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t A te
hnique for times
ale analysis of spe
tral lags performed dire
tlyin the time domain is developed. Simulation studies are made to 
ompare the timedomain te
hnique with the Fourier frequen
y analysis for spe
tral time lags. Thetime domain te
hnique is applied to studying rapid variabilities of X-ray binariesand 
-ray bursts. The results indi
ate that in 
omparison with the Fourier analysisthe times
ale analysis te
hnique is more powerful for the study of spe
tral lags inrapid variabilities on short time s
ales and short duration 
aring phenomena.Key words: methods: data analysis | binaries: general | X-rays: stars |gamma rays: bursts | X-rays: bursts1 INTRODUCTIONThe analysis of spe
tral lag between variation signals in di�erent energy bands is an im-portant approa
h to obtain useful information on their produ
ing and propagation pro
essesin 
elestial obje
ts. Observed intensity variations are usually produ
ed by various pro
esseswith di�erent time s
ales and di�erent spe
tral lags. A lag spe
trum, a distribution of timelags over Fourier frequen
ies, 
an be derived from two related time series with the aid of theFourier transformation. Let x(ti) and y(ti) be two light 
urves observed simultaneously in twoenergy bands at times ti, their Fourier transforms are X(fj) and Y (fj) respe
tively, and the
ross spe
trum C(fj) = X�(fj)Y (fj). The argument of the 
ross spe
trum C(fj) is the phasedi�eren
e between the two pro
esses at frequen
y fj , or the time lag of photons in band 2relative to that in band 1 �(fj) = arg[C(fj)℄=2�fj : (1)The Fourier analysis te
hnique has been most widely used in studying spe
tral lags.� Supported by the National Natural S
ien
e Foundation of China.



584 T. P. Li, J. L. Qu, H. Feng et al.The time domain method for studying spe
tral lags 
an be based on the 
orrelation analysis.For two 
ounting series x(ti); y(ti) (or x(i); y(i) ), the observed 
ounts in the 
orrespondingenergy band in the time interval (ti; ti+1) with ti = (i � 1)�t, the 
ross-
orrelation fun
tion(CCF) of the zero-mean time series at lag k�t is usually de�ned asCCF(k) =Xi u(i)v(i+ k)=�(u)�(v) (k = 1;�1; � � �) (2)with u(i) = x(i)� �x; v(i) = y(i)� �y, �2(u) =Pi[u(i)℄2 and �2(v) =Pi[v(i)℄2. With CCF thetime lag 
an be de�ned as � = km�t where CCF(k)/CCF(0) has maximum at k = km. Insteadof a lag spe
trum provided by Fourier analysis, the 
orrelation te
hnique gives only a singlevalue � of time lag. To an understanding of a physi
al pro
ess o

