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Abstract Beaming effect makes it possible that gamma-ray bursts have a stan-
dard energy, but the gamma-ray energy release is sensitive to some parameters.
Our attention is focused on the effect of the gamma ray conversion efficiency (ηγ),
which may range between 0.01 and 0.9, and which probably has a random value
for different GRBs under certain conditions. Making use of the afterglow data from
the literature, we carried out a complete correction to the conical opening angle for-
mula. Within the framework of the conical jet model, we ran a simple Monte Carlo
simulation for random values of ηγ , and found that the gamma-ray energy release
is narrowly clustered, whether we use a constant value of ηγ or random values for
different gamma-ray bursts.
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1 INTRODUCTION

Gamma-ray bursts (GRBs) are believed to originate from internal shocks that arise in
irregular relativistic winds. The kinetic energy of the resulting shells is converted into internal
energy by the relativistic shocks. Electrons are heated by the shocks, and the internal energy is
radiated via synchrotron and inverse Compton emission, with broken power law spectra. (Sari,
Piran & Narayan 1998)

One of the keys to understanding the progenitors of gamma-ray bursts and the physics of
their central engines lies in determining the energetics of the explosion. The true energy release
depends sensitively on such parameters as the geometry of the ejecta, the circumburst medium
density and the efficiency of gamma-ray conversion.

Jets are common in most gamma-ray bursts (Sari et al. 1998). If GRB explosions are
conical (as opposed to spherical) then the true energy release is significantly below that in-
ferred by assuming isotropy. Frail et al. (2001) presented a complete sample of 17 GRBs with
good afterglow data and known redshifts, corrected for the geometry within the conical jet
model, and found that the released gamma-ray energy is narrowly clustered around 5×1050 erg.
Bloom, Frail & Kulkarni (2003) presented a sample of 29 GRBs for which it has been pos-
sible to determine temporal breaks (of limits) from their afterglow light curves, and found a
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similarly tightly-clustered energy around 1.21 × 1051 erg. They interpreted the breaks with
several simplifying assumptions: constant ambient density and constant gamma-ray conversion
efficiency. They took a constant value of the conversion efficiency ηγ = 0.2 for all GRBs, and
a circumburst density n = 0.1 cm−3 (Frail et al. 2001) or n = 10 cm−3 (Bloom et al. 2003) if
the circumburst density is unknown. In addition, they derived the jet opening angle using an
approximate formula.

A number of recent papers (Panaitescu & Kumar 2002; Guetta, Spada & Waxman 2001;
Kumar 1999; Kobayashi 2001) have argued that internal shocks under certain conditions have
different conversion efficiencies. Considering their results and estimates, we assume that ηγ

may range between 0.01 and 0.9. Furthermore, we assume that different GRBs should have
different energy conversion efficiencies.

In Sect. 2, we derive a completely corrected formula of the jet opening angle, and carry out
an analysis of the effect of ηγ . In Sect. 3, we run a simple Monte Carlo simulation, and obtain
a narrowly distributed energy release corresponding to assuming the value of ηγ to be constant
or random for different GRBs. In Sect. 4 we present a brief discussion and conclusions.

2 MODEL AND PARAMETERS

In the relativistic fireball model, if we are along the jet’s axis and the Lorentz factor γ is
larger than the inverse of the jet’s half opening angle θj, then we shall have similar emissions
from a spherically expanding shell and a jet. When γ drops below θ−1

j , a break appears in the
light curve of the afterglow. For spherical adiabatic evolution, we have (Rhoads 1999; Sari,
Piran & Halpern 1999)

γ(t) ≈ 6(E52/n)1/8t
−3/8
day , (1)

where Eiso,kin = E52 × 1052 erg is the isotropic-equivalent kinetic energy of the ejecta during
the afterglow, i.e., the inferred energy assuming isotropic expansion, n is the surrounding ISM
particle density in cm−3, and tday is the time in units of day. The break should appear at

tj ≈ 6.2(E52/n)1/3(θj/0.1)8/3hr. (2)

The jet break time tj is determined from the afterglow light curves. We convert the jet break
time tj to the opening angle of the conical blast wave, using the formula of Sari et al. (1999),

θj =
1
6
E
−1/8
52 n1/8t

3/8
day. (3)

With the present canonical values for the cosmological parameters, ΩΛ = 0.7, ΩM = 0.3, H0 =
65 km s−1 Mpc−1, the luminosity distance at redshift z is given by

DL = (1 + z)
c

H0

∫ z

0

dz′√
ΩΛ + ΩM(1 + z′)3

. (4)

The total isotropic prompt energy release in a certain bandpass can be determined by

Eiso,γ = Fγ
4πD2

L

1 + z
k, (5)

where Fγ is the fluence received in the bandpass. The quantity k is a multiplicative correction
of order unity relating the observed bandpass to the standard rest-frame bandpass.
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We specially note that

Eiso,kin = Eiso,exp − Eiso,γ =
Eiso,γ

ηγ
(1− ηγ). (6)

Then we can obtain the formula of θj,

θj = 0.105
(

tj
1 day

)3/8 (
1 + z

2

)−3/8 (
Eiso,γ

1053 erg

)−1/8 [
ηγ

0.2 (1− ηγ)

]1/8 ( n

10 cm−3

)1/8

. (7)

Obviously, the opening angle θj is a function of the jet break time tj, isotropic-equivalent
gamma-ray energy Eiso,γ , ambient number density n, and gamma-ray conversion efficiency ηγ .

