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Abstract We investigate the mass-temperature relation of clusters for both the
spherical NFW halo model and a concentric triaxial halo model. We study the
temperature and density distributions of both an isothermal and a polytropic intra-
cluster gas in hydrostatic equilibrium. We find that both the uncertainties in the
concentration parameter and in the eccentricities (in case of the triaxial halo) lead
to a greater scatter in the emission-weighted temperature at a given halo mass for
less massive clusters. This may be helpful when determining the intrinsic statistical
error of the σ8 normalization of the linear power spectrum from cluster abundance.
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1 INTRODUCTION

As the largest virialized objects in the universe, clusters of galaxies serve as excellent cosmo-
logical indicators. In the hierarchical clustering paradigm of structure formation, the formation
and evolution of clusters are sensitive to the cosmological parameters and to the amplitude of
mass fluctuation. One of the strongest constraints in cosmology comes from the abundance of
clusters in the local universe, which provides a direct handle on the matter power spectrum on
scales of a few megaparsec and hence a normalization scheme for the linear power spectrum
(White, Efstathiou & Frenk 1993; Bond & Myers 1996; Viana & Liddle 1996; Kitayama & Suto
1997; Eke et al. 1998; Pen 1998; Wang & Steinhardt 1998; Blanchard et al. 2000; Henry 2000;
Pierpaoli, Scott & White 2001; Borgani et al. 2001; Seljak 2001). Moreover, the cluster pop-
ulation at higher redshifts is sensitive to the linear growth rate of density fluctuations, which
allows us to break the ΩM -σ8 degeneracy from the local abundance constraints (Eke, Cole &
Frenk 1996; Bahcall & Fan 1998).

Underlying the σ8 normalization is the Press-Schechter formulation for the evolution of the
number density of dark matter halos originated from the initial Gauss fluctuations. The the-
ory works with the virial cluster mass, which is difficult to measure observationally, so a more
promising technique is to convert the virial mass to the observable X-ray temperature. So far,
there has been a great effort to set up the mass-temperature relation from some semi-analytical
model or hydrodynamic simulation (Bryan & Norman 1998; Horner et al. 1999; Voit 2000;
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Afshordi & Cen 2002). The simple virialization model suggests the mass scaling to the power
3/2 of the temperature, M ∝ T 3/2. It is noted that both simulations and observations repro-
duce the predicted slope of M -T relation, while yielding a wide range for the proportionality
coefficient. Uncertainties may arise from complex modeling of physical processes in the simula-
tion, insufficient resolution, and various working definitions of temperature in the observations.
Clearly, only a reliable normalization of the M -T relation with a well quantified scatter allows
precise measurement of the cosmological fluctuation power spectrum.

The key issue in understanding the M -T relation is the distribution of the X-ray emit-
ting intra-cluster gas. The current, widely-used simple description for the gas is the spherical
isothermal β model. The more remarkable progress was the recognition of a universal scaling
behavior of the density profile in simulated halos by Navarro, Frenk & White (1996, 1997,
hereafter NFW). The hydrostatic equilibrium solution of the intra-cluster gas embedded in the
spherical NFW model and its application to X-ray clusters have been also investigated (Makino,
Sasaki & Suto 1998; Suto, Sasaki & Makino 1998; Komatsu & Seljak 2001).

Obviously, a direct generalization of dark matter halos beyond the spherical model is the
aspherical model, whose importance has been realized in understanding some observed proper-
ties, including X-ray morphologies of clusters (Buote et al. 2002) from Chandra observations,
and the Hubble constant measurement via the Sunyaev-Zeldovish effect (Birkinshaw, Hughes &
Arnaud 1991; Inagaki, Suginohara & Suto 1995; Yoshikawa, Itoh & Suto 1998). By means of N-
body simulation with high resolution, Jing & Suto (2002, hereafter JS02) demonstrated a more
realistic model with a triaxial halo density profile. Because of their cosmological importance,
the probability distributions of the axis ratio and the concentration parameter were quantified
by a set of fitting formulae. Subsequently, an analytical approach to the intra-cluster gas in the
triaxial model and application to arc statistics have been presented (Lee & Suto 2003; Oguri,
Lee & Suto 2003).

