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Timesale Analysis of Spetral Lags �Ti-Pei Li1;2;3, Jin-Lu Qu2, Hua Feng3, Li-Ming Song2, Guo-Qiang Ding2 andLi Chen41 Department of Physis & Center for Astrophysis, Tsinghua University, Beijing 100084;litp�mail.tsinghua.edu.n2 Partile Astrophysis Lab., Institute of High Energy Physis, Chinese Aademy of Sienes3 Department of Engineering Physis & Center for Astrophysis, Tsinghua University4 Department of Astronomy, Beijing Normal UniversityReeived 2004 May 17; aepted 2004 June 28Abstrat A tehnique for timesale analysis of spetral lags performed diretlyin the time domain is developed. Simulation studies are made to ompare the timedomain tehnique with the Fourier frequeny analysis for spetral time lags. Thetime domain tehnique is applied to studying rapid variabilities of X-ray binariesand -ray bursts. The results indiate that in omparison with the Fourier analysisthe timesale analysis tehnique is more powerful for the study of spetral lags inrapid variabilities on short time sales and short duration aring phenomena.Key words: methods: data analysis | binaries: general | X-rays: stars |gamma rays: bursts | X-rays: bursts1 INTRODUCTIONThe analysis of spetral lag between variation signals in di�erent energy bands is an im-portant approah to obtain useful information on their produing and propagation proessesin elestial objets. Observed intensity variations are usually produed by various proesseswith di�erent time sales and di�erent spetral lags. A lag spetrum, a distribution of timelags over Fourier frequenies, an be derived from two related time series with the aid of theFourier transformation. Let x(ti) and y(ti) be two light urves observed simultaneously in twoenergy bands at times ti, their Fourier transforms are X(fj) and Y (fj) respetively, and theross spetrum C(fj) = X�(fj)Y (fj). The argument of the ross spetrum C(fj) is the phasedi�erene between the two proesses at frequeny fj , or the time lag of photons in band 2relative to that in band 1 �(fj) = arg[C(fj)℄=2�fj : (1)The Fourier analysis tehnique has been most widely used in studying spetral lags.� Supported by the National Natural Siene Foundation of China.



584 T. P. Li, J. L. Qu, H. Feng et al.The time domain method for studying spetral lags an be based on the orrelation analysis.For two ounting series x(ti); y(ti) (or x(i); y(i) ), the observed ounts in the orrespondingenergy band in the time interval (ti; ti+1) with ti = (i � 1)�t, the ross-orrelation funtion(CCF) of the zero-mean time series at lag k�t is usually de�ned asCCF(k) =Xi u(i)v(i+ k)=�(u)�(v) (k = 1;�1; � � �) (2)with u(i) = x(i)� �x; v(i) = y(i)� �y, �2(u) =Pi[u(i)℄2 and �2(v) =Pi[v(i)℄2. With CCF thetime lag an be de�ned as � = km�t where CCF(k)/CCF(0) has maximum at k = km. Insteadof a lag spetrum provided by Fourier analysis, the orrelation tehnique gives only a singlevalue � of time lag. To an understanding of a physial proess ourring in the time domain,we need to know spetral lags at di�erent timesales, i.e. a timesale spetrum �(�t).We annot simply equate a Fourier period with the timesale and interpret a Fourier spe-trum in the time domain as the timesale spetrum. For example, a Fourier power spetruman not be interpreted as the distribution of variability amplitude vs. timesale. A sinusoidalproess with frequeny f has no Fourier power at any frequeny exept f , but it does not meanthat no variation exists at timesales shorter than 1=f . One an make light urves with timesteps smaller than 1=f and �nd that non-Poissonian variations of intensities do exist in suhlight urves. In fat, a frequeny analysis is based on a ertain kind of time-frequeny transfor-mation. Di�erent mathematially equivalent representations with di�erent bases or funtionaloordinates in the frequeny domain exist for a ertain time series, a Fourier spetrum with thetrigonometri basis does not neessarily represent the true distribution of a physial proess inthe time domain. It has to be kept in mind that a mathematial transform may distort physialinformation ontained in the observational data. For orretly understanding the real proess,one has to invert results obtained through a time-frequeny transform into the real physialspae. It is usually not easy to omplete suh an inversion. A sinusoidal proess is the simplestsignal in the frequeny domain, but a omplex one in the time domain. The orret proedureto invert a Fourier power spetrum pF (f) into the timesale spetrum p(�t) in the physialspae (the time domain) is p(�t) = Z pF (f) p(�tjf) �t ;where p(�tjf) is the timesale spetrum of a sinusoidal proess with frequeny f and unitamplitude, whih is not a simple value or funtion and an not be derived from the Fourieranalysis.To orretly understanding a time proess, we have to make timesale analysis diretly inthe time domain and need to develop spetral analysis tehnique in the time domain withoutusing the Fourier transform or other time-frequeny transformation. A preliminary algorithmto modify the onventional ross-orrelation tehnique was proposed by Li, Feng & Chen (1999).After then the algorithms to evaluate timesale spetra of power density, oherene, spetralhardness, variability duration, and orrelation oeÆient between two harateristi quantitieswere worked out (Li 2001), the modi�ed ross-orrelation tehnique is a part of the timesaleanalysis method in the time domain. Reently we have developed and ompleted the modi�edross-orrelation tehnique, improved its sensitivity and lag resolution signi�antly. This paperpresents the timesale analysis tehnique of spetral lags and its appliation to analyzing spaehard x-ray and -ray data. The general proedure of timesale analyzing and the modi�edross-orrelation funtion for spetral lag analysis in the time domain are introdued in Setion