urring in the time domain,we need to know spe
tral lags at di�erent times
ales, i.e. a times
ale spe
trum �(�t).We 
annot simply equate a Fourier period with the times
ale and interpret a Fourier spe
-trum in the time domain as the times
ale spe
trum. For example, a Fourier power spe
trum
an not be interpreted as the distribution of variability amplitude vs. times
ale. A sinusoidalpro
ess with frequen
y f has no Fourier power at any frequen
y ex
ept f , but it does not meanthat no variation exists at times
ales shorter than 1=f . One 
an make light 
urves with timesteps smaller than 1=f and �nd that non-Poissonian variations of intensities do exist in su
hlight 
urves. In fa
t, a frequen
y analysis is based on a 
ertain kind of time-frequen
y transfor-mation. Di�erent mathemati
ally equivalent representations with di�erent bases or fun
tional
oordinates in the frequen
y domain exist for a 
ertain time series, a Fourier spe
trum with thetrigonometri
 basis does not ne
essarily represent the true distribution of a physi
al pro
ess inthe time domain. It has to be kept in mind that a mathemati
al transform may distort physi
alinformation 
ontained in the observational data. For 
orre
tly understanding the real pro
ess,one has to invert results obtained through a time-frequen
y transform into the real physi
alspa
e. It is usually not easy to 
omplete su
h an inversion. A sinusoidal pro
ess is the simplestsignal in the frequen
y domain, but a 
omplex one in the time domain. The 
orre
t pro
edureto invert a Fourier power spe
trum pF (f) into the times
ale spe
trum p(�t) in the physi
alspa
e (the time domain) is p(�t) = Z pF (f) p(�tjf) �t ;where p(�tjf) is the times
ale spe
trum of a sinusoidal pro
ess with frequen
y f and unitamplitude, whi
h is not a simple value or fun
tion and 
an not be derived from the Fourieranalysis.To 
orre
tly understanding a time pro
ess, we have to make times
ale analysis dire
tly inthe time domain and need to develop spe
tral analysis te
hnique in the time domain withoutusing the Fourier transform or other time-frequen
y transformation. A preliminary algorithmto modify the 
onventional 
ross-
orrelation te
hnique was proposed by Li, Feng & Chen (1999).After then the algorithms to evaluate times
ale spe
tra of power density, 
oheren
e, spe
tralhardness, variability duration, and 
orrelation 
oeÆ
ient between two 
hara
teristi
 quantitieswere worked out (Li 2001), the modi�ed 
ross-
orrelation te
hnique is a part of the times
aleanalysis method in the time domain. Re
ently we have developed and 
ompleted the modi�ed
ross-
orrelation te
hnique, improved its sensitivity and lag resolution signi�
antly. This paperpresents the times
ale analysis te
hnique of spe
tral lags and its appli
ation to analyzing spa
ehard x-ray and 
-ray data. The general pro
edure of times
ale analyzing and the modi�ed
ross-
orrelation fun
tion for spe
tral lag analysis in the time domain are introdu
ed in Se
tion
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ale Analysis of Spe
tral Lags 5852. The te
hnique has been applied to studying spe
tral lags of hard X-rays from X-ray binaries,
-ray bursts and terrestrial 
-ray 
ashes, some examples are shown in Se
tion 3. Relevantdis
ussions are made in Se
tion 4.2 METHOD2.1 Times
ale AnalysisTemporal analysis is an important approa
h to study dynami
s of physi
al pro
esses inobje
ts. Usually we take some quantities, e.g., power density (variation amplitude), spe
tral lag,and 
oheren
e, et
., to 
hara
terize temporal property of observed light 
urves. The 
omplexvariability of high-energy emission shown in di�erent time s
ales is a 
ommon 
hara
ter forX-ray binaries, super massive bla
k holes and 
-ray bursts. The variability is 
aused by variousphysi
al pro
esses at di�erent times
ales. It is not easy to study the variation phenomena ona given time s
ale. Large time bin used in 
al
ulation will erase the information on shortertime s
ales. Moreover, the analysis result with a short time bin re
e
ts not only the variationproperty on the short time s
ale, but may also be a�e
ted by that on longer ones up to thetotal time period used in the 
al
ulation. The fa
t that a light 
urve with time step �t doesnot in
lude any information of variabilities at times
ales shorter than �t 
an be used as afoundation of times
ale analysis. A set of light 
urves with di�erent time steps �t produ
edby rebinning the same originally observed data with a time resolution Æt is the basi
 materialin times
ale analysis.Usually the originally observed data for temporal analysis is a 
ounting series x(j; Æt) (j =1; � � �) with a time resolution Æt. To study variability on a times
ale�t =M�tÆt ; (3)we need to 
onstru
t a new light 
urve with the time step �t from the native series by 
ombiningits M�t su

essive bins by x(i; �t) = iM�tXj=(i�1)M�t+1x(j; Æt) : (4)As the light 
urve fx(�t)g does not in
lude any information about the variation on any times
aleshorter than �t, it is suitable for studying variability over the region of times
ale � �t.Let � denote the quantity under study. The value �(�t) of the quantity at the times
ale�t 
an be seen as a fun
tion of the light 
urve x(i; �t)�(�t) = f�[fx(�t)g℄ : (5)The key point in times
ale analysis is to �nd a proper algorithm f� to 
al
ulate the value ofthe studied quantity � at a 
ertain times
ale �t.The pro
edure (4) of binning the native series fx(Æt)g to get fx(�t)g with a larger timestep �t = M�tÆt is started from the �rst bin of x(j = 1; Æt). From the native light 
urve we
an obtain M�t di�erent light 
urves with the same time step �txm(i; �t) = iM�t+m�1Xj=(i�1)M�t+mx(j; Æt) ; (6)where the 
ombination starts from the mth bin of the native series, the phase fa
tor m =1; � � � ;M�t (see the diagrammati
 sket
h Fig. 1).
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Fig. 1 From an originally observed time series with time resolution Æt (s
hemati
ally shownat the top where ea
h small square represents a time bin with width Æt) �ve di�erent light
urves with time step �t = 5Æt 
an be 
onstru
ted with di�erent phase parameter m.For suÆ
iently using the information about variation on the times
ale �t in
luded in theoriginally observed light 
urve, we 
an 
al
ulate the studied quantity �(�t) for ea
h fxm(�t)gand take their average as the resultant value�(�t) = 1M�t M�tXm=1 f�[fxm(�t)g℄ : (7)In times
ale analysis the observed light 
urve fx(Æt)g is usually divided into L segments,ea
h segment in
ludes nearly equal number of su