The primary interest of this paper is to investigate the M -T relation statistically in the
triaxial halo model, in particular, the intrinsic scatter in the M -T relation arising from random
statistical distribution of the halo shapes. The paper is organized as follow, Sect. 2 gives a
brief sketch of both the spherical and triaxial modeling of dark matter halo. The density and
temperature of intra-cluster gas distribution in hydrostatic equilibrium are numerically solved.
Then, in Sect. 3 we study statistically the M -T relation by a Monte-Carlo sample of triaxial
clusters, and discuss the effect of asphericity on the normalization of the M -T relation. Sect. 4
presents our concluding remarks.

2 TRIAXIAL MODELING OF DARK MATTER HALOS

2.1 The NFW Spherical Model

Based on high resolution N-body simulation, the dark matter density profile was suggested
to follow a universal form by NFW,

ρDM(r)
ρcrit

=
δc

(r/rs)(1 + r/rs)2
, (1)

where ρcrit is the critical density of the universe; the characteristic halo density contrast δc and
the scaling radius rs can be written in terms of the concentration parameter cvir as

δc =
∆vir

3
c3vir

ln(1 + cvir)− cvir/(1 + cvir)
, (2)
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rs(M) =
rvir(M)
cvir

, (3)

in which rvir = rvir(M, z) is the virial radius calculated by the spherical collapse model (Peebles
1970)

rvir =
( 3M

4π∆virΩ0ρcrit

) 1
3
, (4)

in which we use ∆vir within rvir instead of spherical overdensity of 200 within r200 given by
NFW. In the flat models, we adopt the fitting formula of Bryan & Norman (1998),

∆vir(z) = 18π2 + 82(Ω(z)− 1)− 39(Ω(z)− 1)2 . (5)

For the concentration parameter cvir, there have been several different fitting formulae
proposed so far. In this paper, we use the formula of Bullock et al. (2001),

cvir =
9

1 + z

( M

1.5× 1013h−1M�

)−0.13

. (6)

It is noted that there is a large scatter in cvir values for a given fixed mass. The simulations
suggested that cvir follows a log-normal distribution:

p(cvir)d(cvir) =
1√

2πσcvir

exp
[−(ln cvir − ln cvir)2

2σ2
cvir

]
d ln cvir (7)

with σcvir ≈ 0.2. As will be discussed later, the wide spread in cvir may lead to some uncertainties
in the distribution of the intra-cluster gas and hence scatter in the M -T relation. Clearly, for a
dark matter halo of a given virial mass Mvir and a sampling value of cvir from the log-normal
distribution, its density profile is uniquely specified.

2.2 The Triaxial Halo Model

The density profiles of triaxial halos are well approximated by a sequence of concentric and
aligned triaxial distributions (Jing & Suto 2002). Similar to the NFW model, it takes the form
parameterized by

ρ(R)
ρcrit

=
δc

(R/R0)α(1 +R/R0)3−α
, (8)

where

R2 = c2
(x2

a2
+
y2

b2
+
z2

c2

)
,

a, b, and c are the three axial lengths. Without loss of generality, it is assumed that a ≤ b ≤ c.
The inner slope α is not precisely quantified from the N-body simulation, it spans a range
between 1 and 1.5 (Navarro et al. 1996,1997; Moore et al. 1999; Jing & Suto 2000). In this
paper, we adopt the value α = 1.

The characteristic halo density contrast δc, and the scaling radius R0 in the triaxial model
are also written in terms of the concentration parameter ce

δc =
∆e

3
c3e

ln(1 + ce)− ce/(1 + ce)
, (9)

R0 =
Re

ce
, (10)
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where Re is defined such that the mean density within the ellipsoid of major axis radius Re is
∆eρcrit

∆e = 5∆vir

( c2
ab

)0.75

. (11)

This unusual definition is chosen so as to have Re a fixed fraction of the virial radius rvir in
the corresponding spherical NFW model for a given halo mass, i.e., Eq. (4). According to JS02,
η ≡ Re/rvir ≈ 0.45. Formally, we may also introduce the virial radius Rvir in the triaxial model,
which is obtained by the equalization of mass within the ellipsoid of major axis radius Rvir with
a pre-defined mass Mvir. Thus, we have

Mvir = 4πR3
0δcρcrit

(ab
c2

)
g(Rvir/R0) , (12)

where g(x) is defined by g(x) = ln(1+x)− x
1+x . Given the above procedures, once the shape of

the ellipsoid is specified, we are able to determine the density profile for the individual triaxial
halo.

