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Abstract Rhombic cell analysis as outlined in the first paper of the present series
is applied to samples of varying depths and liming luminosities of the IRAS/PSCz
Catalogue. Numerical indices are introduced to summarize essential information.
Because of the discrete nature of the analysis and of the space distribution of galax-
ies, the indices for a given sample must be regarded as each having an irreducible
scatter. Despite the scatter, the mean indices show remarkable variations across
the samples. The underlying factor for the variations is shown to be the limiting
luminosity rather than the sampling depth. As samples of more and more luminous
galaxies are considered over a range of some 2.5 magnitudes (a factor of some 75
in space density), the morphology of the filled and empty regions defined by the
galaxies degrades steadily towards insignificance, and the degrading is faster for the
filled than the empty region.
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1 INTRODUCTION

This is the second paper in the series “Rhombic Cell Analysis”. Here we apply the technique
described in Paper I (Kiang 2003) to the IRAS/PSCz Catalogue (Saunders et al. 2000, ‘PSCz’
hereinafter). The wealth of data in PSCz has meant that we can now apply the analysis to
various depths (Sect. 2), and simultaneously to various limiting luminosities, since PSCz is
flux-limited. The method developed so far centers on two number distributions, one of n1,
the number of like neighboring cells to a given cell, and one of τ , a two-suffixed topological
type, the two suffixes being the numbers of like and unlike neighbor-groups. Here in Sect. 3
we introduce four numerical indices, η on one hand, and χ1, χ2, χ21 on the other, intended to
respectively summarise the most important characteristics of the two distributions. In Sect. 4
we shall point out an important circumstance in the practical application, namely, the n1- and
τ - distributions depend rather sensitively on the precise location of the zero of the cells and
that, as a consequence, each of the indices introduced above must be regarded as a random
variable with a certain probability distribution. For each chosen sample of galaxies we consider
a set of 16 independent zero offsets of the analysing cells and calculate the mean and standard
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deviation of the four indices. And we do this separately for the sets of filled cells and empty
cells. In Sect. 5 we plot the mean indices as functions of the sample depth, r∗. Remarkable
features are found in the curves and their interpretation concludes this paper.

2 THE IRAS/PSCz CATALOGUE

The IRAS/PSCz Catalogue (Saunders et al. 2000) is the most comprehensive redshift cat-
alogue to date. It covers 84% of the sky and contains about 15 000 galaxies to a uniform µ60

flux limit of 0.60 Jy. We counted 14 669 galaxies with measured (positive) redshifts z.
The 16% of the sky not covered by PSCz (the “gaps”) consists of a large irregular zone

of avoidance along the galactic equator, and two narrow stripes extending to high latitudes
(Saunders et al., fig. 4). For our purpose the gaps must first be filled with mock galaxies. We
are most grateful to Dr. Fabio Fontanot of Trieste for kindly providing us, before publication of
the paper where it was used (Fontanot et al. 2003), with just such a list of 2808 mock galaxies,
constructed according to a procedure given in (Branchini et al. 1999). The Fontanot list gives
only the galactic coordinates and the redshifts; but we shall also be needing flux values. As we
only need a random selection from the distribution of fluxes in PSCz, and as the Fontanot list
is ordered quite independently of PSCz, we simply assigned every fifth value in PSCz to the
Fontonot list. This “Filled-out PSCz catalogue” of 14669 + 2808 = 17 477 galaxies is the basic
material for the present study.

We should point out that while a minor part of the data in the Fontanot list pertaining to
the two narrow stripes were used in our work with the full weight (on an equal footing with the
real PSCz data), the major part pertaining to the galactic zone of avoidance were used only
in a diminished capacity (See Sect. 2.3). Similarly, the same diminished role is played by the
small part of the PSCz data with |b| < 10◦.