essive bins. For ea
h segment i, we 
ana
quire a value �i(�t) by Eq. (7), the average �(�t) and its standard deviation �(�(�t) 
anbe derived �(�t) = LXi=1 �i(�t)=L ;�(�(�t)) = vuut LXi=1(�i(�t) � �(�t))2=L(L� 1) : (8)Usually we 
an use some 
onvenient statisti
al methods based on the normal distributionto make statisti
al inferen
e, e.g. signi�
an
e test, on �(�t). For the 
ase of short time s
ale�t, although the number of 
ounts per bin may be too small for it to be assumed as a normalvariable, it is easy from a 
ertain observation period to obtain the total number L of segmentslarge enough to satisfy the 
ondition for applying the 
entral limit theorem in statisti
s andusing the normal statisti
s for the mean �(�t).2.2 Modi�ed Cross Correlation Fun
tionIn times
ale analysis for spe
tral lags, the observed data are two related 
ounting seriesfx(i; Æt)g and fy(i; Æt)g in two energy bands with time resolution Æt. If the times
ale �t understudy is larger than the time resolution, we need to 
onstru
t two new light 
urves, fx(i; �t)gand fy(i; �t)g, by re-binning the originally observed series with the time step �t. With thetraditional CCF de�ned by Eq. (2), we 
an 
al
ulate the time lag � only if � > �t. However,for many physi
al pro
esses the real time lag is shorter or even mu
h shorter than the pro
esstimes
ale. For the purpose of applying 
orrelation analysis to the general 
ase of lag analysis,a modi�ed CCF at lag kÆt has been proposed (Li, Feng & Chen 1999)MCCF0(k; �t) =Xi u1(i; �t)vk+1(i; �t)=�(u)�(v) ; (9)
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ale Analysis of Spe
tral Lags 587where the time step �t =M�tÆt, fuk(�t)g and fvk(�t)g are the zero-mean series of fxk(�t)gand fyk(�t)g, respe
tively, andxm(i; �t) = iM�t+m�1Xj=(i�1)M�t+mx(j; Æt) ;ym(i; �t) = iM�t+m�1Xj=(i�1)M�t+m y(j; Æt) : (10)The lag resolution of CCF de�ned by Eq. (2) is �t, and that of MCCF0 de�ned above is theoriginal time resolution Æt.For suÆ
iently using the information 
ontained in the observed light
urve, we propose toimprove the de�nition of MCCF0 further by following the pro
edure des
ribed by Eq. (7). Thenew and 
omplete de�nition of MCCF at lag kÆt isMCCF(k; �t) =1M�t M�tXm=1Xi um(i; �t)vm+k(i; �t)=�(u)�(v); (11)where um(i; �t) = xm(i; �t) � �xm(�t); vm(i; �t) = ym(i; �t) � �ym(�t), �xm(�t) and �ym(�t)are the 
urrent averages for the used segments of light
urve fxg and fyg, respe
tively. Thepro
edure of 
al
ulating a modi�ed 
ross-
orrelation 
oeÆ
ient is s
hemati
ally shown by Fig. 2.We 
an �nd a value km of k to satisfy the 
onditionMCCF(k = km; �t)=MCCF(0;�t) = max ; (12)then the lag of band 2 relative to band 1 on times
ale �t�(�t) = kmÆt : (13)
Fig. 2 MCCF of two native time series fx(Æt)g and fy(Æt)g at a time lag � = Æt (� =kÆt; k = 1) and on a times
ale �t = 2Æt. MCCF(k = 1;�t) = 12 [Pi x1(i; �t)y2(i; �t) +Pi x2(i; �t)y3(i; �t)℄.For an observed time series x(j; Æt) with time resolution Æt, we 
an similarly de�ne a mod-i�ed auto-
orrelation fun
tion at lag kÆt on times
ale �t =M�tÆt,MACF(k; �t) =1M�t M�tXm=1Xi um(i; �t)um+k(i; �t)=�2(u); (14)