In order to study the M -T relation statistically, the probability distribution function (PDF)
of the shapes of halos is required. We adopt the PDFs given by JS2002, drawn from their high
resolution N-body simulation in the LCDM model, which assumed Ω0 = 0.3, λ0 = 0.7, σ8 = 0.9
and Γ = 0.2. According to empirical formulae in JS02, introduce the scaling of the axis ratio
a/c

r̃ac =
(a
c

)(Mvir

M?

)0.07[Ω(z)]0.7

, (13)

where M? is the characteristic nonlinear mass at redshift z such that the rms top-hat filtered
overdensity at this scale σ(M?, z) is δc = 1.68, the PDF of axis ratio is thus given by a universal
form independent of the halo mass

p(r̃ac)dr̃ac =
1√

2πσs

exp
[
− (r̃ac − 0.54)2

2σ2
s

]
dr̃ac (14)

with σs = 0.113. Accordingly, the conditional probability of a/b for a given value of a/c is

p(a/b|a/c) =
3

2(1− rmin)

[
1−

(2a/b− 1− rmin

1− rmin

)2]
(15)

for a/b > rmin, where rmin = a/c for a/c ≥ 0.5, rmin = 0.5 for a/c < 0.5, and p(a/b|a/c) = 0 for
a/b ≤ rmin. As in the case of the spherical NFW model, the concentration parameter ce here
also has a large scatter. The PDF for ce is found to be well fitted by the log-normal distribution
with mean value,

ce[r̃ac,M, z] = 1.35Ae

√
Ω(z)∆vir(zc)
Ω(zc)∆vir(z)

(1 + zc

1 + z

)3/2

exp
[
−

(0.3
r̃ac

)2]
, (16)

and a dispersion σce
= 0.3, where zc is the collapse redshift of the halo of mass M , Ae = 1.1

for the LCDM model.

3 INTRA-CLUSTER GAS DISTRIBUTION IN DARK MATTER HALOS

For modeling the intra-cluster gas distribution in a dark matter halo, we assume that the
gas is in hydrostatic equilibrium in the gravitational field generated by the halo and that the
self-gravity of the baryonic gas is neglected. The equation of state of the intra-cluster gas is
taken to be either isothermal or polytropic.
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3.1 Gravitational Potential of Dark Matter Halos

In the spherical halo model, the gravitational potential is given by

Φ(r) = −
∫ ∞

r

GM(r)
r2

dr . (17)

For the NFW density profile, the mass enclosed within radius r is

M(r) = 4πr3sδcρcritg(r/rs) , (18)

and the gravitational potential is then given by the following expression:

Φ(r) = − ln(1 + r/rs)
g(rvir/rs)

rvir

r

[GMvir

rvir

]
. (19)

The gravitational potential due to the ellipsoidal bodies can be written as (Binney &
Tremaine 1987),

Φ(r) = −πG(
ab

c
)
∫ ∞

0

[ψ(∞)− ψ(m)]√
(τ + a2)(τ + b2)(τ + c2)

, (20)

with
ψ(m) = 2

∫ m

0

ρ(R)RdR , (21)

m = c

√
x2

τ + a2
+

y2

τ + b2
+

z2

τ + c2
, (22)

where τ labels the isopotential triaxial surfaces, on which m = m(r, τ) is a constant. For the
triaxial halo density profile described in Sect. 2.2, simple algebra yields

Φ(r) = −5α
(ab
c2

)1/4 ce
g(ce)

G(ea, eb, r)
[GMvir

rvir

]
, (23)

where

G(ea, eb, r) =
∫ 1

0

dµ√
(1− e2aµ

2)(1− e2bµ
2)

1

1 +
µ

R0

√
x2

1− e2aµ
2

+
y2

1− e2bµ
2

+ z2

, (24)

α ≡ Re/rvir takes the value 0.45 approximately, and the eccentricities are

ea =

√
1− a2

c2
≥ eb =

√
1− b2

c2
. (25)

The values of e2σ(σ = b, c) measure the deviations of the ellipsoidal iso-density from the spherical
along the two specified directions. In general, the potential can only be obtained by numerical
integration.