Timesale Analysis of Spetral Lags 5852. The tehnique has been applied to studying spetral lags of hard X-rays from X-ray binaries,-ray bursts and terrestrial -ray ashes, some examples are shown in Setion 3. Relevantdisussions are made in Setion 4.2 METHOD2.1 Timesale AnalysisTemporal analysis is an important approah to study dynamis of physial proesses inobjets. Usually we take some quantities, e.g., power density (variation amplitude), spetral lag,and oherene, et., to haraterize temporal property of observed light urves. The omplexvariability of high-energy emission shown in di�erent time sales is a ommon harater forX-ray binaries, super massive blak holes and -ray bursts. The variability is aused by variousphysial proesses at di�erent timesales. It is not easy to study the variation phenomena ona given time sale. Large time bin used in alulation will erase the information on shortertime sales. Moreover, the analysis result with a short time bin reets not only the variationproperty on the short time sale, but may also be a�eted by that on longer ones up to thetotal time period used in the alulation. The fat that a light urve with time step �t doesnot inlude any information of variabilities at timesales shorter than �t an be used as afoundation of timesale analysis. A set of light urves with di�erent time steps �t produedby rebinning the same originally observed data with a time resolution Æt is the basi materialin timesale analysis.Usually the originally observed data for temporal analysis is a ounting series x(j; Æt) (j =1; � � �) with a time resolution Æt. To study variability on a timesale�t =M�tÆt ; (3)we need to onstrut a new light urve with the time step �t from the native series by ombiningits M�t suessive bins by x(i; �t) = iM�tXj=(i�1)M�t+1x(j; Æt) : (4)As the light urve fx(�t)g does not inlude any information about the variation on any timesaleshorter than �t, it is suitable for studying variability over the region of timesale � �t.Let � denote the quantity under study. The value �(�t) of the quantity at the timesale�t an be seen as a funtion of the light urve x(i; �t)�(�t) = f�[fx(�t)g℄ : (5)The key point in timesale analysis is to �nd a proper algorithm f� to alulate the value ofthe studied quantity � at a ertain timesale �t.The proedure (4) of binning the native series fx(Æt)g to get fx(�t)g with a larger timestep �t = M�tÆt is started from the �rst bin of x(j = 1; Æt). From the native light urve wean obtain M�t di�erent light urves with the same time step �txm(i; �t) = iM�t+m�1Xj=(i�1)M�t+mx(j; Æt) ; (6)where the ombination starts from the mth bin of the native series, the phase fator m =1; � � � ;M�t (see the diagrammati sketh Fig. 1).
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Fig. 1 From an originally observed time series with time resolution Æt (shematially shownat the top where eah small square represents a time bin with width Æt) �ve di�erent lighturves with time step �t = 5Æt an be onstruted with di�erent phase parameter m.For suÆiently using the information about variation on the timesale �t inluded in theoriginally observed light urve, we an alulate the studied quantity �(�t) for eah fxm(�t)gand take their average as the resultant value�(�t) = 1M�t M�tXm=1 f�[fxm(�t)g℄ : (7)In timesale analysis the observed light urve fx(Æt)g is usually divided into L segments,eah segment inludes nearly equal number of suessive bins. For eah segment i, we anaquire a value �i(�t) by Eq. (7), the average �(�t) and its standard deviation �(�(�t) anbe derived �(�t) = LXi=1 �i(�t)=L ;�(�(�t)) = vuut LXi=1(�i(�t) � �(�t))2=L(L� 1) : (8)Usually we an use some onvenient statistial methods based on the normal distributionto make statistial inferene, e.g. signi�ane test, on �(�t). For the ase of short time sale�t, although the number of ounts per bin may be too small for it to be assumed as a normalvariable, it is easy from a ertain observation period to obtain the total number L of segmentslarge enough to satisfy the ondition for applying the entral limit theorem in statistis andusing the normal statistis for the mean �(�t).2.2 Modi�ed Cross Correlation FuntionIn timesale analysis for spetral lags, the observed data are two related ounting seriesfx(i; Æt)g and fy(i; Æt)g in two energy bands with time resolution Æt. If the timesale �t understudy is larger than the time resolution, we need to onstrut two new light urves, fx(i; �t)gand fy(i; �t)g, by re-binning the originally observed series with the time step �t. With thetraditional CCF de�ned by Eq. (2), we an alulate the time lag � only if � > �t. However,for many physial proesses the real time lag is shorter or even muh shorter than the proesstimesale. For the purpose of applying orrelation analysis to the general ase of lag analysis,a modi�ed CCF at lag kÆt has been proposed (Li, Feng & Chen 1999)MCCF0(k; �t) =Xi u1(i; �t)vk+1(i; �t)=�(u)�(v) ; (9)



