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Abstract We propose a method to determine the thickness of non-edge-on disk
galaxies from their observed structure of spiral arms, based on the solution of the
truly three-dimensional Poisson’s equation for a logarithmic disturbance of density
and under the condition where the self-consistency of the density wave theory is
no longer valid. From their measured number of arms, pitch angle and location of
the innermost point of the spiral arms, we derive and present the thicknesses of 34
spiral galaxies.
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1 INTRODUCTION

On the basis of isothermal disk models, Van der Kruit & Searle (1981a, b; 1982a, b) de-
veloped a method for determining the scale heights of disk galaxies observed edge-on. This
method is based on fitting the distribution of the surface brightness of disk galaxies by a radial
exponential distribution. Peng et al. (1979) examined the solution of the three-dimensional
Poisson’s equation of spiral galaxies using Green function and Bessel-Fourier transformation.
They obtained an integral expression and an asymptotic formula for the self-gravitational po-
tential of the logarithmic spiral arms due to some given logarithmic disturbance of the matter
density. On the basis of this theory, Peng (1988) proposed a method of determining the thick-
ness of non-edge-on spiral galaxies (from the observed number of spiral arms, the pitch angle
and the location of the innermost point of the arms). However, the rough method used in that
paper is questionable because it incorrectly extended the asymptotic formula for the disturbed
gravitational potential right through to the galactic center (Peng et al. 2003). In fact, the arms
only exist in the area r > r0 (r0 is the forbidden radius of density wave). In this paper we
correct this mistake and re-estimate the scale height of spiral galaxies on the basis of the exact
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integral representation for the disturbed gravitational potential (see equation (A) of Peng et al.
(1979) or Eq. (A19) in the appendix of this paper).

2 THE DISTURBED GRAVITATIONAL POTENTIAL

The density distribution along the z-direction for a finitely thick galaxy is

ρ(r, θ, z) = ρ(r, θ, 0)e−α|z| =
α

2
σ(r, θ)e−α|z|, (1)

where α = 2/H, H being the effective thickness of the galaxy, and σ(r, θ) is the surface density,
which includes the basic surface density of the disk and the disturbance density: σ(r, θ) =
σ0(r) + σ1(r, θ, t). Taking a logarithmic disturbance of density (Danver 1942; Kennicutt &
Hodge 1982; Peng 1988),

σ1(r, θ, t) =
A

r
eiΛ ln(r)ei(ωt−mθ), (2)

where m is the number of arms in the galaxy, A is a parameter measuring the intensity of
the density disturbance and Λ = m cot µ quantifies the winding level of the logarithmic spiral,
µ being the pitch angle of the arms. The gravitational potential generated by the density
disturbance can be found by solving the three-dimensional Poisson’s equation

∇2V1(r, θ, z, t) = −2πGασ1(r, θ, t)e−α|z|. (3)

A rigorous solution of the potential on the galactic plane (z = 0) was found (Peng et al. 1979),

V1(r, θ, 0, t) = −2πGAei[ωt−mθ+Λ ln(r)]Re{g(αr)}, (4)

where

g(αr) = eiΛ ln 2 Γ( 1+m+iΛ
2 )

Γ( 1+m−iΛ
2 )

∫ ∞

0

Jm(x)
e−iΛ ln x

x(1 + x
αr )

dx, (5)

with Γ(x) and Jm(x) being the usual Gamma function and Bessel function, respectively. For
an infinitely thin disk, the potential may be reduced to the expression given by Kalnajs (1971)

V1(r, θ, t) = −2πGAei[ωt−mθ+Λ ln(r)] 1√
m2 + Λ2

. (6)

3 THE SELF-CONSISTENT DENSITY WAVE & THE FORBIDDEN RADIUS
OF DENSITY WAVE

According to the self-consistent theory of density wave (Lin & Shu 1964), the pattern of
spiral arms persists self-consistently only when the intensity of the “induced” gravitational
potential solved by Poisson’s Equation is equal to the “introduced” gravitational potential,
which is the disturbed potential in the Jeans equation for the stellar system of the galaxy. This
theory is suitable for an infinitely thin disk. However, for the same density disturbance, the
amplitude of the induced gravitational disturbance for disks with a finite thickness is weaker
than for the infinitely thin disk and that the thicker the disk, the greater is the difference (Luo &
Peng 1999). In this condition, the self-consistency of density wave no longer holds in the central
region. The “induced” potential is too weak to excite disturbance of matter corresponding to
the original disturbance intensity, and this leads to the disappearance of the spiral pattern in
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the central region. Therefore, arms that exist in the outer part of the galactic disk can only
extend inward to a certain point and not all the way to the center. In other words, there will
be no patterns of spiral arms in the central part of a finitely thick disk (Peng et al. 2003). The
area with no spiral pattern of density waves is the so-called “forbidden region of density wave”.
Let r0 denote the forbidden region radius.