2.1 Nominal Distance and Luminosity

We now have an all-sky catalogue of 17477 galaxies, each with a flux value and a redshift
value. The next thing we do is to convert the redshifts into distances. For our purpose we can
simply use a “nominal” distance, given by

r = cz/100 (r in Mpc, cz in km s−1) . (1)

This is because the subject-matter of our analysis, the number distributions of n1 and of τ ,
ultimately depend only on the numbers of galaxies located inside a given (rhombic) cell and
inside its twelve neighboring cells, so if we adopt a certain cosmology and use sophisticated
formulae (of comoving distance for the cells, and of luminosity distance for the galaxies), the
effect of so doing on the n1- and τ -distributions can be expected to be quite small, considering
that PSCz only extends to z ∼ 0.1.

With r so defined, we evaluate, for each galaxy, its usual rectangular coordinates x =
r cos b cos l, y = r cos b sin l, z = r sin b, and then, together with its flux f , its (nominal) lumi-
nosity L defined simply as L = f · r2 (other authors may prefer to add a factor of 4π here),
or

log L = log f + 2 log r , (2)

where f is in Jy, and r is in Mpc.
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2.2 Distance and Luminosity Limited Samples

In Paper I, the analysis was applied to the CfA catalogue, regarded as a single sample.
At the end of that paper, the hope was expressed that with larger survey results becoming
available, much finer analysis can be made. The PSCz has provided just such an opportunity.

PSCz is flux-limited. This means that within a distance-limited sample taken from PSCz,
the coverage in luminosity is not uniform: it decreases with increasing distance. For uniformity,
then, we should not take all the galaxies up to a certain distance r∗, but only those with
luminosities greater than the corresponding limiting luminosity L∗, given by

log L∗ = log 0.60 + 2 log r∗ . (3)

Thus, each basic unit sample of our analysis satisfies two conditions, r < r∗ and L > L∗. In
the log L ∼ 2 log r plane, such a sample is represented by a rectangular box with its lower right
corner on the limiting diagonal. Such boxes generally overlap.

Our analysis is applied to eight such samples (Table 1). Each sample is identified by its
limiting distance r∗, e.g., S-75, S-150, S-250 (Column 1). Their defining limiting luminosities
are listed in Column 2. The eight samples cover a range of 0.52 dex in r∗, and a range of 1.04
dex (or 2.6 magnitudes) in L∗.

Table 1 Eight Distance- and Luminosity-Limited Samples

Sample log L∗ a0 Nfc=Nec a0,min—a0,max ρ (10−6 Mpc−3)

(1) (2) (3) (4) (5) (6)

S-75 3.53 7.173 780 7.072–7.296 1441.0

S-100 3.78 9.140 948 8.970–9.140 631.0

S-125 3.97 11.137 1020 11.034–11.204 301.0

S-150 4.13 13.856 925 13.730–14.220 150.0

S-175 4.26 16.762 797 16.393–16.762 84.9

S-200 4.38 19.750 737 19.340–19.982 49.3

S-225 4.48 22.970 660 22.898–23.340 29.4

S-250 4.57 27.620 492 27.070–27.620 18.3

2.3 An Illustrative Example

We take S-150 to illustrate the various steps in our calculation. First, to improve homo-
geneity of data, we define “actual used cells” by imposing, beside the condition r < 150, two
further restrictions on the coordinates of the cell centres. 1) To avoid the large uncertainties in
the inferred distances of the galaxies in our local “swimming pool”, we require r > 25. 2) To
reduce undue influence of the mock galaxies in the galactic zone of avoidance, we require all
the cells should be completely above latitude 10◦. Now, our cells which can each be imagined
as consisting of a cube of sides a0 with its six faces covered by six pyramids of height a0/2, are
arranged along the galactic coordinate axes, so the second condition reads,

|z| > zlim + a0, where zlim = r sin 10◦ . (4)