3.2 Temperature Distribution of Intra-cluster Gas

3.2.1 Isothermal Gas

Here we adopt the virial temperature as the temperature of the cluster. According to the
virial theorem,

Ef +Kf = 0 , (26)
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where Ef is the total energy of a virialized cluster; Kf is its kinetic energy given by

Kf =
3
2
MDMσ

2
υ +

3MgaskBT

2µmp
, (27)

where συ is the mass-weighted mean one-dimensional velocity dispersion of dark matter par-
ticles, MDM the total dark matter mass, kB the Boltzmann constant, µ = 0.59 the mean
molecular weight and mp the proton mass. Usually, it is assumed that Mgas/MDM = Ωb/Ωm,
f = Mbaryon/Mgas. Hydrodynamic simulations show that only a small fraction of the baryons
contribute to galaxy formation in large clusters (e.g., Blanton et al. 2000) and so f is close to
one. Then we have

Kf =
3βspecMkT

2µmp

[
1 + (fβ−1

spec − 1)
Ωb

Ωm

]
, (28)

with βspec = σ2
υ/(kT/µmp). The hydrodynamic simulations imply βspec ∼ 1.

So, the virial temperature of clusters is

kT = − µmpUf

3βspecM [1 + (fβ−1
spec − 1) Ωb

Ωm
]
, (29)

where Uf is the final potential energy,

Uf =
1
2

∫
ρΦdV . (30)

3.2.2 Polytropic Gas

The polytropic state of the ideal gas is expressed by

Pg(r) = P0[ρg(r)/ρ0]γ , (31)

where γ 6= 1 is the polytropic index. Under the assumption of hydrostatic equilibrium, the
density and temperature distributions are found to be

T (r)− T (0) =
γ − 1
γ

µmp

κB
(Φ(0)− Φ(r)) , (32)

ρg(r)
ρ0

=
[
1− γ − 1

γ

µmp

κBT0
(Φ(r)− Φ(0))

] 1
γ−1

, (33)

where T0 is the temperature at the cluster center. Following Komatsu & Seljak (2001), we
further assume that the gas density profile traces the dark matter density profile in the outer
region of both triaxial and spherical halos. that is,

∇ ln ρg(r) = ∇ ln ρdm(r) . (34)

Actually, the gas density profiles of triaxial halos derived from hydrostatic equilibrium are
concentric ellipsoids of different ellipses; however, since the simulations have observed that the
regions outside the core r ∼> rvir/2 (Navarro, Frenk & White 1995; Bryan & Norman 1998;
Eke, Navarro & Frenk 1998; Frenk et al. 1999; Pearce et al. 2000; Lewis et al. 2000;Yoshikawa,
Jing & Suto 2000) were traced with 10% or better accuracy, we can use Eq. (34) to determine
approximately T0 and γ of a given halo .



Mass-Temperature Relation of X-ray Clusters 111

For spherical halos, following

ρ−1
g

dPg

dr
= −GM

r2
(35)

from Eq. (31) and scaling the gas density profile by yg(r/rs) = ρg(r)/ρg(0), we obtain

dyγ−1
g (r/rs)
dr

= −
(γ − 1

γ

)GµmpMvir

kBT (0)r2
[g(r/rs)

g(c)

]
. (36)

Moreover, define the normalization factor η(x) ≡ 3rvirkBTg(x)/GµmpMvir and let s? denote
an effective slope of the dark matter density profile at x?, where the gas density profile yg(x)
and the dark matter density profile ydm(x) ≡ ρdm(r)/ρ0 follow each other as mentioned above,
Eq. (34) can be rewritten as

s? ≡
d ln ydm(x)
d lnx

|x=x? =
d ln yg(x)
d lnx

|x=x? . (37)

Accordingly, T0 is related to γ by

η(0) = γ−1
{(−3

s?