Timesale Analysis of Spetral Lags 587where the time step �t =M�tÆt, fuk(�t)g and fvk(�t)g are the zero-mean series of fxk(�t)gand fyk(�t)g, respetively, andxm(i; �t) = iM�t+m�1Xj=(i�1)M�t+mx(j; Æt) ;ym(i; �t) = iM�t+m�1Xj=(i�1)M�t+m y(j; Æt) : (10)The lag resolution of CCF de�ned by Eq. (2) is �t, and that of MCCF0 de�ned above is theoriginal time resolution Æt.For suÆiently using the information ontained in the observed lighturve, we propose toimprove the de�nition of MCCF0 further by following the proedure desribed by Eq. (7). Thenew and omplete de�nition of MCCF at lag kÆt isMCCF(k; �t) =1M�t M�tXm=1Xi um(i; �t)vm+k(i; �t)=�(u)�(v); (11)where um(i; �t) = xm(i; �t) � �xm(�t); vm(i; �t) = ym(i; �t) � �ym(�t), �xm(�t) and �ym(�t)are the urrent averages for the used segments of lighturve fxg and fyg, respetively. Theproedure of alulating a modi�ed ross-orrelation oeÆient is shematially shown by Fig. 2.We an �nd a value km of k to satisfy the onditionMCCF(k = km; �t)=MCCF(0;�t) = max ; (12)then the lag of band 2 relative to band 1 on timesale �t�(�t) = kmÆt : (13)
Fig. 2 MCCF of two native time series fx(Æt)g and fy(Æt)g at a time lag � = Æt (� =kÆt; k = 1) and on a timesale �t = 2Æt. MCCF(k = 1;�t) = 12 [Pi x1(i; �t)y2(i; �t) +Pi x2(i; �t)y3(i; �t)℄.For an observed time series x(j; Æt) with time resolution Æt, we an similarly de�ne a mod-i�ed auto-orrelation funtion at lag kÆt on timesale �t =M�tÆt,MACF(k; �t) =1M�t M�tXm=1Xi um(i; �t)um+k(i; �t)=�2(u); (14)