Thus, of the mock galaxies below 10◦ galactic latitudes, we made use of only those located in
cells that share a common face with some cells completely inside the boundary, and then only
in so far as they contribute to the definition of the like/unlike status of the common face. This
remark applies also to those PSCz galaxies below latitude 10◦.
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With respect to the “outer” boundary of r = 150 in the present example of S-150, the
need is obviously not so compelling that the actual used cells should be completely inside that
boundary;—to require this would mean a substantial drop in the number of usable cells. So
we define usable cells as those whose centres are within the r = 150 limit. Then our usable
cells on the boundary will have parts outside that boundary, and moreover, the status of the
“boundary” faces will further depend on the presence or absence of galaxies inside cells in the
next shell out. It is easy to show that, for a given a0, if we consider all galaxies to a distance
of 150 + (

√
2 + 1)a0, then we will have included all relevant galaxies.

We find, by trial and error, the value of a0 that will give equal numbers (or as equal as pos-
sible) of filled cells and empty cells, Nfc and Nec of the actual usable cells. It is understandable
that the two numbers are highly discontinuous functions of a0, and often a coarse adjustment
succeeds where a fine-tuning fails. In the present case we found that a0 = 13.856 succeeded in
giving Nfc = Nec = 925 (Table 1, Cols. 3, 4).

We can now summarise the various steps in this particular example of S-150. We start with
the ‘filled-out PSCz catalogue’ of 17477 galaxies, and pick out those with log L ≥ 4.13 (Table 1,
Line 4, Column 2). Then, for each trial value of a0, we determine the filled/empty status of all
the cells with centres out to distance 150+

√
2a0. Then, for the “actual used cells” with centres

satisfying the three conditions, 25 ≤ r, r ≤ 150, and the inequality (4), we count the number
of filled cells, Nfc, and the number of empty cells, Nec. We vary a0 until Nfc and Nec are equal
(or as nearly equal as possible). Then for this optimal value of a0, we finally obtain the object
of our analysis, the separate n1- and τ -distributions for the filled and empty cells.

The actual results in the present example are displayed in Figs. 1 and 2. They can be
compared with the figs. 1 and 2 of Paper I. The final results of the present paper will be based
on 8× 16 = 128 such pairs of figures.

The values of the optimal a0 for all the eight samples are given in Column 3 of Table 1. It
happened that in all cases we had Nfc=Nec. These equal values are listed in Column 4.

Fig. 1 The n1-distriubtion of the Illustrative

Example. Histogram is the binomial distribu-

tion for the case of pure random mixture of

filled and empty cells.

Fig. 2 The τ -distribution of the Illustrative

Example. Histogram corresponds to the case

of pure random mixture of filled and empty

cells.
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3 STATISTICAL INDICES

Our aim being comparison between the filled and empty regions of the universe based on
their n1- and τ - distributions, it is obviously advantageous if we can summarise the most salient
features of the distributions by some numerical indices. We have singled out one index, dubbed
the “flocking index”, for the n1- distribution and three “χ-type” indices for the τ -distribution.

3.1 The Flocking Index η

It was pointed out in Paper I (sect. 3.2.1) that, because of the imposed condition Nfc=Nec,
we must use some function of the observed n1 frequencies other than the mean value 〈n1〉 as the
“flocking index” η that quantifies the degree to which cells of the same kind (filled or empty)
flock together.

Let us first rationalize the n1- distribution as follows: (i) We re-center the distribution at
0, i.e., we use a new independent variable, k = n1 − 6, (k = 0,±1,±2 · · · ,±6). (ii) Because the
frequency in the two end boxes (k = ±6) is usually very small, we put it into the next box, and
regard the combined frequency as located at the “binomial” mean of the two, so now we have
the rationalised distribution N(k), defined for k = 0,±1,±2,±3,±4,±5.228.