)[ x−1
? g(x?)

c−1
virg(cvir)

]
+ 3(γ − 1)

[ cvir

g(cvir)

][
1− ln(1 + x)

x

]}
, (38)

where η(0) ≡ 3rvirkBT (0)/GµmpMvir and s? ≡ −[1 + 2x?/(1 + x?)]. In order to make η(0)
constant with different x? where the two profiles follow each other, we vary γ from 1.0 to 1.4 to
find the value at which η(0) has the minimal rms with x? ranging from cvir/2 to 2cvir. Figure 1
shows that the results are similar to the simple linear fit γ = 1.15 + 0.01(cvir − 6.5) given by
Komatsu & Seljak (2001), thus the polytropic index γ can be fixed with which T (0) and hence
T (r) can be calculated.

In the case of triaxial halo, using the match assumption Eq. (34) and the density distribution
of Eqs. (33) and (8), we obtain( 1

R
+

2
R+R0

)
∇R =

3
γ
ψgη

−1(0)
[
∇G(r) + (γ − 1)(G(r)−G(0))

( 1
R

+
2

R+R0

)
∇R

]
, (39)

where ψg = −5αab
c2

1/4 ce

g(ce) and G(r) defined in Eq. (24). As mentioned before, the gas density
profiles in a triaxial halo are concentric ellipsoids with different ellipses. Thus, Eq. (39) has no
exact solution. However, for a given triaxial halo, we can always find a γ such that η(0) is
constant for R ∈ [1/2Rvir, 2Rvir] for each of the axes. This behavior is illustrated in Fig. 2.

Finally, we average γ and η(0) over the three axes. While there is a simple linear fit for
spherical halos given by Komatsu & Seljak (2001), with mass ranging from 1013M� to 1015M�,
it is hard to find a fitting formula for the triaxial halo, but for a halo of a given shape and
concentration, we can use Eq. (39) to fix γ and η(0), and hence derive T (r) from the T (0)-η(0)
relation.

The above equations give the density and temperature distributions of the intra-cluster
gas within a dark matter halo. The gas temperature cannot be measured directly in X-ray
observation, instead, the emission weighted temperature is often used. The X-ray emission-
weighted mean temperature TX is defined by

TX =

∫
dV ρ2

gαx(Tg)Tg∫
dV ρ2

gα(Tg)
, (40)
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where αx is the X-ray emissivity. For the bolometric bremsstrahlung emission, α(Tg) ∝ T
1/2
g .

Obviously, the gas temperature and emission-weighted mean temperature are the same for
isothermal halos, but in general, the two differ in the temperature gradient. In what follows,
we will use TX in the discussion of the normalization of the mass-temperature relation.

Fig. 1 We fit γ by minimizing the rms of

η(0) as x? ranges from cvir/2 to 2cvir. The

points are close to the linear fitting formula

γ = 1.15 + 0.01(cvir − 6.5) given by Komatsu

& Seljak (2001).

Fig. 2 Predicted η(0) for different γ (γ = 1.10,

1.14, 1.18, 1.22, 1.26, 1.30 from bottom up in

each panel), separately for each axis. Mass of

the halo, 1014M�.

4 THE MASS-TEMPERATURE RELATION IN HALO MODELS

As discussed in Sect. 2, the density profile of a dark matter halo is not uniquely specified
by its mass, and there could be quite a difference between halos of the same mass. In the
spherical NFW model, the long-tailed behavior of the log-normal distribution of the concentra-
tion parameter may lead to a wide range of core sizes, which will alter the density profile on
the small scales. Moreover, in triaxial models, additional uncertainties come from the different
shapes of ellipsoids, as described in Sect. 2.2. This section is to make a statistical investigation
of the mass-temperature relation taking into account of the statistical distributions of both the
concentration parameters and the eccentricities of dark matter halos.

We make a cluster sample with masses ranging from 1012 − 1016M� using Monte-Carlo
method. For a given mass, we generate a sub-sample of 500 clusters each with a random
sampling according to the PDFs of the concentration parameter and the axis ratio. The gravi-
tational potential for each cluster is then calculated for the given density profile and hence the
temperature of the intra-cluster gas is estimated for both the isothermal and polytropic cases,
and the scatter in the M -T relation is then obtained.