588 T. P. Li, J. L. Qu, H. Feng et al.where um(i; �t) = xm(i; �t)��x, xm(i; �t) =PiM�t+m�1j=(i�1)M�t+m x(j; Æt). The FWHM of MACF(� ; �t)an be taken as a measure of the duration of variation on time sale �t. With MACF we anstudy the energy dependene of average shot width in a random shot proess on di�erent timesales.2.3 Simulations2.3.1 Poissonian signalsTo ompare the above MCCF tehnique of estimating time lags with the traditional CCFtehnique and Fourier analysis, we produe two photon event series of length 1000 s with aknown time lag between them. The series 1 is a white noise series with average rate 200 ts s�1and series 2 onsists of the same events in series 1 but eah event time is delayed 13 ms.Besides the signal photons mentioned above, the two series are given independent additionalnoise events at average rate 300 ts s�1. By binning the two event series, two light urves withtime resolution Æt = 1 ms are produed. We make time lag analysis at timesales �t from 1 msto 2 s for the two light urves by CCF, MCCF and Fourier analysis tehniques separately (inFourier analysis we use Fourier ross spetrum with 1 ms light urves and 4096-point FFT andtake Fourier frequeny f = 1=�t), the results are shown in Fig. 3. In the left panel of Fig. 3,the ross signs show lags derived by CCF and plus signs by MCCF0 de�ned by Eq. (9). For thetimesale region of �t shorter or approximately equal to the magnitude of the true lag 0.013 swhere CCF works, MCCF0 an provide more reliable results with better auray. The irlesin the right panel of Fig. 3 indiate the Fourier lags, for the short timesale region of �t �< 0:3 s(or high frequeny region of f �> 30 Hz) the Fourier analysis an not give any meaningful result.In the timesale region of �t �> 0:1 s, the estimates of time lag by MCCF0 de�ned by Eq. (9)(plus signs in the left panel of Fig. 3) show signi�ant utuation about the expetation. Weuse the improved MCCF de�ned by Eq. (11) to alulate the lag spetrum again, the plus signsin the right panel of Fig. 3 indiate the result. Comparing the lag spetra with MCCF0 [Eq. (9)℄and MCCF [Eq. (11)℄, plus signs in the left panel and right panel of Fig. 3, we an see that usingthe improved MCCF an improve the lag spetrum signi�antly in the large timesale region.

Fig. 3 Time lag vs. time sale of two white noise series with 13ms time lag shown by thedotted horizontal line. Left panel: Cross { CCF lag; Plus { lag evaluated by MCCF0 [Eq. (9)℄.Right panel: Cirle { lag from Fourier analysis; Plus { lag by MCCF [Eq. (11)℄.



Timesale Analysis of Spetral Lags 5892.3.2 Transient signalsTo study the relative timing of transient emission at di�erent energies is a diÆult task inastrophysis. Neither the Fourier analysis nor the traditional ross-orrelation tehnique anobtain meaningful result of spetral lags from the observed data of short -ray bursts. Weshow here the ability of MCCF to study spetral lags in prompt emission of short -ray burstsby simulation. Figure 4 shows light urves with 5ms time bin observed by BATSE on CGROmission for a -ray burst, GRB 911025B (BATSE trigger number 936), in hannel 25{55keV,55{110keV, 110{320keV, and > 320 keV, respetively. The time-tagged event (TTE) data ofBATSE ontain the arrival time (2�s resolution) of eah photon for the short duration burstGRB 911025B. In our simulation, we use the 25{55keV photons between 1.35 s and 1.55 s inthe TTE data as the burst events in hannel 1. The burst events in hannel 2 are the samein hannel 1 but eah time is delayed 0.01 s. By binning the two event series with time bin5 ms, expeted signal series in hannels 1 and 2 are produed. Two simulated light urves inhannels 1 and 2 are generated by taking random samples from the expeted signal series andadding independent bakground noise at the average of 15 ounts eah bin, shown in Fig. 5.

Fig. 4 Light urves of a -ray burst GRB 911025B observed by BATSE in hannels 25{55 keV,55{110 keV, 110{320 keV, and > 320 keV, separately.