Now, consider the five differences, dk ≡ N(|k|)−N(−|k|), |k| = 1, 2, 3, 4, 5.228. Naturally,
we would want our η to be positive when the dk are generally more positive than negative;
however, a straight sum of the five dk would not be proper: they should each first be standardized
by their expected random error. It seems reasonable, as a first approximation, to regard N(|k|)
and N(−|k|) as two independent Poisson variables; then the variance of their difference would
just be equal to their sum. Hence we standardize each difference by the square root of their
sum, thus, D(k) ≡ (N(|k|) − N(−|k|))/

√
N(|k|) + N(−|k|). But a straight sum of the D(k)

still does not seem quite right. Recalling the meaning of k, it seems reasonable that these
standardized differences should each be given a weight equal to k. Thus, we finally arrive at
our adopted formula for the flocking index η:

η =
∑

kD(k)/
∑

k , k = 1, 2, 3, 4, 5.228 . (5)

In words, η is a weighted average of standardized difference between the observed frequences
at equal and opposite distances from the centre of the n1- distribution, standardized with
the expected random error of the difference, and weighted according to the distance from the
centre. Note, the observed central frequency at k = 0 (or n1 = 6) does not enter into the
calculation of η.

3.2 The Three χ- type Indices

Our τ - distribution, being the number distribution of a two-parametered variable τ(m1,m2),
does not lend itself to be similarly summarised by a single statistic. However, as was pointed
out in Paper I, at the present stage of development of the rhombic cell analysis, we should
perhaps concentrate on just 2 of the entries, namely, the two pertaining to τ(2, 1) and τ(1, 2),
for these are respective signatures of one-ply strings and monolayers (Paper I, 3.2.2). Writing
for short, the observed frequency of τ(2, 1) as N(2, 1), and its expected frequency (expected on
the assumption of a thorough mixture of filled and empty cells) as E(2, 1), we define statistic

χ1 = (N(2, 1)− E(2, 1))/
√

E(2, 1) , (6)

as a measure of the degree to which the observed frequency of one-ply string cells exceeds its
random expectation.
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Similarly, we define statistic

χ2 = (N(1, 2)− E(1, 2))/
√

E(1, 2) , (7)

in regard to the observed frequency of monolayer cells.
We have found it useful to introduce a third statistic that quantities the difference N(1, 2)−

N(2, 1). Regarding the two as independent random variables, the proper standardized difference
is

χ21 = (N(1, 2)−N(2, 1))/
√

N(1, 2) + N(2, 1) , (8)

which can be taken as a measure of the excess of “sheet cells” over “string cells”.

4 ZERO OFFSETS OF THE GRID OF CELLS

The present, more detailed application of rhombic cell analysis revealed a most important
fact, which had no occasion of emerging in the preliminary application reported in Paper I.
Namely, the n1- and τ - distributions are highly sensitive to the exact placing of the grid of
rhombic cells, that is, to the zero offset. To explain, recall that our rhombic cells are defined
in the following manner: space is first partitioned into a three-dimensional chessboard of black
and white cubes of sides a0, all the white cubes are each cut into six pyramids, and a rhombic
cell consists of a black cube with six white pyramids stuck on its faces. The centre of the
rhombic cell coincides with the centre of the black cube. We label the cells by integer triplets
(i, j, k), with i, j, k = 0,±1,±2, · · ·, subject to i + j + k = 0 mod(2). We imagine the cells to
form a rigid 3-d frame. We start our calculations by placing the centre of our zeroth cell (0,0,0)
at galactic coordinates (0,0,0). What we found was that if we displace our entire grid of cells
by an amount up to and including one unit of a0, in any combination of the three directions,
then the resulting n1- and τ - distributions will generally be different, sometimes greatly so.

Now, the maximum displacement is one unit of a0 either along one of the three axes, or
along all three axes, (but NOT along two of the axes, which would reproduce the original grid).
We denote this maximum displacement by (1,1,1), and the original grid by (0,0,0).

Let us now consider displacements involving half-units of a0, either positive or negative, in
either 1, 2, or 3 of the 3 directions. There are altogether 3× 3× 3− 1 = 26 such displacements
or offsets. But not all 26 are independent: some reproduce the same displacement of the grid.
More precisely, the same displacement is obtained if we reverse the signs of any two non-zero
displacements, e.g., the displacements or offsets (+,0,–) and (–,0,+) are duplicates of each other,
and so are (+,+,–) and (–,+,+), and so on. In sum, 12 out of the 26 are duplicates, and 14
are independents.1 Adding the original grid (0,0,0) and the single one whole-unit displacement
(1,1,1), we have a total of 16 independent displacements or zero offsets.

