¢ is a “wavenumber” characterizing the scale of the radial variation, ¢® and ¢? are two
small real coefficients and the parameter function

No(6) = T(m/2 +i&/2 + 14T (m/2 — i&/2 + 1/4)
" O (m/2 + i€ /2 + 3/A)T (m /2 — i€ /2 + 3/4)

(22)

is the Kalnajs function (Kalnajs 1971) involving I'—functions of complex arguments. Note that
N, is even in &. It then suffices to consider only & > 0.
Using the first mass conservations in Eqs. (18) and (19), we infer U o dwr!/?+28+€ (see

also Lou & Zou 2004). Using the potential-density pair (21), Eqgs. (18) and (19) are reduced to
w?— H)U® = -G,UY
=) ’ (23)
(w? — H)UY = -G U*

in the limit of w — 0, where the parameter functions Hy, H», G; and G are explicitly defined
by

H1 = Iﬁi-{- (;—3 —QWGN(]E(% M N

HQE/{Z"’ é—QwG./\/oEg 152_4;1&1 , (24)
G = 2rGN T EHY 5
G = 2rGN RS EEUA 5
The axisymmetric dispersion relation in the composite disk system follows from Eq. (23)
wt — (Hy + Hy)w? + (H1Hy — G1G2) =0 (25)

in the limit of w — 0. This is identical in form with the earlier results obtained in the WKB.J
regime (Jog & Solomon 1984a; Shen & Lou 2003). It may be of interest to note that the
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conditions for the stellar disc and the gaseous disc to be separately stable are H; > 0 and
H, > 0, respectively. We may also recall here that in the familiar WKBJ regime, the dispersion
relation in a single disc is

w? = K + k%a® - 27G|k|Z, (26)

where k is the radial wavenumber, whereas in the present global analysis as applied to a single
disc, we have in the limit of w — 0,

w? =K+ 7(52 +1/4) a? — 277G7(52 + 71”/4)/\/0 o - (27)

r2

If we replace Ny(€) approximately by (£2 4+ 1/4)~1/2 in the asymptotic regime of & > 1, we
readily identify the correspondence between the effective wavenumber (¢2 +1/4)!/2 and the |k|r
in the WKBJ limit of |k|r >> 1 by directly comparing the dispersion relations (26) and (27).
Physically, the dispersion relation (27) is more generally applicable beyond the WKBJ regime
and is globally accurate only in the limit of w — 0 (Shu et al. 2000).

Returning to the composite system, Eq. (25) has two real roots® of w?:

wi = %{(Hl + Hy) + [(Hy + H)? — 4(H Hy — G1G2)]'/?} (28)

with w? being always positive (Shen & Lou 2003). For the purpose of axisymmetric stability
analysis, we only need to examine the root w? , namely

w? = %{(fh + Hy) — [(Hy + Hy)? — 4(H Hy — GlGZ)]l/z} : (29)

As the right-hand side of the above Eq. (29) is always real, axisymmetric instability sets in as
stationary perturbation configurations with w? = 0 and this leads to the marginal stability

condition
H H, = GG, (30)

which requires the inequality H; + Ho > 0. This inequality can be shown in a straightforward
manner to be automatically satisfied if Eq. (30) holds true. Let us first write

H=FK-G and Hy=F -Gy, (31)

where F} and F3 are explicitly defined by

F1£n§+(€2—:#a§>0 and FQEK3+WG3>O. (32)
It then follows from the condition (30) H; H» = G1G> that
B FE =FG + FGr . (33)
As Fy, F5, G; and G4 are all positive, we immediately conclude that
-G >0 and -Gy >0, (34)

5 One can show that the determinant of equation (25) A = (Hy — H3)% 4+ 4G1G2 > 0 is always true.
6 If Hy + Hy > 0, then wi_ > 0; otherwise if Hy + Hs < 0, then at least one of Hy and Hs is negative. It

therefore follows that Hi Hy — G1 G2 < 0 and hence w_2~_ > 0.
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which finally lead to
H +H,>0. (35)