590 T. P. Li, J. L. Qu, H. Feng et al.

Fig. 5 Simulated light urves for two hannels. The burst proess for hannel 2 is delayed 0.01 sto hannel 1.From the two simulated lighturves we use MCCF to alulate the time lags at timesale�t = 0:005 s, 0.015 s, 0.045 s, 0.14 s, and 0.43 s, separately, the results are shown in Fig. 6. Theerror bar of time lag at eah timesale is estimated from 200 bootstrap samples. The simulationresult indiates that MCCF is a useful tool in relative timing of transient proesses.

Fig. 6 Time lag vs timesale of two simulated light urves in Fig. 5.Dotted line { expeted time lag. Cross { measured by MCCF.2.3.3 Timesale dependent proessSpetral time lags observed for X-ray binaries and AGNs are usually timesale dependent.For example, the Fourier lag between 14.1{45keV and 0{3.9keV of X-ray emission from Cyg X-1 in the low state ontinuously varies with Fourier frequeny, from � 30 ms at 0.1 Hz dereasing



Timesale Analysis of Spetral Lags 591down to � 2 ms at 10 Hz (Nowak et al. 1999). Real data in timing an be seen as a omplextime series with multiple timesale omponents. The timesale dependene of spetral lagsan be the intrinsi property of the emission proess and/or omes from di�erent proessesdominating at di�erent timesales. Corretly deteting the timesale dependene of spetrallags is important to studying the undergoing physial proesses. Now we ompare the abilitiesof MCCF and Fourier tehnique to study spetral lags of time series with multiple timesaleomponents. Two light urves of a omplex proess onsisting of �ve independent random shotomponents are produed by Monte Carlo simulation. Eah signal omponent i (i = 1 � 5)onsists of random shots with shape of pro�le a � exp[(t � t0)=�i)℄2, where the peak height a israndomly taken from the uniform distribution between zero and the maximum. The separationbetween two suessive shots is exponentially distributed with average separation �i. For eahomponent i, we produe a 3000 s ounting series of band 1 with a step of Æt = 1 ms andaverage rate 200 ts s�1. The orresponding series in band 2 onsists of the same events inseries 1 but eah event time is delayed �i s. The harateristi time onstants �i of the �vesignal omponents are 0.005, 0.01, 0.02, 0.04, and 0.08 s, and their time lags are 0.004, 0.008,0.012, 0.016, and 0.02 s, respetively. Summing up the �ve series for eah band, we produetwo expeted signal light urves. Two syntheti light urves with time step 1 ms are made byrandom sampling the expeted light urves with Poisson utuation plus a independent whitenoise at mean rate of 100 ts s�1. For the two light urves, we use their Fourier ross spetrumand 4096-point FFT and MCCF in the time domain to alulate the time lags on di�erent timesales �t and show the results in Fig. 7.To derive the expeted lag spetrum of the above syntheti light urves, we alulate thetimesale distribution of power density for eah shot omponent using the algorithm of esti-mating power density spetrum p(�t) in the time domain (Li 2001; Li & Muraki 2002). As anexample, Fig. 8 shows the distribution of variation power p(�t)�t (rms2) vs. time sale �t forthe expeted light urve of the shot proess with � = 0:01 s. As shown in Fig. 8, an individualshot omponent with harateristi time �i has its variation power distributed over a ertaintime sale region. The time lag between two bands should appear in the whole timesale regionwhere the signal variation power exists. The expeted lag of the two syntheti light urves withmultiple omponents on timesale �t should be estimated as a weighted average of �ve lags �iof individual omponent with orresponding weight fator pi(�t)�t�(�t) =Xi pi(�t)�t � �i: (15)The solid line in Fig. 7 is the expeted lag distribution alulated by Eq. (15). We an seefrom Fig. 7 that the Fourier ross spetrum fails to detet lags in the short timesale region,but MCCF works well. More simulations with di�erent signal to noise ratios show that theMCCF tehnique is apable of orretly deteting time lags from severely noisy data and theineÆieny of deteting time lag in short time sale region is an intrinsi weakness of the Fouriertehnique, even for data with muh higher signal to noise ratio the Fourier analysis still an notdetet lags in the high frequeny region.
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Fig. 7 Top and Middle: Syntheti light urves with time bin 0.01 s for a omplexproess onsisting of di�erent harateristi timesales and di�erent spetral lags.Bottom: Timesale spetra of time lag; Solid line { the expeted lag spetrum, Plus{ MCCF lag, Cirle { lag from Fourier analysis.
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Fig. 8 Power distribution p(�t)�t vs. time sale �t of a randomshot proess with a harateristi timesale � = 0:01 s, where p(�t)(rms2 s�1) is the power density on the timesale �t of the proess.3 APPLICATIONSThe timesale spetral method for time lag analysis is a powerful tool in revealing theharateristi of emission proess in objets. With the help of MCCF tehnique, as a example,we an judge between di�erent prodution models of x-rays from areting blak holes. Theenergy spetra of hard X-rays from blak hole binaries an be �tted well by Comptonization ofsoft photons by hot eletrons in the viinity of the ompat soures. To explain the observedenergy spetra the uniform orona model was suggested initially (Payne 1980), in whih thesoft photons from the entral region of the system are Comptonized by the hot eletrons oforona. The Comptonization proess makes the observed hard photons undergo more satteringthan the low energy photons and therefore the hard photons are naturally delayed from softphotons. Hard lags are not orrelated with the variability timesale (or variability frequeny)in the uniform orona model, but the later study showed strong timesale-dependene of timelags (Miyamoto & Kitamoto 1988). For overoming the ontradition between predition bythe uniform orona model and observed results, other models, suh as the non-uniform oronamodel (Kazanas et al. 1997), the magneti are model (Poutanen & Fabian 1999) and thedrifting-blob model (B�otther & Liang 1999) are proposed. The hard X-ray lags are studiedby observations with PCA detetor on board RXTE mission in using the Fourier tehnique tothe blak hole andidate Cyg X-1 in the low state (Nowak et al. 1999), high state (Cui et al.1997a), and during spetra transitions (Cui et al. 1997b). The meaningful Fourier spetra oftime lag from PCA/RXTE data are all limited in the range of Fourier frequeny �< 30 Hz (ortimesale �> 0:03 s) and, exept that with an uniform orona, all models mentioned above an�t the observed lag spetra of Cyg X-1. To test these models, we need to ompare the expeted