Of course, so far we have been considering only displacements that involve half-units of
a0. If, for example, we consider displacements involving quarter-units of a0, the number of
indepenedent displacements will then be much greater.

Each displacement or offset calls for a new evaluation of the optimal a0. We list, in Column
(5) of Table 1, the largest and smallest a0 among the 16 offsets for each of the considered
samples. Each fresh value of a0 results in fresh n1- and τ - distributions, and hence in fresh
values of the indices η, χ1, χ2, χ21. Just to illustrate the effect of the offsets, we display in
Table 2, the smallest and largest values of η and χ21 found among the 16 offsets, for the two

1 The 14 independent offsets can be taken as (0,0,+), (0,0,–), (0,+,0), (0,–,0), (+,0,0), (–,0,0), (0,+,+),
(0,+,–), (+,0,+), (+,0,–), (+,+,0), (+,–,0), (+,+,+) and (–,–,–).
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samples S-100 and S-200, and for the filled and empty cells on separate lines marked “f” and
“e”. We note that, in each case, the range is quite large.

Table 2 Smallest and Largest Values Among the 16 Independent Offsets

Sample log L∗ f/e η χ21

min max min max
S-100 3.78 f 2.12 3.63 3.14 7.40

e 2.81 4.23 2.80 5.80
S-200 4.38 f –1.17 0.54 –2.95 2.50

e –0.37 1.56 –0.92 2.60

4.1 Irreducible Scatter

On reflection, we should not be surprised by the fact that displacing the grid of cells slightly
may result in drastically different n1- and τ - distributions. Consider, for example, two galaxies
that are close together in space. Then, for one particular placement of the grid, the two may
belong to one and same cell, while slightly shifting the grid may put them in two different cells;
and the n1- and τ - distributions ultimately depend simply on how many galaxies go into which
cells. We must now recognize the following fact of life: because of the ultimately discontinuous
nature of the galaxy distribution in space, and because of the way the rhombic cell analysis
works, a given sample of galaxies does not correspond to some one “true” value of an index,
rather, it corresponds to a whole probability distribution of the index. In other words, each
index has an irreducible scatter represented by some probability distribution, and the 16 values
we get from the 16 independent offsets must be regarded as so many independent random
samples taken from that parent distribution. And the most we can do is to estimate the mean
and standard deviation (s.d.) of the parent distributions. Assuming normal distribution, the
unbiased estimates of the mean and s.d. are given by the usual formulae2,

〈x〉 =
∑

xi/n , σ =
√

(
∑

(xi − 〈x〉)2/(n− 1) , (n = 16) . (9)

Here, x stands for any one of the four indices and the summation is over the 16 observed values
xi. We emphasize that, here, σ is an unbiased estimate of the s.d. of the hypothetical parent
distribution; it is NOT the s.d. of the sample mean 〈x〉, usually known as “s.e.” (standard
error). The latter would be equal to σ/

√
n, and so could be made very small by considering much

larger values of n pertaining to displacements at smaller steps: its size thus largely depending
on some man-made circumstance, it is inappropriate as an indicator of some objective scatter.
On the other hand, the σ defined in (9), is an estimate of the irreducible scatter.

Our results, then, consist of the estimated mean and s.d. of the hypothetical distributions
of the four indices, η, χ1, χ2, χ21, separately for the filled and empty cells of the eight selected
distance/luminosity-limited samples. The results are listed in Table 3.