The beaming fraction is fb = 1− cos θj. After the beaming-correction, the true gamma-ray
energy release is

Ej,γ = Eiso,γfb = Eiso,γ(1− cos θj) . (8)

If the opening angle is small enough, i.e., 1 − cos θj = 2sin2( θj
2 ) ' θ2

j
2 , then the gamma-ray

energy release is

Ej,γ = Eiso,γ

θ2
j

2
. (9)

Assuming ηγ = 0.2, and neglecting the factor 1 − ηγ (i.e., adopting 1 − ηγ ≈ 1), Frail et al.
(2001) and Bloom et al. (2003) obtained the formula of θj,

θj = 0.057
(

tj
1 day

)3/8 (
1 + z

2

)−3/8 (
Eiso,γ

1053 erg

)−1/8 ( ηγ

0.2

)1/8 ( n

0.1 cm−3

)1/8

. (10)

Frail et al. (2001) adopted n = 0.1 cm−3 for bursts whose circumburst density n is unknown.
Panaitescu & Kumar (2002) found in most cases the density of the external medium is between
0.1 cm−3 and 100 cm−3. To find an actual value of Eγ , Bloom et al. (2003) suggested that a
more realistic estimate of the medium density n should be taken by broadband modelling of the
afterglow light curves. The modelling gave estimates in the range 0.1 cm−3 < n < 30 cm−3, and
thus Bloom et al. (2003) adopted a new canonical value of 10 cm−3. Here we take n = 10 cm−3

as the canonical value.
The gamma-ray conversion efficiency has been discussed in many earlier works. Mochkovitch,

Maitia & Marqueeset (1995) considered a simple model in which an outflow of ultra-relativistic
matter is represented by a succession of shells with random Lorentz factor values, and concluded
that the efficiency of this process is low (< 10%) if the spread in the Lorentz factor is small.
While Kobayashi, Piran & Sari (1997) found a ∼ 10% efficiency for a uniform Lorentz factor
distribution with a maximum to minimum Lorentz factor ratio ≈ 10; Kumar (1999) argued
that the conversion efficiency from bulk motion to gamma radiation is as low as 1%.

However, Kobayashi et al. (1997) showed that if the spread in the Lorentz factors of the
ultra-relativistic matter is larger, a higher efficiency could be achieved. The most efficient case
is the one in which the inner engine produces shells with comparable energy but very different
Lorentz factors. Beloborodov (2000) demonstrated that the efficiency may approach 100% for
non-uniform distributions with a wide range of Lorentz factors. Guetta, Spada & Waxman
(2001) found that, a significant fraction of the wind kinetic energy, on the order of 20%, can be
converted to radiation, if the Lorentz factor within the wind spreads over the range 10 − 103.
Kobayashi & Sari (2001) similarly found ∼ 60% efficiency for a uniform distribution of the
logarithm of the Lorentz factor over the range 1− 4.
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Panaitescu & Kumar (2002) have made broadband modelling of 10 GRB afterglows within
a specific framework, which revealed several properties of GRB jets. By their modelling, the
conversion efficiency ηγ was found to vary over a wide range from 0.11 to 0.82 for different
GRBs.

Based on the above results, and using the estimates of Kumar (1999) and Kobayashi & Sari
(2001), we assume that ηγ may range between 0.01 and 0.9 and that ηγ has a random value for
different GRBs. This is possible because the central engines eject randomly relativistic shells
with some unknown distribution of Lorentz factors.

3 NUMERICAL SIMULATION FOR ENERGY CONVERSION EFFICIENCY

Assuming a constant conversion efficiency, ηγ = 0.2, for all GRBs, Frail et al. (2001) found
the gamma-ray energy release is clustered around 5 × 1050 erg, Bloom et al. (2003) obtained
a clustered energy release around 1.21 × 1051 erg, with a small scatter 0.08 dex (≈ 0.20 mag).
Confining to the GRBs with measured tj, z and n, Bloom et al. found the energy is clustered
around 1.33× 1051 erg ± 0.07 dex.

Table 2 lists the observed and modelled data for the GRB energy determination, taken from
Bloom et al. (2003). There are 35 GRBs in this table, but only 24 GRBs of which have both tj
and z. Using the formula in Sect. 2, we can derive the gamma-ray energy release for these 24
GRBs.