The composite disc system becomes inevitably unstable for H; + Hs < 0 because w? < 0. Else
if H; + Hy > 0 but with HyH, — G1G» < 0, we again have w? < 0 for instability. Only when
H, + Hy > 0and HiHs — G1G5 > 0 at the same time can the composite disc system be stable
against axisymmetric coplanar perturbations. This is an important necessary stability criterion
for a composite system of two gravitationally coupled discs. In other words, once one disc is
unstable by itself (i.e., H; < 0 or H2 < 0 or both), the two-disc system must be unstable; even
if the two discs are both separately stable, the composite disc system can still become unstable
(i.e., H; >0and Hy >0 but HHHy — G1G2 < O)

By inserting the expressions of Hy, Hs, Gy and G5 into the marginal stability condition
(30) together with the requirement of background rotational equilibrium, we readily derive a
quadratic equation in y = D2, namely

Coy* +Ciy+Co =0, (36)
where the coeflicients are explicitly defined by
Cy = BoHon ,

— Ao+Bo)(Ho—B Ao+Bo)(Ho+Bod
Cr = [(Bo = Aoty + oot | (At -

_ _ .
Co = |:—A0/H0+ Ao+lz(i+;'§o Bg :|7}+(A0+BO)2 _ Ao+3(01+7(-sl>o+806 :

and

Ao(§) = +1/4,

Bo(B) = (1+28)(-2+28) ,
C(B) = (1+28)/(28P,) ,
Ho(B,€) = CNoAo + By -

This quadratic equation (36) can be readily proven to always have two real solutions (Shen &
Lou 2004). Only positive solutions can be regarded as physically acceptable. Typically, there
exist two different regimes bounded by the marginal D? stability curves that are unstable against
axisymmetric perturbations, one is the collapse regime for long-wavelength perturbations, the
other is the ring-fragmentation regime for short-wavelength perturbations. In contrast to the
short-wavelength WKBJ approximation, the collapse regime is novel and exact. Systems with
too fast a rotation parameter D? will fall into the ring-fragmentation regime (Safronov 1960);
Toomre 1964; Syer & Tremaine 1996; Lou & Fan 1998a, b; Shu et al. 2000; Lou 2002; Lou
& Shen 2003, 2004; Shen & Lou 2003), while those with too slow a D? parameter will fall
into the collapse regime. Shown in Fig.1 is an illustrative example with 8 = 1/4, n = 1 and
an unconstrained §. We note that cases with 7 = 1 are essentially the same as those of a
single disc (Shen & Lou 2004). The boundaries of the two unstable regimes shown in Fig. 1
vary with different parameters n > 1 and é for a chosen value of § which fixes the entire
scale-free radial profile of the composite system (i.e., the rotation curves, surface mass densities
and barotropic equation of state). Qualitatively, an increase of either 1 and ¢ will aggravate
the ring-fragmentation instability and suppress the large-scale collapse instability (Shen & Lou
2003). While this can be directly seen from Eq. (36) in the relevant parameter regime, it can

(38)
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also be understood physically in terms of the dynamical coupling between the two discs through
the condition (10) imposed upon by the scale-free conditions. For a larger 7, the reduced gas
disc rotation speed V, will exceed the reduced stellar disc rotation speed V; by a larger margin
and this will tend to prevent an overall collapse of the composite system. In other words, a
gaseous disc component with a relatively lower sound speed apparently inhibits collapse (Shen
& Lou 2003). More details and examples can be found in Shen & Lou (2004).