5 RESULTS INTERPRETATION

5.1 Formal Results

Remarkable trends emerge when the mean indices of Table 3 are plotted as functions of the
sample depth r∗. See Figs. 3, 4, 5. In all the figures, filled triangles refer to filled cells, and open

2 In a more strict notation, 〈x〉 would be written as µ̂, and σ, as σ̂.
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symbols, to empty cells. The error bars mark one unit of σ, the s.d. of the parent distribution
defined at (9). In all cases, a trend is unmistakable despite the fact that each index for a given
sample has quite a scatter as indicated by the size of the error bars.

Table 3 Results of Calculation for Selected Samples of PSCz Catalogue

Sample log L∗ f/e η χ1 χ2 χ21

mean s.d. mean s.d. mean s.d. mean s.d.

S-75 3.53 f 4.21 0.37 –4.49 0.91 3.00 0.78 5.46 1.02

e 4.18 0.46 –4.11 0.80 0.95 0.85 3.80 0.78

S-100 3.78 f 2.83 0.40 –3.97 0.72 3.34 1.34 5.37 1.09

e 3.51 0.41 –3.54 0.69 2.17 0.81 4.26 0.84

S-125 3.97 f 1.70 0.48 –2.62 1.34 1.83 0.70 2.75 0.96

e 3.06 0.40 –2.58 1.11 2.18 1.22 3.38 1.46

S-150 4.13 f 1.39 0.54 –2.02 0.85 1.38 0.83 2.29 1.13

e 1.79 0.48 –2.21 0.82 1.68 0.78 2.72 0.79

S-175 4.26 f 0.72 0.54 –0.68 1.15 0.32 0.83 0.72 1.07

e 1.78 0.35 –2.01 0.73 1.16 0.92 2.24 0.96

S-200 4.38 f –0.40 0.55 0.29 1.19 –0.17 1.03 –0.32 1.34

e 0.77 0.53 –0.38 0.77 0.46 0.64 0.61 0.76

S-225 4.48 f –0.73 0.51 0.22 0.58 –0.05 0.94 –0.51 0.66

e 1.13 0.58 –0.64 0.93 0.92 1.02 1.39 0.80

S-250 4.57 f –0.31 0.57 0.04 0.90 –0.08 0.91 –0.14 1.02

e 1.08 0.55 –0.85 1.07 0.65 0.84 1.12 1.14

Fig. 3 Mean η as a function of the sample depth for filled and empty cells. Error
bars mark 1 s.d. of the parent distributions.

5.1.1 The 〈η〉 ∼ r∗ Curve

Figure 3 shows the mean η versus sample depth curve, separately for the filled cells (filled
triangles) and empty cells (open squares). There are two remarkable features. 1) Both curves
start with definitely positive values at the smallest sample depth (75 Mpc), then both steadily
fall with increasing depth. By 200Mpc or so, the “filled curve” is marginally below the zero level
of nil flocking, while the “empty curve”, marginally above. 2) While both curves fall steadily,
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the empty curve remains consistently above the filled curve. Thus, for both the filled region
and the empty region, there is a definite degree of likes flocking together at smaller depths, but
the flocking decreases to insignificance around 200 Mpc. And, at any depth, the tendency of
likes flocking together is stronger for the empty cells than for the filled cells.

Incidentally, for the single (inhomogeneous) CfA sample studied in Paper I, we have 〈η〉 =
2.09 for the filled cells, and 4.02 for the empty cells. These can be seen to be entirely consistent
with the curves of Fig. 1 at depths 75 ∼ 100 and with the last statement.

5.1.2 The Three 〈χ〉 ∼ r∗ Curves

Figures 4, 5, 6 show how each of the three χ-indices for the τ -distribution varies with the
sample depth. First, Fig. 4 which refers to χ2, the degree to which the observed frequency of
cells belonging to thin sheets (strictly, monolayers) exceed the random expectations (Eq. (7)).

Fig. 4 Mean χ2 as a function of the sample depth. Same symbols as in Fig. 3.