588 T. P. Li, J. L. Qu, H. Feng et al.where um(i; �t) = xm(i; �t)��x, xm(i; �t) =PiM�t+m�1j=(i�1)M�t+m x(j; Æt). The FWHM of MACF(� ; �t)
an be taken as a measure of the duration of variation on time s
ale �t. With MACF we 
anstudy the energy dependen
e of average shot width in a random shot pro
ess on di�erent times
ales.2.3 Simulations2.3.1 Poissonian signalsTo 
ompare the above MCCF te
hnique of estimating time lags with the traditional CCFte
hnique and Fourier analysis, we produ
e two photon event series of length 1000 s with aknown time lag between them. The series 1 is a white noise series with average rate 200 
ts s�1and series 2 
onsists of the same events in series 1 but ea
h event time is delayed 13 ms.Besides the signal photons mentioned above, the two series are given independent additionalnoise events at average rate 300 
ts s�1. By binning the two event series, two light 
urves withtime resolution Æt = 1 ms are produ
ed. We make time lag analysis at times
ales �t from 1 msto 2 s for the two light 
urves by CCF, MCCF and Fourier analysis te
hniques separately (inFourier analysis we use Fourier 
ross spe
trum with 1 ms light 
urves and 4096-point FFT andtake Fourier frequen
y f = 1=�t), the results are shown in Fig. 3. In the left panel of Fig. 3,the 
ross signs show lags derived by CCF and plus signs by MCCF0 de�ned by Eq. (9). For thetimes
ale region of �t shorter or approximately equal to the magnitude of the true lag 0.013 swhere CCF works, MCCF0 
an provide more reliable results with better a

ura
y. The 
ir
lesin the right panel of Fig. 3 indi
ate the Fourier lags, for the short times
ale region of �t �< 0:3 s(or high frequen
y region of f �> 30 Hz) the Fourier analysis 
an not give any meaningful result.In the times
ale region of �t �> 0:1 s, the estimates of time lag by MCCF0 de�ned by Eq. (9)(plus signs in the left panel of Fig. 3) show signi�
ant 
u
tuation about the expe
tation. Weuse the improved MCCF de�ned by Eq. (11) to 
al
ulate the lag spe
trum again, the plus signsin the right panel of Fig. 3 indi
ate the result. Comparing the lag spe
tra with MCCF0 [Eq. (9)℄and MCCF [Eq. (11)℄, plus signs in the left panel and right panel of Fig. 3, we 
an see that usingthe improved MCCF 
an improve the lag spe
trum signi�
antly in the large times
ale region.

Fig. 3 Time lag vs. time s
ale of two white noise series with 13ms time lag shown by thedotted horizontal line. Left panel: Cross { CCF lag; Plus { lag evaluated by MCCF0 [Eq. (9)℄.Right panel: Cir
le { lag from Fourier analysis; Plus { lag by MCCF [Eq. (11)℄.
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ale Analysis of Spe
tral Lags 5892.3.2 Transient signalsTo study the relative timing of transient emission at di�erent energies is a diÆ
ult task inastrophysi
s. Neither the Fourier analysis nor the traditional 
ross-
orrelation te
hnique 
anobtain meaningful result of spe
tral lags from the observed data of short 
-ray bursts. Weshow here the ability of MCCF to study spe
tral lags in prompt emission of short 
-ray burstsby simulation. Figure 4 shows light 
urves with 5ms time bin observed by BATSE on CGROmission for a 
-ray burst, GRB 911025B (BATSE trigger number 936), in 
hannel 25{55keV,55{110keV, 110{320keV, and > 320 keV, respe
tively. The time-tagged event (TTE) data ofBATSE 
ontain the arrival time (2�s resolution) of ea
h photon for the short duration burstGRB 911025B. In our simulation, we use the 25{55keV photons between 1.35 s and 1.55 s inthe TTE data as the burst events in 
hannel 1. The burst events in 
hannel 2 are the samein 
hannel 1 but ea
h time is delayed 0.01 s. By binning the two event series with time bin5 ms, expe
ted signal series in 
hannels 1 and 2 are produ
ed. Two simulated light 
urves in
hannels 1 and 2 are generated by taking random samples from the expe
ted signal series andadding independent ba
kground noise at the average of 15 
ounts ea
h bin, shown in Fig. 5.

Fig. 4 Light 
urves of a 
-ray burst GRB 911025B observed by BATSE in 
hannels 25{55 keV,55{110 keV, 110{320 keV, and > 320 keV, separately.



590 T. P. Li, J. L. Qu, H. Feng et al.

Fig. 5 Simulated light 
urves for two 
hannels. The burst pro
ess for 
hannel 2 is delayed 0.01 sto 
hannel 1.From the two simulated light
urves we use MCCF to 
al
ulate the time lags at times
ale�t = 0:005 s, 0.015 s, 0.045 s, 0.14 s, and 0.43 s, separately, the results are shown in Fig. 6. Theerror bar of time lag at ea
h times
ale is estimated from 200 bootstrap samples. The simulationresult indi
ates that MCCF is a useful tool in relative timing of transient pro
esses.