594 T. P. Li, J. L. Qu, H. Feng et al.and observed lags in the higher frequeny range or on the shorter time sales.Kazanas et al. (1997) presented that for the PCA/RXTE observation of June 16 1996(ObsID P10512), hard X-ray time lags of Cyg X-1 in the soft state as a funtion of Fourierfrequeny over the region of 8 � 30Hz an be well �tted by the non-uniform orona model.From the same data, we measure the time lags between 13{60keV and 2{5keV on short timesales down to �t � 1 ms with MCCF and the results, shown in the top panel of Fig. 9 annot be �tted by this model (the solid line in the �gure). The drifting-blob model (B�otther &Liang 1999) an also explain the observed time lags in the Fourier period region above 0.1 s. Onshort time sales, the Comptonization proess of the drifting-blob model is similar with that ofthe non-uniform orona model. Thus, the time lag will have similar time sale dependene, i.e.,time lag will derease with time sale as quikly as the behavior of non-uniform orona modelon short time sales. The drifting blob model also an not explain the observed time lags ofCyg X-1 on the short time sales.

Fig. 9 Hard X-ray time lag vs. time sale of Cyg X-1. top panel: Cirle { time lag between13{60 keV and 2{5 keV in the soft state of Cyg X-1 on 1996 June 17 (PCA/RXTE ObsID P10512)measured by MCCF; Solid line { expeted by the non-uniform orona model. bottom panel: Cirle {lags between 13{60 keV and 2{5 keV of Cyg X-1 in the hard state on 1996 Otober 23 (PCA/RXTEObsID P10241) measured by MCCF; Solid line { lags between 27 keV and 3 keV predited by themagneti are model.