4.1 Mass-Temperature Relation in Isothermal Gas Model

In the isothermal model of intra-cluster gas, we use the virial theorem to estimate the
X-ray temperature using Eq. (29). Figures 3 and 4 display the M -T relations obtained for
the spherical and triaxial halo, respectively. Clearly, for the spherical halo, the spread in the
virial temperature decreases with increasing mass. In contrast, the triaxial halo shows the
opposite behavior, the scatter in temperature increases with increasing mass. In the former,
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the only source of the scatter in theM -T relation is the random distribution of the concentration
parameter cs. Since the mean value of cs is a decreasing function of the mass, its effect on the
M -T relation is easily understood. In contrast, for the triaxial halo, the more massive clusters
could have proportionately larger differences in their shapes, which more than compensate the
effect of the concentration parameter and dominate the behaviour of the scatter.

Fig. 3 Mass-temperature relation for the

spherical halo model where the intra-cluster

gas is assumed to be isothermal. The shaded

area marks the 80% confidence interval of the

temperature.

Fig. 4 Mass-temperature relation for the tri-

axial halo model where the intra-cluster gas is

assumed to be isothermal. The shaded area

marks the 80% confidence interval of the tem-

perature.

We applied the least squares fitting to obtain theM -T relation for the Monte-Carlo samples.
It is found that the samples are well fitted by the following relation,

T = (1.369+0.050
−0.012)

( M

1014h−1M�

)0.653+0.005
−0.008

(41)

for the spherical NFW model, and

T = (0.9440.235
−0.074)

( M

1014h−1M�

)0.681+0.016
−0.003

(42)

for the triaxial model. As the PDF of temperature at a given mass does not follow a Gaussian
distribution, the mean value in these relations were given by the most likely value inferred from
the PDF of temperature, while the errors are given by the upper and lower bounds of the 80%
confidence range.

It is obvious that the mass-virial temperature relation in the NFW model is similar to that
deduced from the simple virial theory, i.e, M ∼ T 1.5. The M -T relation in the triaxial model
is approximately, M ∼ T 1.47, however, with a lower slope. If we apply a low-pass filter and
remove all clusters with virial temperatures < 3.5 keV, then the M -T relation will be close to
M ∼ T 1.5. This temperature of 3.5 keV is possibly a limit to judge whether it is dominated by
the gravitational potential (Mohr & Evrard 1997; Balogh et al. 1999; Xue & Wu 2000).

It is not difficult to reproduce the observational slope of the M -T relation from either
analytical models or hydrodynamic simulations. However, the proportionality coefficient in the
M -T relation is not self-consistently determined. As given by Eqs. (41) and (42), there exists an
average 25% intrinsic variance in the normalization of M -T relation. Compared to the primary
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M -T relations compiled by Horner et al. (1999), we note that the proportionality coefficients
in both spherical and triaxial models are higher. The reason is partially due to the working
definition of X-ray temperature. In this subsection, the discussion is given for the simplified
isothermal model. In the following subsection, we will consider the more realistic polytropic
model of the intra-cluster gas.

4.2 Mass-Temperature Relation in Polytropic Gas Model

The density and temperature distributions of a polytropic intra-cluster gas are computed
using Eqs. (32) and (33), and with Eqs. (23) and (24) for the gravitational potential for triaxial
halos. To match the X-ray observations, the emission-weighted mean temperatures are used as
defined by Eq. (40).

For a given mass, scatter in the temperature arises from the scatter in the concentration
parameter and, for the triaxial models, also from the scatter in the eccentricities. To study
their separate effects on the distribution of temperature, we fix the concentration parameter
at its median value c̄e so as to isolate the eccentricity effect. The distributions of emission-
weighted temperature for different halo masses are given by the histograms in Fig. 5. Clearly, it
shows a significant difference between low and high halo masses. In the case of low halo mass,
e.g., 1012−13M�, the PDF of temperature extends downward while having a cutoff at the high
temperature end. The spread becomes narrower with increasing halo mass. For 1015−16M�
halo mass, the PDF shows also has a cutoff at the low temperature end. When we allow both
the concentration parameter and the halo shapes to vary, then we obtain the results displayed
in Fig. 6. Recall that the concentration parameter has a larger scatter at low mass than at
high mass, it is easy to understand that the long-tail feature in Fig. 6, where the effect of the
concentration parameter is added to the effect of the eccentricities alone shown in Fig. 5.