Fig. 6 Time lag vs times
ale of two simulated light 
urves in Fig. 5.Dotted line { expe
ted time lag. Cross { measured by MCCF.2.3.3 Times
ale dependent pro
essSpe
tral time lags observed for X-ray binaries and AGNs are usually times
ale dependent.For example, the Fourier lag between 14.1{45keV and 0{3.9keV of X-ray emission from Cyg X-1 in the low state 
ontinuously varies with Fourier frequen
y, from � 30 ms at 0.1 Hz de
reasing
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tral Lags 591down to � 2 ms at 10 Hz (Nowak et al. 1999). Real data in timing 
an be seen as a 
omplextime series with multiple times
ale 
omponents. The times
ale dependen
e of spe
tral lags
an be the intrinsi
 property of the emission pro
ess and/or 
omes from di�erent pro
essesdominating at di�erent times
ales. Corre
tly dete
ting the times
ale dependen
e of spe
trallags is important to studying the undergoing physi
al pro
esses. Now we 
ompare the abilitiesof MCCF and Fourier te
hnique to study spe
tral lags of time series with multiple times
ale
omponents. Two light 
urves of a 
omplex pro
ess 
onsisting of �ve independent random shot
omponents are produ
ed by Monte Carlo simulation. Ea
h signal 
omponent i (i = 1 � 5)
onsists of random shots with shape of pro�le a � exp[(t � t0)=�i)℄2, where the peak height a israndomly taken from the uniform distribution between zero and the maximum. The separationbetween two su

essive shots is exponentially distributed with average separation �i. For ea
h
omponent i, we produ
e a 3000 s 
ounting series of band 1 with a step of Æt = 1 ms andaverage rate 200 
ts s�1. The 
orresponding series in band 2 
onsists of the same events inseries 1 but ea
h event time is delayed �i s. The 
hara
teristi
 time 
onstants �i of the �vesignal 
omponents are 0.005, 0.01, 0.02, 0.04, and 0.08 s, and their time lags are 0.004, 0.008,0.012, 0.016, and 0.02 s, respe
tively. Summing up the �ve series for ea
h band, we produ
etwo expe
ted signal light 
urves. Two syntheti
 light 
urves with time step 1 ms are made byrandom sampling the expe
ted light 
urves with Poisson 
u
tuation plus a independent whitenoise at mean rate of 100 
ts s�1. For the two light 
urves, we use their Fourier 
ross spe
trumand 4096-point FFT and MCCF in the time domain to 
al
ulate the time lags on di�erent times
ales �t and show the results in Fig. 7.To derive the expe
ted lag spe
trum of the above syntheti
 light 
urves, we 
al
ulate thetimes
ale distribution of power density for ea
h shot 
omponent using the algorithm of esti-mating power density spe
trum p(�t) in the time domain (Li 2001; Li & Muraki 2002). As anexample, Fig. 8 shows the distribution of variation power p(�t)�t (rms2) vs. time s
ale �t forthe expe
ted light 
urve of the shot pro
ess with � = 0:01 s. As shown in Fig. 8, an individualshot 
omponent with 
hara
teristi
 time �i has its variation power distributed over a 
ertaintime s
ale region. The time lag between two bands should appear in the whole times
ale regionwhere the signal variation power exists. The expe
ted lag of the two syntheti
 light 
urves withmultiple 
omponents on times
ale �t should be estimated as a weighted average of �ve lags �iof individual 
omponent with 
orresponding weight fa
tor pi(�t)�t�(�t) =Xi pi(�t)�t � �i: (15)The solid line in Fig. 7 is the expe
ted lag distribution 
al
ulated by Eq. (15). We 
an seefrom Fig. 7 that the Fourier 
ross spe
trum fails to dete
t lags in the short times
ale region,but MCCF works well. More simulations with di�erent signal to noise ratios show that theMCCF te
hnique is 
apable of 
orre
tly dete
ting time lags from severely noisy data and theineÆ
ien
y of dete
ting time lag in short time s
ale region is an intrinsi
 weakness of the Fourierte
hnique, even for data with mu
h higher signal to noise ratio the Fourier analysis still 
an notdete
t lags in the high frequen
y region.
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Fig. 7 Top and Middle: Syntheti
 light 
urves with time bin 0.01 s for a 
omplexpro
ess 
onsisting of di�erent 
hara
teristi
 times
ales and di�erent spe
tral lags.Bottom: Times
ale spe
tra of time lag; Solid line { the expe
ted lag spe
trum, Plus{ MCCF lag, Cir
le { lag from Fourier analysis.
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Fig. 8 Power distribution p(�t)�t vs. time s
ale �t of a randomshot pro
ess with a 
hara
teristi
 times
ale � = 0:01 s, where p(�t)(rms2 s�1) is the power density on the times
ale �t of the pro
ess.3 APPLICATIONSThe times
ale spe
tral method for time lag analysis is a powerful tool in revealing the
hara
teristi
 of emission pro
ess in obje
ts. With the help of MCCF te
hnique, as a example,we 
an judge between di�erent produ
tion models of x-rays from a