In fact, the energy conversion efficiency is such a complex parameter that it can change
over a wide range. It is determined by many parameters, such as ξe, the ratio of the accelerated
electron energy density to the total thermal energy density of the shocked medium. However,
ξe is not constant for all GRBs. Panaitescu & Kumar (2002) have modelled 10 GRBs, and
found that the values of ηγ of these 10 GRBs are different, ranging from 0.11 to 0.82. So, we
believe that ηγ may be random for different GRBs.

We ran simulations for two specific cases: in one, ηγ is assumed to be a constant for all the
GRBs; in the other, random for different GRBs.

3.1 Simulation with a Constant Energy Conversion Efficiency

First, we reproduce the result of Bloom et al. (2003). We assume that the gamma-ray
conversion efficiency ηγ is constant for all GRBs, and ηγ ranges from 0.01 to 0.9. For the 24
GRBs with measured z, tj, and n (n = 10 cm−3 if n is unknown), the logarithmically-weighted
mean total energy release is 1.27 ×1051 erg ±0.07 dex, with a median energy of 1.35 ×1051 erg.
Compared with Bloom’s result in the case of ηγ = 0.2, our result is larger because of the
(1− ηγ)−1/4 factor in Eqs. (7) and (9). While ηγ ranges from 0.01 to 0.9 the gamma-ray energy
release is very narrowly clustered, and becomes larger. In Table 1, we show the median energy
of 24 GRBs when ηγ is 0.01, 0.2 and 0.9. Figure 1 also clearly shows a comparison with the
result calculated from Eq. (10).

Table 1 Effect of ηγ on the Clustered Energy for all GRBs
Following the Corrected Formula

Conversion efficiency ηγ Ej,γ ×1051erg

0.01 0.6± 0.09 dex

0.2 1.35± 0.09 dex

0.9 3.29± 0.09 dex
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3.2 Simulation with Random Distribution of Energy Conversion Efficiency

To acquire the distribution of the beaming-corrected gamma-ray energy release, we next
run a simple Monte Carlo simulation. The value of ηγ is taken to be random between 0.01 and
0.9 for the 24 GRBs. We calculate each GRB’s gamma-ray energy release, and find that the
median energy release of 24 GRBs is clustered.

Table 2 Observed and Modelled Data for GRB Energy Determination
(taken from Bloom et al. 2003)