Fig. 5 Probability distribution of emission

weighted temperature at a fixed value of the

concentration parameter. The horizontal axis

is cx = T/Taverage, the vertical axis is its prob-

ability distribution.

Fig. 6 Probability distribution of the emis-

sion weighted temperature, when the spread

is taken into account in both the concentra-

tion parameter and the halo eccentricities.
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The M -T relations found in the Monte-Carlo samples are plotted in Fig. 7 for the spherical
NFW halo and in Fig. 8 for the triaxial halo, in which the intra-cluster gas is polytropic.
Obviously, the results are similar to what we have found in the case where the gas is isothermal.
However, for the spherical halo, the scatter in temperature is larger in the polytropic than in the
isothermal case. For the triaxial halo, it is the other way round, the scatter is somewhat smaller
in the polytropic than the isothermal case. It is noticed that in the NFW spherical model the
fluctuation of potential at a fixed cluster mass arises from the spread in the concentration
parameter, which specifies the high density region around the center of the cluster; while in the
case of the triaxial halo model, it is the shape distribution that mostly leads to the potential
scatter at the outer parts of the cluster. Since the emission-weighted temperature Eq. (35) is
measured by the density weight ρ(γ+3)/2

g , it is contributed mainly by the gas within the core of
the cluster and is therefore less sensitive to the shape of cluster. Consequently, the the mass-
virial temperature relation has a larger scatter than the mass-emission weighted temperature
relation for the triaxial halo and a smaller scatter for the spherical halo.

Fig. 7 Mass-temperature relation in the spher-

ical halo model with a polytropic intra-cluster

gas. The shaded area marks the 80% confidence

range for the temperature.

Fig. 8 Mass-temperature relation in the triax-

ial halo model with a polytropic intra-cluster

gas. The shaded area marks the 80% confi-

dence range of the temperature.

A least squares fitting gives the M -T relation for the spherical NFW halo (polytropic gas)
as

T = (1.759+0.237
−0.145)

( M

1014h−1M�

)0.599+0.123
−0.001

, (43)

and for the triaxial halo (polytropic gas),

T = (1.553+0.042
−0.197)

( M

1014h−1M�

)0.643+0.005
−0.047

. (44)

The mean values and errors have the same meaning as those we have defined in the case of the
isothermal gas.

The deduced mass-polytropic temperature relation in the NFW model is (M ∼ T 1.67), its
slope is higher than the result given by the simple virial theory (M ∼ T 1.5). In the triaxial
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model the deduced M -T relation has a slope close to the result given by the simple virial theory,
but a higher coefficient than the result obtained by EMN (Evrard et al. 1996).

5 CONCLUSIONS

In the context of the NFW model and the triaxial model, we studied the density and
temperature distributions of the intra-cluster gas, which is assumed to be either isothermal
or polytropic gas in hydrostatic equilibrium embedded in a dark matter halo. Furthermore,
adopting the statistical distributions of the concentration parameter and eccentricities of halos
inferred from the N-body simulations, we present a Monte Carlo investigation of the scatter in
the mass-temperature relation of galaxy clusters.

It is worth noting that uncertainty in the concentration parameter of the cluster is an
important source of the scatter in the M -T relation. If the concentration parameter for a given
mass cluster obeys the log-normal distribution, it will lead to an asymmetric PDF of X-ray
gas temperature with a long tail. Since the mean value of the concentration parameter is a
decreasing function of the cluster virial mass, the scatter in the temperature increases with
decreasing cluster mass.

However, in the triaxial model, the scatter in the derived mass-temperature relation is
sensitive to both the uncertainty of the concentration parameter and in the shape distribution.
While the former has more effect on the core of the cluster, the latter mostly leads to scatter
in the outer parts of the cluster. Therefore, the spread of temperature averaged over the whole
cluster in the isothermal case increases with the cluster mass, while in the polytropic case, the
scatter of temperature dominated by the core decreases with the cluster mass.

We found that the slopes of the mass-temperature relations obtained by us, both in the
isothermal and polytropic cases, and for both spherical and triaxial halos, are similar to the
those obtained in previous simulations and observations, while the proportionality coefficients
are higher. The reason is partially due to the working definition of X-ray temperature or poor
understanding of the evolutionary history of the intra-cluster gas.
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