reting bla
k holes. Theenergy spe
tra of hard X-rays from bla
k hole binaries 
an be �tted well by Comptonization ofsoft photons by hot ele
trons in the vi
inity of the 
ompa
t sour
es. To explain the observedenergy spe
tra the uniform 
orona model was suggested initially (Payne 1980), in whi
h thesoft photons from the 
entral region of the system are Comptonized by the hot ele
trons of
orona. The Comptonization pro
ess makes the observed hard photons undergo more s
atteringthan the low energy photons and therefore the hard photons are naturally delayed from softphotons. Hard lags are not 
orrelated with the variability times
ale (or variability frequen
y)in the uniform 
orona model, but the later study showed strong times
ale-dependen
e of timelags (Miyamoto & Kitamoto 1988). For over
oming the 
ontradi
tion between predi
tion bythe uniform 
orona model and observed results, other models, su
h as the non-uniform 
oronamodel (Kazanas et al. 1997), the magneti
 
are model (Poutanen & Fabian 1999) and thedrifting-blob model (B�ott
her & Liang 1999) are proposed. The hard X-ray lags are studiedby observations with PCA dete
tor on board RXTE mission in using the Fourier te
hnique tothe bla
k hole 
andidate Cyg X-1 in the low state (Nowak et al. 1999), high state (Cui et al.1997a), and during spe
tra transitions (Cui et al. 1997b). The meaningful Fourier spe
tra oftime lag from PCA/RXTE data are all limited in the range of Fourier frequen
y �< 30 Hz (ortimes
ale �> 0:03 s) and, ex
ept that with an uniform 
orona, all models mentioned above 
an�t the observed lag spe
tra of Cyg X-1. To test these models, we need to 
ompare the expe
ted
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y range or on the shorter time s
ales.Kazanas et al. (1997) presented that for the PCA/RXTE observation of June 16 1996(ObsID P10512), hard X-ray time lags of Cyg X-1 in the soft state as a fun
tion of Fourierfrequen
y over the region of 8 � 30Hz 
an be well �tted by the non-uniform 
orona model.From the same data, we measure the time lags between 13{60keV and 2{5keV on short times
ales down to �t � 1 ms with MCCF and the results, shown in the top panel of Fig. 9 
annot be �tted by this model (the solid line in the �gure). The drifting-blob model (B�ott
her &Liang 1999) 
an also explain the observed time lags in the Fourier period region above 0.1 s. Onshort time s
ales, the Comptonization pro
ess of the drifting-blob model is similar with that ofthe non-uniform 
orona model. Thus, the time lag will have similar time s
ale dependen
e, i.e.,time lag will de
rease with time s
ale as qui
kly as the behavior of non-uniform 
orona modelon short time s
ales. The drifting blob model also 
an not explain the observed time lags ofCyg X-1 on the short time s
ales.

Fig. 9 Hard X-ray time lag vs. time s
ale of Cyg X-1. top panel: Cir
le { time lag between13{60 keV and 2{5 keV in the soft state of Cyg X-1 on 1996 June 17 (PCA/RXTE ObsID P10512)measured by MCCF; Solid line { expe
ted by the non-uniform 
orona model. bottom panel: Cir
le {lags between 13{60 keV and 2{5 keV of Cyg X-1 in the hard state on 1996 O
tober 23 (PCA/RXTEObsID P10241) measured by MCCF; Solid line { lags between 27 keV and 3 keV predi
ted by themagneti
 
are model.
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tral Lags 595Poutanen & Fabian (1999) proposed the magneti
 
are avalan
he model to explain theobserved time lags of Cyg X-1, and parameterize the spe
tral evolution of a magneti
 
areand the avalan
he pro
ess based on the PCA/RXTE observation on O
tober 23 1996 (ObsIDP10241). In the bottom panel of Fig. 9, we show the measured time lags with the observationdata and MCCF te
hnique (the 
ir
les) and the predi
ted by the model (the solid line). Thepredi
ted time lags 
an �t the measured time lags well in the time s
ales range between � 4msand 1 s, mu
h better than other models, although there seems to be overestimated on theshortest times
ales. This example shows that the 
apability of MCCF for dete
ting time lagson short time s
ales 
an help us to reveal the underlying physi
s in high energy pro
ess inobje
ts.