Figure 4 shows: at small depths, both the filled and empty curves are significantly positive,
with the filled lying definitely above the empty. This last feature is consistent with a conclusion
reached in Paper I, namely, the filled cells, but not the empty cells, show a tendency of occurring
in sheets. In fact, we find, for the CfA data, 〈χ2〉 = +2.38 (filled), and –0.92 (empty). As the
sample depth increases, both curves fall, the filled curve falling faster, so that at depths around
200 Mpc and beyond, the filled curve becomes entirely non-significant, while the empty curve
remains marginally significant. The situation at large depths mimics the behaviour of the
η-curves of Fig. 3; note, however, the larger error bars in Fig. 4.

Next, we consider the mean χ1 versus depth curves shown in Fig. 5. Recall that χ1 is
a measure of the excess above random of the observed frequency of cells belonging to thin
(one-ply) strings (Eq. (6)).

The χ1 curves look like some mirror images of the χ2 curves: they start significantly below
the zero level and gradually rise to reach it around 200 Mpc, with the filled curve first below,
then eventually above the empty curve. The values we found for the CfA data are 〈χ1〉 = −3.81
(filled) and –3.28 (empty), entirely consistent with the initial portions of the curves of Fig. 5.

The contrary behaviors of χ2 and χ1 suggested to us that an index for their difference
may be of interest. Hence the index χ21 defined at (8). It could be called the “sheet-string
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differential index”: it measures the excess of cells belonging to thin sheets over those belonging
to thin strings, with no reference to their common random expectations.

The variation of mean χ21 with the sample depth is shown in Fig. 6. For the filled cells,
we see that there is a considerable excess of “sheet cells” over “string cells” at small sample
depths. As the sample depth increases, this excess becomes less and less, and eventually vanishes
altogether at around 200 Mpc. For the empty cells, there is also a definite, though smaller, excess
of “sheet cells” over “string cells” at the start, but the decrease with increasing depth is gentler
in this case, such that even at the largest sample depths, there is still a small residual excess.
Except for a short stretch at the beginning, the empty curve lies consistently above the filled
curve, reminiscent of the 〈η〉- curves of Fig. 3.

Fig. 5 Mean χ1 as a function of the sample depth. Same symbols as in Fig. 3.

Fig. 6 Mean χ21 as a function of the sample depth. Same symbols as in Fig. 3.
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5.2 Interpretation of Results

So far we have described the trends of the indices as variations with the sample depth, or the
limiting distance of the sample. But this is for verbal convenience only. We have throughout
this paper emphasized that each of our distance-limited samples is also a luminosity-limited
sample, that as we consider deeper and deeper samples we are also considering samples of more
and more luminous galaxies. Indeed, for the X-axis of our last four figures, we could equally
have used the limiting luminosity instead of the limiting distance. So we must now address
the question, “which of the two, limiting distance or limiting luminosity, is the parameter the
morphology correlates with?”

This question is easily settled. All we have to do is to consider the intersection of two of
our samples, and see how its results compare with those of the two original samples. We chose
the intersection of S-100 and S-200. We call it S∗-100, that is, the sample S∗-100 has the same
limiting distance as S-100 (100 Mpc) and the same limiting luminosity as S-200 (log L∗ = 4.38).

Table 4 compares the mean indices from S∗-100 with those from S-100 and S-200 lifted from
Table 3, separately for the filled regions (upper three lines) and the empty regions (lower three
lines). It is clear that the results of S∗-100 are much closer to those of S-200 than to those of
S-100: the parameter that the morphology correlates with is not the sample depth; it is the
limiting luminosity.