GRB z Sγ ×10−6 Bandpass k tjet n

erg cm−2 keV day cm−3

970228 0.6950 11.70± 2.00 1.5, 700 0.830± 0.041

970508 0.8349 3.17 20, 2000 0.814± 0.041 25.00± 5.00 1.00

970828 0.9578 96.00 20, 2000 0.823± 0.036 2.20± 0.40

971214 3.4180 9.44 20, 2000 0.804± 0.057 > 2.5

980326 0.92 20, 2000 < 0.4

980329 55.10 20, 2000 < 1.0 20.00± 10.00

980425 0.0085 3.87 20, 2000 1.002± 0.000

980519 10.30 20, 2000 0.55± 0.17 0.14+0.32
−0.03

980613 1.0969 1.71± 0.25 20, 2000 0.863± 0.110 > 3.1

980703 0.9662 22.60 20, 2000 0.940± 0.041 3.40± 0.50 28.00± 10.00

981226 0.40± 0.10 40, 700 > 5.0

990123 1.6004 268.00 20, 2000 0.720± 0.052 2.04± 0.46

990506 1.3066 194.00 20, 2000 0.873± 0.054

990510 1.6187 22.60 20, 2000 1.026± 0.055 1.20± 0.08 0.29+0.11
−0.15

990705 0.8424 93.00± 2.00 40, 700 1.279± 0.098 1.00± 0.20

990712 0.4331 6.50± 0.30 40, 700 1.387± 0.132 > 47.7

991208 0.7055 100.00 25, 10000 0.746± 0.206 < 2.1 18.00+18.00
−6.00

991216 1.0200 194.00 20, 2000 0.877± 0.042 1.20± 0.40 4.70+6.80
−1.80

000131 4.5110 41.80 20, 2000 0.646± 0.074 < 3.5

000210 0.8463 61.00± 2.00 40, 700 1.278± 0.097 > 1.7

000301C 2.0335 4.10 25, 1000 0.928± 0.094 7.30± 0.50 27.00± 5.00

000418 1.1181 20.00 15, 1000 0.997± 0.018 25.00± 5.00 27.00+250.00
−14.00

000630 2.00 25, 100 > 4.0

000911 1.0585 230.00 15, 8000 0.508± 0.063 < 1.5

000926 2.0369 6.20 25, 100 3.912± 1.328 1.80± 0.10 27.00± 3.00

010222 1.4768 120.00± 3.00 2, 700 1.115± 0.004 0.93+0.15
−0.06 1.70

010921 0.4509 15.40± 0.20 8, 400 1.475± 0.289 33.00± 6.50

011121 0.3620 24.00 25, 100 4.996± 2.006 > 7.0

011211 2.1400 5.00 40, 700 1.068± 0.084 1.77± 0.28

020124 3.00 8, 85

020405 0.6899 38.00± 4.00 50, 700 1.318± 0.096 1.67± 0.52

020331 0.40 8, 40

020813 1.2540 38.00 25, 100 4.336± 1.682 0.43± 0.06

021004 2.3320 3.20 7, 400 1.188± 0.098 7.60± 0.30 30.00+270.00
−27.00

021211 1.0060 1.00 8, 40 12.345± 6.462

For example, we run the simulation for 10000 times. For each time, by taking a random
sample of ηγ for 24 GRBs, we obtain the total sum of the highest bar and its adjacent two
bars, written as Ncluster, which represents the dispersion of the cluster. The larger the sum,
the smaller the dispersion becomes. The clustered distribution is shown in Fig. 2, which shows
that the dispersion becomes larger than the one shown in Fig. 3. We also calculate the median
gamma-ray energy release of 24 GRBs after beaming-correction.
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Fig. 1 ηγ ranges from 0.01 to 0.9. With ηγ increasing, the clustered energy becomes larger.

The solid curve is our result following Eqs. (7) and (9), and the dashed curve is the result

following Eq. (10). Obviously, after (1-ηγ) factor corrected, the clustered energy is larger.

Fig. 2 Histogram of GRB energies (Eγ) with

three equal logarithmic spacings per decade

when ηγ is generated randomly for 24 GRBs.

It shows a narrow distribution of GRB ener-

gies about the energy 1.67×1051 erg, with an

error of σ = 0.22 dex. This is just an example.

Fig. 3 Histogram of GRB energies (Eγ) with

three equal logarithmic spacings per decade

when ηγ= 0.2. It shows a narrow distribution

of GRB energies about the standard energy

1.35×1051 erg, with an error of σ = 0.09 dex.

After 10 000-times simulation, we find that the total sum Ncluster and the median energy
satisfy the Gaussian distribution, shown in Figs. 4 and 5. Clearly, among the 10 000-times
simulation, it is only very few times that Ncluster is smaller than 17, showing a good cluster.
We find the median energy is also clustered, and acquire a new standard energy: 1.82×1051 erg.

In both cases above, the beaming-corrected gamma-ray energy release is clustered and the
dispersion is smaller if ηγ is constant. In other cases, such as the Gaussian distribution of ηγ ,
it puts greater weight on some ηγ , so that the beaming-corrected jet energy is still clustered,
with a smaller dispersion than for the random distribution of ηγ . In addition, in any other
distribution, we can obtain a similar conclusion.
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Fig. 4 Dispersion distribution from Monte

Carlo simulations. Here ηγ is generated ran-

domly for 24 GRBs. It shows that for only few

times Ncluster is smaller than 17. The gamma-

ray energy release is well clustered for most

times in our simulation.

Fig. 5 Median energy (of 24 GRBs after

beaming-correction) distribution from Monte

Carlo simulations. Here ηγ is generated ran-

domly for 24 GRBs. It shows the median en-

ergy is clustered around 1.82×1051 erg.

4 DISCUSSION AND CONCLUSIONS

Our work is based on the following assumptions:
(1) GRBs explode in a constant density medium and any sharp break in the afterglow light

curve is attributed to sideways expansion of a relativistic jet.
(2) The jet is uniform, with an energy per solid angle independent of direction within the

jet. In general, the observer is assumed to be located on the jet axis.
Our analysis is focused on the effect of ηγ . In fact, there are some other factors affecting the

jet energy. For example, since the total energy Ej,exp = Ej,γ/ηγ ∝ n1/4ηγ
−3/4 (which follows

from Eq. (7)), the gamma-ray energy release is also sensitive to the circumburst density. In our
analysis, we have taken the medium densities from broadband modelling of some afterglows but
used n = 10 cm−3 for other afterglows. We have not considered wind environments, which may
appear in the vicinity of GRBs associated with massive stars (Dai & Lu 1998; Chevalier & Li
1999, 2000).

Our analysis shows that under the assumptions above, if ηγ is constant for different GRBs,
the gamma-ray energy release is tightly clustered; if ηγ is randomly distributed, the gamma-ray
energy release is still clustered, but not so tightly. We also deduce that the gamma-ray energy
release is clustered in any other ηγ distribution. In the latter case, we can take a new standard
energy 1.82×1051 erg for GRBs. The GRB standard energy makes possible to use GRBs and
their afterglows for cosmography. Our results may be tested by the upcoming GRB data.
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