Fig. 10 Hard lags of GRB 911025B measured by MCCF. Left panel: Times
ale spe
tra oftime lag of (110{320) keV vs. (25{55) keV. Right panel: Energy dependen
e of time lag of hardphotons vs. (25{55) keV, averaged for times
ales 0.005 s, 0.01 s, 0.25 s, 0.06 s, and 0.14 s.The MCCF is parti
ularly useful in studying transient pro
esses. The BATSE dete
torhas dis
overed an unexplained phenomenon: a dozen intense 
ashes of hard X-ray and 
-rayphotons of atmospheri
 origin (TGFs) (Fishman et al. 1994). As all the observed TGFs wereof short duration (just a few millise
onds), it is diÆ
ult to study their temporal property by
onventional te
hniques. With the aid of the preliminary MCCF (MCCF0, Eq. (9) in thispaper), Feng et al. (2002) revealed that for all the 
ashes with high signal to noise ratio 
-rayvariations in the low energy band of 25{110keV relative to the high energy band of > 110 keVare always late in the order of � 100 �s in the times
ale region of 6 � 10�6 � 2 � 10�4 s andpulses are usually wide. The above features of energy dependen
e of time pro�les observed inTGFs support models that TGFs are produ
ed by upward explosive ele
tri
al dis
harges athigh altitude.E�orts have been made to measure the temporal 
orrelation of two GRB energy bandsby the CCF te
hnique (e.g. Link, Epstein & Priedhorsky 1993; Cheng et al. 1995; Wu &Fenimore 2000; Norris 2002). The CCF te
hnique has no ne
essary sensitivity to make timinganalysis for weak events. For strong bursts the DISCSC data in BATSE database, 4-
hannellight 
urves with 64 ms time resolution, are usually analyzed, but it fails with the traditionalACF and CCF in the 
ase that the existed spe
tral lags are 
omparable or smaller than 64 ms
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an use TTE data to
onstru
t high resolution light 
urves, as the four light 
urves of time resolution Æt = 5 ms forGRB 911025B shown in Fig. 4. We failed to obtain statisti
ally meaningful results in spe
trallag analysis for short GRBs by using CCF and MCCF0. The MCCF te
hnique 
an help usto reveal spe
tral lags in strong short bursts. As an example, with the light 
urves of GRB9110258B and MCCF, we 
al
ulate the time lag between two 
hannels at times
ale �t = 0:005s, 0.01 s, 0.025 s, 0.06 s, and 0.14 s, respe
tively. In our 
al
ulation only partial data havinghigher signal to noise ratio re
orded during 1.29 s and 1.62 s are used. The obtained times
alespe
trum and energy dependen
e of time lags are shown in Fig. 10. For long 
-ray bursts, theBATSE Time-to-Spill (TTS) data re
ord the time intervals to a

umulate 64 
ounts in ea
hof four energy 
hannels. The TTS data have �ne time resolution than 64 ms of DISCSC datawhen the 
ount rate is above 1000 
ts s�1. The TTS data 
an be binned into equal time binswith a resolution of Æt � 10 ms and our simulations show that from the derived light 
urvesthe temporal and spe
tral properties with the time resolution Æt 
an be reliably studied withMCCF for typi
al GRBs re
orded by BATSE. As an example, the left panel of Fig. 11 showsthe lag spe
trum of GRB 910503 dete
ted by BATSE with a duration � 50 s. From the MCCFlag spe
tra, we 
an further derive the energy dependen
e of lag at di�erent times
ales, shownin the right panel of Fig. 11. The results shown in Figs. 10 and 11 indi
ate that MCCF 
an beused to explore temporal and spe
tral properties for both long and short 
-ray bursts.

