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Abstract Correction of non-ideal effect due to a magnetic fluctuating tensor is
derived from the ideal MHD equations. The inclusion of a magnetic turbulent field
leads to modifications of the hydrostatic equilibrium equation and thermodynamical
variables such as the temperature T , the adiabatic exponent γ, the adiabatic tem-
perature gradient ∇ad and the temperature gradient ∇. In particular, the modifi-
cations in the adiabatic and radiative temperature gradients will result in a change
in the Schwarzchild criterion, hence in the location of the base of the convective
zone. Incorporating the modifications, we construct a modified thermodynamical
equilibrium structure of the Sun.
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1 INTRODUCTION

With the increasing quality of observational methods, more and more observed data have
revealed magnetic activities on the surface of the Sun and sun-like stars (Meunier 2003; Vaquero
& Gallego 2002; Chaplin et al. 2001; Neugebauer et al. 2000). However, the generation of the
magnetic activities is still not clearly understood, and still awaits further investigations of the
physical processes in the solar interior.

Previously, the physics of pure turbulence was applied to improve the condition of solar
convection. The properties of turbulent convection and the important effect of pure turbulent
pressure on solar structure and solar p-mode oscillations have been well studied (Christensen-
Dalsgaar & Frandsen 1983; Kosovichev 1995; Gabriel 1995; Böhmer & Rüdiger 1998, 1999;
Bi & Xu 2000, 2002). Recently, the effects of magnetic fields on the solar structure and solar
p-mode oscillations are examined by some authors (Bi et al. 2003; Li et al. 2002, 2001; Zhukov
2001; Antia et al. 2000). Although much work has been dedicated to describe the effects of
the mean magnetic field on solar structure, the effects by the magnetic turbulent field have not
been so thoroughly examined.

In this paper, we examine how a turbulent magnetic field influences the solar thermal struc-
ture. The non-ideal effect of MHD turbulence on the solar thermal structure depends not only
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on how it is modeled, but also on how it is incorporated into the solar model. Our study will
proceed in three steps: (1) Since the radial component of the magnetic fluctuating tensor con-
tributes to the pressure and also influences the internal energy density, we modify the equation
of state through changes in the total pressure and internal energy; (2) We write down the first
law of thermodynamics with the magnetic energy included and correct the thermodynamical
variables due to the turbulent magnetic field. (3) We accordingly improve one of the equations
of stellar structure, namely, the equation of hydrostatic equilibrium.

This paper is organized as follows. Section 2 presents the basic physical formulae including
a mathematical description of the MHD turbulence pressure, the improved equation of state
containing the ratio of turbulent magnetic pressure to gas pressure βm, and the improved
hydrostatic equilibrium equation. Section 3 shows the expression of turbulent magnetic field
used in the calculation of the MHD turbulent pressure. Sections 4 and 5 present, respectively,
the numerical results obtained and our conclusion.

2 BASIC PHYSICAL FORMULAS

2.1 MHD Turbulent Pressure

We consider an ideal MHD turbulence in a homogeneous, isotropic and stationary medium.
The motion of the fluid obeys the MHD equations (Unno et al. 1989):

∂ρ

∂t
+∇ · (ρv) = 0, (1)

ρ

(
∂

∂t
+ v · ∇

)
v = −∇P +

1
4π

(∇×B)×B + ρg, (2)

where ρ is the total density, P is the pressure, v is the velocity vector, and the magnetic field
B is described by the induction equation:

∂B

∂t
= ∇× (v×B) , (3)

∇ ·B = 0, (4)

where the gravitational acceleration g can be written as the gradient of a gravitational potential
Φ:

g = ∇Φ, (5)

and Φ is determined by Posson’s equation

∇2Φ = −4πGρ, (6)

G being the gravitational constant.
In the MHD equations, each variable can be considered as consisting of a mean part,

indicated by the overbar, and a fluctuating part, indicated by the prime (the fluctuating part
of the velocity v being the turbulent velocity u):

ρ = ρ + ρ′, v = v + u, P = P + P ′, B = B + B′, (7)

Taking into account that the fluctuating components have zero average,

ρ′ = B′ = P ′ = u = 0, (8)
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and, assuming the velocity field to be solenoidal,(
B · ∇

)
v− (v · ∇)B = 0. (9)

We obtain, after some averaging, the mean field MHD equations:

∂ρ

∂t
+∇ · (ρ v) = 0 , (10)

ρ
d

dt
v = −∇

(
P + PB

)
−∇ · ρ

(
〈uu〉 − 1

4πρ

〈
B′B′〉) (11)

+
1
4π

[(
∇×B′)×B +

(
∇×B

)
×B′] + ρg,

∂B

∂t
= ∇×

(
v×B +

〈
u×B′〉) , (12)

∇ ·B = 0, (13)

where the mean magnetic pressure is defined as:

PB =
B

2

8π
. (14)

It should be noted that we have assumed that the variation of the mean field B along the
magnetic field lines can be neglected, i.e., B · ∇B = 0. Also, in the averaging procedure, we
adopted the algorithm, ρ′f = ρ′ f , f denoting any one of the variables except the magnetic
field B.