Timesale Analysis of Spetral Lags 595Poutanen & Fabian (1999) proposed the magneti are avalanhe model to explain theobserved time lags of Cyg X-1, and parameterize the spetral evolution of a magneti areand the avalanhe proess based on the PCA/RXTE observation on Otober 23 1996 (ObsIDP10241). In the bottom panel of Fig. 9, we show the measured time lags with the observationdata and MCCF tehnique (the irles) and the predited by the model (the solid line). Thepredited time lags an �t the measured time lags well in the time sales range between � 4msand 1 s, muh better than other models, although there seems to be overestimated on theshortest timesales. This example shows that the apability of MCCF for deteting time lagson short time sales an help us to reveal the underlying physis in high energy proess inobjets.

Fig. 10 Hard lags of GRB 911025B measured by MCCF. Left panel: Timesale spetra oftime lag of (110{320) keV vs. (25{55) keV. Right panel: Energy dependene of time lag of hardphotons vs. (25{55) keV, averaged for timesales 0.005 s, 0.01 s, 0.25 s, 0.06 s, and 0.14 s.The MCCF is partiularly useful in studying transient proesses. The BATSE detetorhas disovered an unexplained phenomenon: a dozen intense ashes of hard X-ray and -rayphotons of atmospheri origin (TGFs) (Fishman et al. 1994). As all the observed TGFs wereof short duration (just a few milliseonds), it is diÆult to study their temporal property byonventional tehniques. With the aid of the preliminary MCCF (MCCF0, Eq. (9) in thispaper), Feng et al. (2002) revealed that for all the ashes with high signal to noise ratio -rayvariations in the low energy band of 25{110keV relative to the high energy band of > 110 keVare always late in the order of � 100 �s in the timesale region of 6 � 10�6 � 2 � 10�4 s andpulses are usually wide. The above features of energy dependene of time pro�les observed inTGFs support models that TGFs are produed by upward explosive eletrial disharges athigh altitude.E�orts have been made to measure the temporal orrelation of two GRB energy bandsby the CCF tehnique (e.g. Link, Epstein & Priedhorsky 1993; Cheng et al. 1995; Wu &Fenimore 2000; Norris 2002). The CCF tehnique has no neessary sensitivity to make timinganalysis for weak events. For strong bursts the DISCSC data in BATSE database, 4-hannellight urves with 64 ms time resolution, are usually analyzed, but it fails with the traditionalACF and CCF in the ase that the existed spetral lags are omparable or smaller than 64 ms



596 T. P. Li, J. L. Qu, H. Feng et al.whatever how strong the burst is. For short bursts of duration < 2 s, we an use TTE data toonstrut high resolution light urves, as the four light urves of time resolution Æt = 5 ms forGRB 911025B shown in Fig. 4. We failed to obtain statistially meaningful results in spetrallag analysis for short GRBs by using CCF and MCCF0. The MCCF tehnique an help usto reveal spetral lags in strong short bursts. As an example, with the light urves of GRB9110258B and MCCF, we alulate the time lag between two hannels at timesale �t = 0:005s, 0.01 s, 0.025 s, 0.06 s, and 0.14 s, respetively. In our alulation only partial data havinghigher signal to noise ratio reorded during 1.29 s and 1.62 s are used. The obtained timesalespetrum and energy dependene of time lags are shown in Fig. 10. For long -ray bursts, theBATSE Time-to-Spill (TTS) data reord the time intervals to aumulate 64 ounts in eahof four energy hannels. The TTS data have �ne time resolution than 64 ms of DISCSC datawhen the ount rate is above 1000 ts s�1. The TTS data an be binned into equal time binswith a resolution of Æt � 10 ms and our simulations show that from the derived light urvesthe temporal and spetral properties with the time resolution Æt an be reliably studied withMCCF for typial GRBs reorded by BATSE. As an example, the left panel of Fig. 11 showsthe lag spetrum of GRB 910503 deteted by BATSE with a duration � 50 s. From the MCCFlag spetra, we an further derive the energy dependene of lag at di�erent timesales, shownin the right panel of Fig. 11. The results shown in Figs. 10 and 11 indiate that MCCF an beused to explore temporal and spetral properties for both long and short -ray bursts.