Fig. 11 Hard lags of GRB 910503 measured by MCCF. Left panel: Times
ale spe
tra of timelag. Cir
le { (20{60) keV vs. (60{100) keV; Plus { (20{60) keV vs. (110{325) keV; Diamond { (20{60) keV vs. > 325 keV. Right panel: Time lag of 20{60 keV photons vs. energy of hard photons.Cir
le { times
ale 0.01 s; Plus { times
ale 0.3 s; Diamond { times
ale 0.6 s.4 DISCUSSIONThe te
hnique for times
ale analysis with MCCF is developed from the standard 
ross 
or-relation fun
tion CCF. For determining CCF from unevenly sampled data whi
h are 
ommonin astronomi
al 
ontexts, several di�erent methods have been introdu
ed, i.e., interpolatingthe data between observed points to form a 
ontinuous fun
tion (Gaskell & Sparke 1986), the
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rete 
orrelation fun
tion (DCF, Edelson & Krolik 1988), evaluating CCF with the dis-
rete Fourier transform (S
argle 1989), and z-transformed dis
rete 
orrelation fun
tion (ZDCF,Alexander 1997). Introdu
ing MCCF was motivated by the need of improving the resolutionand sensitivity of the standard 
orrelation analysis. Comparing the two de�nitions, Eq. (11)for MCCF and Eq. (2) for CCF, we 
an see that MCCF in
ludes more information from theobserved data than CCF does. That the lag � = kÆt in MCCF has the same resolution withthe originally observed data but the resolution of CCF lag is �t and that MCCF is 
al
ulatedby summing over m = 1; 2; � � � ;M�t (using all possible light 
urves that 
an be derived fromthe native data with times
ale �t) but CCF only uses one light 
urve for a given time bin �t{ make MCCF has better resolution and sensitivity in measuring spe
tral lags.Three di�erent temporal quantities exist in the times
ale analysis: time t, time resolution Æt,and time s
ale �t. The originally observed data, based on whi
h both the frequen
y analysisand times
ale analysis are performed, are time series x(t) in the time domain with a timeresolution Æt. With frequen
y analysis, we 
an derive a frequen
y spe
trum �(f) for a studied
hara
teristi
 quantity � (in this paper � is time lag, in other spe
tral analysis it may be powerdensity, 
oheren
e, or other quantity) from the observed time series. In frequen
y analysis,the observed time series has to be transformed into the frequen
y domain �rst with the aidof time-frequen
y transformation, e.g., the Fourier transform, and the maximum frequen
y isdetermined by the time resolution Æt. The times
ale analysis is performed dire
tly in the timedomain without any time-frequen
y transformation. With times
ale analysis we 
an derive atimes
ale spe
trum �(�t) for the studied quantity � where the argument �t, i.e., the variationtimes
ale, is a variable similar to the frequen
y f in frequen
y analysis. The minimum times
alein times
ale analysis is the time resolution Æt of the originally observed data. To study temporalproperty on a 
ertain times
ale �t, the used light 
urves should have a time step equal to thetimes
ale under study. With MCCF we 
an measure any lag greater than the time resolutionof observation at any given times
ale and produ
e a times
ale spe
trum of time lags.There exist two kinds of spe
tral analysis: frequen
y analysis and times
ale analysis. Al-though the Fourier method is a 
ommon te
hnique to make spe
tral analysis, it 
an not repla
ethe times
ale analysis in the time domain. As any observable physi
al pro
ess always o

urs inthe time domain, a frequen
y spe
trum obtained by frequen
y analysis needs to be interpretedin the time domain. However, a frequen
y analysis is dependent on a 
ertain time-frequen
ytransformation. A Fourier spe
trum by using Fourier transform with the trigonometri
 basisdoes not ne
essarily represent the true distribution of a physi
al pro
ess in the time domain.The rms variation vs. times
ale of a time-varying pro
ess may di�er substantially from itsFourier spe
trum, as an example, the Fourier spe
trum of a random shot series signi�
antlyunderestimates the power densities at shorter times
ales (Li & Muraki 2002). The present workshows that, like Fourier power spe
tra, Fourier lag spe
tra also always signi�
antly underes-timate time lags at short times
ales. The times
ale analysis performed dire
tly in the timedomain 
an derive a real times
ale distribution for quantities 
hara
terizing temporal property.In 
omparison with the Fourier te
hnique, times
ale spe
tra of power density and time lag fromthe times
ale analysis 
an more sensitively reveal temporal 
hara
teristi
s at short times
alesfor a 
omplex pro
ess.Welsh (1999) pointed out that the lag determined from the CCF should be 
onsideredonly a 
hara
teristi
 time s
ale. Care has to be taken in interpreting measured lags witha parti
ular physi
al model. Most te
hniques in timing 
an only treat times
ale just in asyntheti
 meaning. For example, a 
orrelation fun
tion lag of two shot series may 
aused not
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ement between the two series, but also by 
hanges in shot shape andintervals between two su

essive shots. Distinguishing di�erent kinds of times
ale and physi
alpro
ess is obviously helpful to study physi
s, that should be a goal in future development oftime domain te
hnique. Using a single analysis te
hnique alone is often diÆ
ult to de�nitelydistinguish the possible pro
esses and 
ompiling di�erent results of analysis from di�erent viewangles will be helpful. In 
omparison with the Fourier te
hnique, the time domain te
hniquehas the freedom of 
hoosing a proper statisti
 for a parti
ular purpose. Re
ently Feng, Li &Zhang (2004) introdu
ed a statisti
 w(�t) to study widths of random shots and diagnosed bla
khole and neutron star X-ray binaries by timing with the new designed statisti
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