It is well known that a () parameter can be defined to determine local axisymmetric stability
of a single-disc system (Safronov 1960; Toomre 1964; Binney & Tremaine 1987). For a composite
disc system, it has been attempted to introduce an effective Qg parameter (Elmegreen 1995;
Jog 1996; Lou & Fan 1998b). As a result of a straightforward numerical computation, we
have recently introduced a powerful D—criterion for axisymmetric stability of a composite
system of two coupled SIDs (Shen & Lou 2003). It is natural to generalize this D—criterion for
axisymmetric stability of a composite system of two coupled barotropic discs by straightforward
numerical computations as shown in Fig. 1. In the present case, it is more practical and simpler
to use the D? parameter.

30

25F

-

20

)

Y (D

collapse

Fig.1 Two unstable regimes in the case of m = 0, 8 = 1/4 and n = 1. The collapse
regime is at the lower-left corner, while the ring-fragmentation regime is at the upper-right
corner. In this special case of 7 = 1, the parameter § can be arbitrary as can be seen from
equation (37), that is, when = 1 the coefficients C», C1 and Cp turn out to be independent
of §. The vertical dash-dotted line is the location of £, where Ho = 0 and C; vanishes. The
solid line and the dashed line bound the collapse regime and the ring fragmentation regime,
respectively. Only when D? falls within the range between the top of the collapse regime
and the bottom of the ring fragmentation regime can a composite disc system become stable
against all axisymmetric coplanar perturbations.

2.3 Partial Disc Systems and Applications to Disc Galaxies

From observations of more or less flat rotation curves of most disc galaxies, massive dark
matter halos have been inferred to exist ubiquitously as long as Newtonian gravity remains valid
on galactic scales. If we naively attempt to relate the theoretical results obtained in Section 2.2
to a typical disc galaxy, we may take the simple isothermal equation of state as an illustrative
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example. The relevant parameters for a composite SID system are then given as § = 0 and
a, =50kms ", YV, =220 km s~', § = 0.1 and 1 = 50. Unfortunately, such a composite system
of two coupled SIDs is inevitably unstable against ring-fragmentation perturbations because we
have a D? ~ 20 far exceeding the maximum value for stability against ring fragmentation. This
dilemma can be resolved by attributing to an additional gravitational potential associated with
an unseen massive dark matter halo. We refer to a composite disc system in association with
an axisymmetric dark matter halo as a composite system of partial discs (e.g. Syer & Tremaine
1996; Shu et al. 2000; Lou 2002; Lou & Fan 2002; Shen & Lou 2003, 2004; Lou & Zou 2004,
2005; Lou & Wu 2004). In a simple treatment, the dynamical effect of a dark matter halo
is assumed only to contribute an axisymmetric gravitational potential ® in the background
rotational equilibrium but not to respond to coplanar perturbations in the composite disk
system. With ¢ = ® + ¢, we conveniently introduce a dimensionless parameter F = ¢/¢r,
the ratio of the potential arising from the composite disc system to that of the entire system
including the presumed axisymmetric dark matter halo. A full-disc system corresponds to
F =1 (ie, ® = 0) and a partial-disc system corresponds to 0 < F < 1 (i.e., ® # 0). For
a composite system of two gravitationally coupled partial discs, we follow the same procedure
of analysing coplanar perturbations in full discs to derive a similar quadratic equation of D?
as the stationary dispersion relation. In a nutshell, we can simply replace all Ng(£) in our
theoretical results by FNp(€) to effect this generalization or extension. The introduction of the
ratio parameter F will significantly reduce both the ring-fragmentation regime and the collapse
regime, as can already be seen from a comparative study of the WKBJ and global approaches
(Shen & Lou 2003).

For the purpose of illustrating the stabilizing effect of a partial-disc system, we simply take
F = 0.1 with other parameters used earlier in this section. The minimum value of D? for
unstable ring fragmentations now becomes ~ 650, far beyond the actual value of D? ~ 20
in a disc galaxy. Meanwhile, the collapse regime disappears completely. Therefore, a typical
composite system of two coupled partial discs is fairly stable against axisymmetric coplanar
perturbations.