Fig. 11 Hard lags of GRB 910503 measured by MCCF. Left panel: Timesale spetra of timelag. Cirle { (20{60) keV vs. (60{100) keV; Plus { (20{60) keV vs. (110{325) keV; Diamond { (20{60) keV vs. > 325 keV. Right panel: Time lag of 20{60 keV photons vs. energy of hard photons.Cirle { timesale 0.01 s; Plus { timesale 0.3 s; Diamond { timesale 0.6 s.4 DISCUSSIONThe tehnique for timesale analysis with MCCF is developed from the standard ross or-relation funtion CCF. For determining CCF from unevenly sampled data whih are ommonin astronomial ontexts, several di�erent methods have been introdued, i.e., interpolatingthe data between observed points to form a ontinuous funtion (Gaskell & Sparke 1986), the



Timesale Analysis of Spetral Lags 597disrete orrelation funtion (DCF, Edelson & Krolik 1988), evaluating CCF with the dis-rete Fourier transform (Sargle 1989), and z-transformed disrete orrelation funtion (ZDCF,Alexander 1997). Introduing MCCF was motivated by the need of improving the resolutionand sensitivity of the standard orrelation analysis. Comparing the two de�nitions, Eq. (11)for MCCF and Eq. (2) for CCF, we an see that MCCF inludes more information from theobserved data than CCF does. That the lag � = kÆt in MCCF has the same resolution withthe originally observed data but the resolution of CCF lag is �t and that MCCF is alulatedby summing over m = 1; 2; � � � ;M�t (using all possible light urves that an be derived fromthe native data with timesale �t) but CCF only uses one light urve for a given time bin �t{ make MCCF has better resolution and sensitivity in measuring spetral lags.Three di�erent temporal quantities exist in the timesale analysis: time t, time resolution Æt,and time sale �t. The originally observed data, based on whih both the frequeny analysisand timesale analysis are performed, are time series x(t) in the time domain with a timeresolution Æt. With frequeny analysis, we an derive a frequeny spetrum �(f) for a studiedharateristi quantity � (in this paper � is time lag, in other spetral analysis it may be powerdensity, oherene, or other quantity) from the observed time series. In frequeny analysis,the observed time series has to be transformed into the frequeny domain �rst with the aidof time-frequeny transformation, e.g., the Fourier transform, and the maximum frequeny isdetermined by the time resolution Æt. The timesale analysis is performed diretly in the timedomain without any time-frequeny transformation. With timesale analysis we an derive atimesale spetrum �(�t) for the studied quantity � where the argument �t, i.e., the variationtimesale, is a variable similar to the frequeny f in frequeny analysis. The minimum timesalein timesale analysis is the time resolution Æt of the originally observed data. To study temporalproperty on a ertain timesale �t, the used light urves should have a time step equal to thetimesale under study. With MCCF we an measure any lag greater than the time resolutionof observation at any given timesale and produe a timesale spetrum of time lags.There exist two kinds of spetral analysis: frequeny analysis and timesale analysis. Al-though the Fourier method is a ommon tehnique to make spetral analysis, it an not replaethe timesale analysis in the time domain. As any observable physial proess always ours inthe time domain, a frequeny spetrum obtained by frequeny analysis needs to be interpretedin the time domain. However, a frequeny analysis is dependent on a ertain time-frequenytransformation. A Fourier spetrum by using Fourier transform with the trigonometri basisdoes not neessarily represent the true distribution of a physial proess in the time domain.The rms variation vs. timesale of a time-varying proess may di�er substantially from itsFourier spetrum, as an example, the Fourier spetrum of a random shot series signi�antlyunderestimates the power densities at shorter timesales (Li & Muraki 2002). The present workshows that, like Fourier power spetra, Fourier lag spetra also always signi�antly underes-timate time lags at short timesales. The timesale analysis performed diretly in the timedomain an derive a real timesale distribution for quantities haraterizing temporal property.In omparison with the Fourier tehnique, timesale spetra of power density and time lag fromthe timesale analysis an more sensitively reveal temporal harateristis at short timesalesfor a omplex proess.Welsh (1999) pointed out that the lag determined from the CCF should be onsideredonly a harateristi time sale. Care has to be taken in interpreting measured lags witha partiular physial model. Most tehniques in timing an only treat timesale just in asyntheti meaning. For example, a orrelation funtion lag of two shot series may aused not
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