Table 4 Comparison of the Results of Three Samples

Sample log L∗ f/e 〈η〉 〈χ1〉 〈χ2〉 〈χ21〉
S-100 3.78 f 2.83 –3.97 3.34 5.37

S∗-100 4.38 f 0.02 –0.33 0.16 0.35

S-200 4.38 f –0.40 0.29 –0.17 –0.32

S-100 3.78 e 3.51 –3.54 2.17 4.26

S∗-100 4.38 e 0.33 –0.44 0.85 0.83

S-200 4.38 e 0.77 –0.38 0.46 0.61

We must now re-state the empirical results obtained in the present study in the follow-
ing terms. The morphology of the filled and empty regions defined by a given distance-and-
luminosity-limited sample of galaxies is essentially a function of the limiting luminosity. As
we consider samples of more and more luminous galaxies at ever decreasing space densities,
the morphology degrades: the degree of like cells flocking together steadily decreases and so
does the excess of cells belonging to thin sheets over those belonging to thin strings. And the
degrading is generally stronger for the filled than for the empty region, so that one could say,
at any luminosity level, the universe is always more like loose collections of lakes in a land than
groups of islands and archipelagos in an ocean.

Recall that our luminosity is based on infrared flux and that its definition at (3) is purely
nominal, it may be useful for future comparisons with results from other datasets to introduce
a more objective parameter than the limiting luminosity L∗. We propose the space number
density of galaxies more luminous than L∗, to be denoted by ρ(L∗). This quantity is easily
calculated: for it is simply the number of galaxies in the “filled-out PSCz Catalogue” (Sect. 2)
with r < r∗ and L > L∗, divided by (4/3)πr3

∗. The results (in galaxies per (100 Mpc)3) are
given in the last column of Table 1.

5.3 A Density Effect or a Random Selection Effect?

It was suggested to us by the Referee that we should look into the possibility that the
observed variation in the indices across the samples be a density effect (since, e.g., S-200 has
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a smaller density than S-100) and that, for testing this possibility, we should use a random
sample of S-100, labelled S∗∗-100, with the same number of galaxies as S∗-100.

As might be expected, the resulting indices varied much from one random selection to the
next. So we took 10 such random selections. From now on, for simplicity, we shall restrict
the discussion to one of the indices, and we choose the flocking index η for the filled region.
We found, for the 10 random selections, η ranges from –0.85 to +0.45, with mean –0.24 and
standard deviation 0.33. Let us denote this mean value by η∗∗; we have η∗∗ = −0.24. This
value is significantly smaller than the mean η for S-100 (which we now simply write as η1 (from
Table 3, η1 = 2.63)).

Before interpreting this result (η∗∗ � η1), we should recall the reasoning behind our inter-
pretation of a previous, formally similar inequality, we mean the inequality η∗ � η1, where η∗

stands for the mean η for the sample S∗-100 (according to Table 3, η∗ = 0.02). And we inter-
preted this latter inequality as a luminosity effect because S*-100 simply consists of the more
luminous members of S-100. Now, S∗∗-100 is generated out of S-100 quite differently: we just
pick out a certain prescribed number of its members, purely at random, without any regard to
any individual properties. Hence, just as we interpreted the inequality η∗ � η1 as a luminosity
effect, we must now interpret the inequality η∗∗ � η1 as an effect of random selection.

In fact, it seems quite plausible that any random selection of a population will be less
“structured” than the population itself. Let us quantify the “degree of structuredness” by
the ratio F2/F1, with F1 the fraction of isolated members and F2 the fraction of members
belonging to groups of 2 or more. Then it seems obvious that if we make a random selection of
the population, with each member, whether isolated or belonging to a group, having the same
chance of being selected, then the resulting F2/F1 will be smaller. This point that random
selection destroys structure does not seem to have been noticed before in the literature; it
provides a natural interpretation of our present finding, η∗∗ � η1.

Brief Summary The present study carries out one of the programs outlined at the end of
Paper I, the application of rhombic cell analysis to a large size data. But more has been done.
Statistical indices, particularly a “flocking index”, have been introduced to summarize much of
the essential information and, after emphasising the discrete nature of the analysis and of the
space distribution of galaxies, these indices for any given sample of galaxies are shown each to
have an irreducible scatter. Despite the scatter, the indices showed remarkable variation with
the limiting luminosity of the sample, leading to the conclusion stated above. It is planned to
carry out further programs mentioned in Paper I, particularly the raising of the threshold of
the filled cell.
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