3 DISCUSSION AND SUMMARY

The main thrust of this investigation is to model linear coplanar axisymmetric (m = 0)
perturbations in a composite system of two-fluid scale-free discs, one stellar and one gaseous.
The two discs are dynamically coupled through mutual gravitational interaction. In order to
include the dynamical effect of a massive axisymmetric dark matter halo, we further describe
a composite system of two coupled partial discs (e.g. Syer & Tremaine 1996; Shu et al. 2000;
Lou 2002; Lou & Shen 2003; Lou & Zou 2004, 2005; Lou & Wu 2004; Shen, Liu & Lou 2004).
In a global perturbation analysis, we show that axisymmetric instabilities set in as stationary
perturbation configurations with w = 0. The marginal D? stability curve (characterized by
the stationary configurations) delineates two different unstable regimes, namely, the collapse
regime for large-scale perturbations and the ring-fragmentation regime for short-wavelength
perturbations. Apparently, the composite disc system becomes less stable than a single-disc
system and can be unstable while the two discs are separately stable (Lou & Fan 1998b). In our
analysis, stationary perturbation configurations turn out to be more than just an alternative
equilibrium state, especially in view of the stability properties.

The basic results of this paper are generally applicable to self-gravitating disc systems with
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or without axisymmetric dark matter halos. The two-fluid treatment contains more realistic
elements than a single-disc formulation in the context of disc galaxies. In addition to astro-
physical applications to disc galaxies, the studies presented here can be valuable for exploring
the dynamical evolution of protostellar discs and circumnuclear discs.

In the context of proto-stellar disc, it is usual to ignore the self-gravity effect. By con-
sidering the self-gravity of a composite disc system, our analysis indicates several qualitative
yet interesting results. For example, if the initial disc system rotates sufficiently fast, the ring
fragmentation (see the upper-right part of Fig. 1) can occur at relatively small radial scales. By
further non-axisymmetric fragmentations, these condensed rings of materials may eventually
become birthplaces of planets. On the other hand, if the initial disc system rotates sufficiently
slowly, then gravitational collapse can be induced by perturbations of relatively large radial
scales (see the lower left corner of Fig.1). Once such a perturbation develops in the background
equilibrium disc, it grows rapidly and destabilizes the disc. Subsequently, the system under-
goes global Jeans collapse to form a central young stellar object. Finally, if the initial disc
system rotates in a regime that is stable against all axisymmetric perturbations (see Fig.1),
then there may be two possibilities: (1) the composite disc system may become unstable from
non-axisymmetric perturbations (not analyzed here) and (2) the disc rotation may be grad-
ually slowed down by some braking mechanisms (e.g. magnetic field not included here and
outflows or winds) and the disc eventually succumbs to a central collapse induced by large-scale
perturbations.

Likewise, in the context of a circumnuclear disc around the center of a galaxy, we can
readily conceive similar physical processes taking place. One important distinction is that a
dark-matter halo should play an important dynamical role so that a formulation of a partial
composite disc system would be more appropriate. Here, ring fragmentation can be induced
by relatively small-scale perturbations in a disc system of sufficiently fast rotation. Such a
ring of relatively dense materials around the galactic center would be a natural birthplace for
circumnuclear starburst activities (e.g. Lou et al. 2001). Depending on the evolution history of a
circumnuclear disc system, it may be stable initially and may gradually lose angular momentum
through the generation and damping of spiral magnetohydrodynamic (MHD) density waves
(Lou et al. 2001). When the disc rotation becomes sufficiently slow, Jeans collapse induced by
large-scale perturbations can set in to form a bulge or a super massive black hole.

In summary, our global analysis shows the possible presence of an evolutionary stage for a
composite disc system against all axisymmetric coplanar perturbations. More importantly, we
reveal the parameter regime of ring fragmentation and that of large-scale collapse. Astrophysical
applications are discussed in the contexts of disc galaxies, proto-stellar discs and circumnuclear
discs.
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