We introduce the MHD turbulence pressure Pt. It can be written as:

ρ

(
〈uu〉 − 1

4πρ

〈
B′B′〉) = PtI + II, (15)

where I is the unit tensor, II is the turbulent viscosity stress tensor due to anisotropic properties
in the real situation. For an ideal MHD turbulence in a homogeneous, isotropic and stationary
medium, the MHD turbulent pressure (including the dynamical and the magnetic pressure) has
a simple expression (Landau & Lifshitz 1975, 1984):

Pt =
1
3
P (0)

m +
2
3
P

(0)
k , (16)

where P
(0)
m =

〈
B′ ·B′〉/8π is the energy density of the magnetic fluctuations and P

(0)
k =

ρ 〈u · u〉 /2 is the energy density of the turbulent hydrodynamic motion. Combining Eqs. (15)
and (11), we obtain

ρ
d

dt
v = −∇Ptot + ρg +

1
4π

[(
∇×B′)×B +

(
∇×B

)
×B′] . (17)

It is easily found that the total pressure has three parts: (1) a mean pressure P which consists
of the thermal ideal gas pressure and the radiation pressure, (2) a mean magnetic pressure PB

and (3) an MHD turbulent pressure Pt which consists of a magnetic fluctuating pressure P
(0)
m

and an isotropic turbulent hydrodynamic pressure P
(0)
k . Thus, the total pressure is

Ptot ≡ P + Pm, (18)

where Pm = PB + Pt.
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2.2 Corrections to the Thermodynamical Variables

Here we derive the corrections to the various thermodynamic variables due to the presence of
a turbulent magnetic field. These corrections will be indicated by the symbol ∆. The magnetic
turbulent pressure can be written as the sum of a mean magnetic pressure and a part due to
the fluctuating magnetic field (Kleeorin 1994),

Pm =
1
3

〈
B′ ·B′〉

8π
+ Qp

B
2

8π
, (19)

and
Qp = 1− 1

6
ln (Rm) , (20)

Rm being the magnetic Reynolds number.
In terms of the ratio of radiation pressure to gas pressure β = PR/Pg and the ratio of

magnetic pressure to gas pressure βm = Pm/Pg, the total pressure can be written as (Esin
1997):

Ptot = P +
(

βm
ρkT

µmu

)
. (21)

The correction to the pressure is, therefore,

∆P =
(

βm
ρkT

µmu

)
. (22)

The part of the internal energy due to the magnetic field is,

∆u =
1
ρ
Pm = βm

kT

µmu
. (23)

The first law of thermodynamics states that

Tds = du− P

ρ2
dρ, (24)

We note that the magnetic pressure is much smaller than the gas pressure and that βm can be
taken to be a constant when we derive the corrections to the other variables. The correction to
ds is then

∆(ds) = βm
k

µmu

dT

T
− βm

k

µmu

dρ

ρ
, (25)

and the correction to the specific heat per unit mass at constant density is

∆cv = βm
k

µmu
, (26)

and the correction to the specific heat per unit mass at constant pressure is

∆cp = 2βm
k

µmu
. (27)

The corresponding correction to the adiabatic exponent is then

∆γ =
1
cv

∆cp −
cp

c2
v

∆cv . (28)
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Hence, according to the expression of the adiabatic temperature gradient,

∇ad =
γ − 1

γ
, (29)

the correction to the adiabatic temperature gradient is

∆(∇ad) =
∆γ

γ2
. (30)

Meanwhile the turbulent magnetic field makes a contribution to the total pressure and internal
energy, so leading to changes in the thermodynamical variables. It also modifies the superadi-
abatic temperature gradient, resulting in changes in the solar convection. It should be noted
that the corrections derived here apply only to the solar convective zone and the derivations
represent rough modifications of the equation of state.

2.3 Improving the Equation of Hydrostatic Equilibrium

We assume spherical symmetry of the solar structure and that all the physical quantities
vary only along the radial direction and, being equilibrium values, are time independent. Using
Eq. (17) in the stationary limit, the equation of hydrostatic equilibrium can be written as:

d
dr

(P + Pm) = −gρ . (31)

Note that it includes a turbulent magnetic pressure from the turbulent magnetic field.

3 TURBULENT MAGNETIC FIELD

The turbulent magnetic field is generated by turbulence, so we assume that its energy
spectrum is similar to the turbulence spectrum. Assuming energy equipartition for the local
spectra (Kleeorin et al. 1996; Bi et al. 2003), we have

ρ 〈uu〉
2

=

〈
B′B′〉
8π

. (32)

For a simple case, consider an ideal incompressible MHD turbulence in a homogeneous,
isotropic and stationary medium, with a power-law velocity correlation function, 〈uu〉 along
the radial direction (Boldyrev et al. 2004). From the condition of energy equipartition, the
correlation function of the magnetic field has the form

〈B′B′〉 ∝ rµ . (33)

In this paper, we only calculate the effects of the mean and fluctuating magnetic fields on
the thermodynamical variables and the equilibrium structure. As Eq. (19) and Eq. (32) show,
Pm has the form:

Pm = −1
3
ρΛrµ + Qp

B
2

8π
, (34)

with Λ is a coefficient measuring the rate of transfer of turbulent energy to magnetic energy.
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4 THE NUMERICAL RESULTS

We consider the effects of turbulent magnetic fields with the help of an improved time-
dependent mixing-length theory. We construct a solar model with the Eggleton’s code (Eggleton
et al. 1973; Pols et al. 1995). Our numerical integration was carried out for three cases:

1. We incorporate the tables of radia-
tive opacity derived from OPAL, and
from Alexander (Alexander & Fergu-
son 1994a, 1994b) for low temperatures
where molecular opacity is important.
The initial composition is X = 0.70,
Y = 0.28, Z = 0.02. As in usual solar
models, Pm is not included;

2. The influence of a magnetic field is con-
sidered: we take, for the part of turbu-
lent magnetic pressure, µ = 0.85632 and
Λ = 1/3×1.68521×10−8; for the part of
mean magnetic pressure, B = 30G and
Rm = 1 × 105. At the surface, the to-
tal pressure is modified in the boundary
condition of the pressure equation.

3. We take a different set of the parame-
ter values. For the turbulent magnetic
pressure: µ = 0.85632, and Λ = 1/2 ×
1.68521 × 10−8; for the mean magnetic
pressure: B = 50 G and Rm = 1× 106.

Fig. 1 Radial profile of the turbulent magnetic

pressure for case 2 (dotted line) and case 3

(dashed line).

The variation of the turbulent magnetic pressure along the solar radius is shown in Fig. 1.
In the solar convective zone, the contribution of the turbulent magnetic pressure to the total
pressure is directly related to the degree of the turbulence. Near the surface, the turbulent
magnetic pressure has the highest value, so the influence on the thermal variables will be more
apparent there. As the gas density decreases at the solar surface, energy transportation becomes
less efficient and the turbulent magnetic pressure decreases.

The position of the base of convective zone can be determined very precisely from solar
oscillation frequencies (Chrestensen-Dalsgaard 1996, 2000). For its location at 0.7166 R�, we
calculated the corresponding ages of the Sun in the three cases. For case one, the age is about
4.60×109 yr; for case two, about 4.38×109 yr; for case three, about 4.23×109 yr. These results
tell us that the Sun is younger than what we thought previously. It shows that a magnetic field
speeds up the evolution of the star, the stronger the magnetic field the clearer the evidence for
the speed-up.

Our calculations refer to ages from the ZAMS to the present age of the Sun, 4.6 × 109 yr.
The base of the convective zone was found to move from 0.7166 R� to 0.7249 R� (case 2)
or to 0.7373 R� (case 3). Our calculation clearly indicates that a magnetic field inhibits the
generation of convection.

The position of the base of the convective zone is determined by the Schwarzchild crite-
rion involving the temperature gradient. The radial profile of the superadiabatic temperature
gradient is shown in Fig. 2 for case 1 (no magnetic field, solid line) and case 3 (with magnetic
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field, dashed line). At the base of the convective zone, the superadiabatic temperature gradient
decreases and moves outwards. It influences the zero position of the Schwarzchild criterion. So
the base of the convective zone moves outwards.

Fig. 2 Radial profile of the superadiabatic temperature gradient. Solid line and dashed
line refer to the models with no magnetic field (case 1) and with magnetic field (case 3),
respectively. The right panel is a blow-up of the range 0.982− 0.992 R�.

To understand these results, we note that the energy which is stored in the turbulent
magnetic field accouts for part of the total energy flux at the bottom of the convective zone.
To the radiative flux Frad and the convective flux Fconv, the turbulent magnetic energy flux Fm

will be added in the total energy flux. So the sum of Frad and Fconv decreases. The convective
temperature gradient ∇conv is determined by Frad and Fconv, so the profile of the superadiabatic
temperature gradient moves outwards and the effective temperature of the Sun decreases at the
surface when a turbulent magnetic field is included.

Figure 3 illustrates the changes in the thermodynamical variables when a tubulent magnetic
field is included: their values are decreased in the convective zone (compare the dotted and
dashed “with-field” curves with the solid “no-field” curve). The reason is that the internal
energy of the gas decreases, which then causes the other variables and the thermal structure
to change. It shows that, when a turbulent magnetic fields is included, energy is redistributed,
leading to changes in the thermodynamical properties of the solar material.

5 CONCLUSIONS

The purpose of this paper is to show how the inclusion of a turbulent magnetic field affects
the equilibrium structure of the Sun.

1. The main conclusion is that the thermodynamics equilibrium structure of the Sun is
modified when the turbulent magnetic field is considered. The modification is especially
evident in the convective zone.
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2. The magnetic field inhibits the generation of convection and it also speeds up the evolution
of the star.

3. Energy is redistributed by the inclusion of a turbulent magnetic field.

Fig. 3 Thermodynamical variables as a function of depth in the convective zone for case 1
(no magnetic field, solid line) and case 3 (with magnetic field, dotted/dashed line).
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Although our formulation can be applied to improve the solar model, further investigation
about the geometry of the magnetic field and more precision calculation of the field strength
should be considered in future work.
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