Observationally, the forbidden region radius r0 can be measured directly by estimating the
innermost point that the arms reach to. Theoretically, when the amplitude of the “induced”
gravitational potential has decreased to a certain degree below the value for the infinitely thin
disk, the disturbance density corresponding to the original disturbance can no longer be excited.
This can be used to determine the forbidden region radius. A feasible method is to establish
an “objective” criterion for the ceasing of validity of self-consistency of density wave (i.e., the
disappearance of the pattern of spiral arms) by checking galaxies with given scale heights. Now,
the Milky Way and M31 (Andromeda
galaxy, NGC 224) are the two galaxies that
have been thoroughly studied and their
scale heights have been well determined.
We therefore use their well determined rel-
evant parameters to identify the criterion
we want. Specifically, the parameters are
the number of arms m, the winding pa-
rameters Λ and the innermost point of the
arms r0. They are listed in Table 1.

Table 1 Parameters of the Milky Way & M31

Name m Λ r0 (kpc) H (kpc) α

Milky Way 2 14.0 4.5 0.65 3.07

Milky Way 4 14.0 4.5 0.65 3.07

Milky Way 4 14.0 4.0 0.65 3.07

Milky Way 4 18.8 4.5 0.65 3.07

M31 2 14.8 7.5 0.80 2.5

At the point r0, the amplitude ratio of the disturbed gravitational potential of finitely thick
disk to infinitely thin disk is

η =
Vα(α, m,Λ, r0)
Vα→∞(m,Λ)

=
−2πGAei[ωt−mθ+Λ ln(r)]Re{g(αr)}
−2πGAei[ωt−mθ+Λ ln(r)] 1√

m2+Λ2

= Re{g(αr0)}
√

m2 + Λ2. (7)

We presume that the disturbed gravitational potential could excite exactly the density wave
when at a certain value. Calculating this value for the Milky Way and M31 with their known

thickness (Peng et al. 2003), we have Milky Way: η =
{

0.496
0.487

m = 2
m = 4 ; M31: η = 0.556.

We have chosen the mean value η̄ = 0.50 as the condition at which the self-consistency of
the density wave theory ceases to be valid. That is, in the area where the amplitude of the
induced gravitational potential has decreased to less than 50% of the introduced gravitational
potential, the corresponding density wave cannot be excited, and this leads to the disappearance
of the density wave and the pattern of spiral arms. Thus we define the point at which the ratio
of Eq. (7) decreases to 50% as the radius of “the forbidden region of density wave” (Peng et
al. 2003). We must point out here that the most probable range of the reduction factor η is
0.45 ∼ 0.55 according to our calculations on the two galaxies and the average value, 0.5, which
we took would mean a 10% error when estimating the galaxy thickness. This 10% error would
be superposed on other possible sources of error. The criterion for determining the radius of
the forbidden region for the propagation of density waves has been previously considered by
Peng et al. (1979) and Peng (1988). In particular, we note that for αr �

√
Λ2 + m2 or in the

region defined by r �
√

Λ2 + m2/α = H
√

Λ2 + m2/2, it is possible to derive an asymptotic
representation for the approximate disturbed gravitational potential V1(r, θ, z = 0, t) from the
asymptotic expansion for the function g(Λ,m;αr) as given by Eq. (5) of this paper:
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V1(r, θ, z = 0, t) ≈ −2πGA
( 1√

Λ2 + m2
− 1

αr

)
ei(ωt+Λ ln r−mθ). (8)

The zero point for this asymptotic expression is given by

r = r′0 =
√

Λ2 + m2

α
=

H

2

√
Λ2 + m2. (9)

In Peng et al. (1979) and Peng (1988), the authors inappropriately extended the disturbed
gravitational potential given by Eq. (8) to the region r < r′0. They incorrectly considered that
the sign of the disturbed gravitational potential (see Eq. (4)) in the region defined by r < r′0
would be opposite to that in the region defined by r > r′0. In other words, the phase of the
disturbed gravitational potential was the same as the phase of the density disturbance. Starting
from the principle that the phase of the disturbed gravitational potential is opposite to that of
the density disturbance (Lin & Shu 1964), Peng et al. (1979) and Peng (1988) concluded that
the spiral arms of density waves cannot appear in the central region defined by r < r′0. That
is, r′0 is the innermost point that the spiral arms can reach and that at this point the value of
η is zero.

In particular, we note that the approximate asymptotic expression Eq. (8) is valid provided
that (αr)2 � Λ2 + m2. The rigorous integral expression of the function g(Λ,m;αr) was com-
puted numerically and we found that the real part of the function g(Λ,m, αr′0) at the point
r′0 is obviously greater than zero (Luo et al. 1999). However, at the point r′0, the ratio η as
defined by Eq. (7) has approximately the value η ∼= 0.5. Thus, the method for determining the
thickness (or scale height) of non-edge-on spiral galaxies proposed by Peng (1988) has apparent
shortcomings. Accodingly, we have in this paper carefully revised and reinvestigated the key
factors concerning the central forbidden zone for the propagation of spiral density waves in disk
galaxies with finite thickness.

4 MEASUREMENTS AND RESULTS

The sample of galaxies used in this paper is part of the 60 spiral galaxies in table 1 of Ma
(2001). Because of lack of the radial velocity or some other parameters, the thicknesses of 26
of the galaxies cannot be calculated. So, the sample of this paper includes only 34 non-edge-on
spiral galaxies.

We calculate the thickness parameter, α, through Eq. (7) by taking η = 0.5 at first, then h

and H can be calculated. The errors of our calculation mainly come from: a) the position of the
starting point of the arm; b) the inclination of the galaxy; c) the position of the galactic center;
d) the parameter η. The errors from the positions of the arm starting point and of the center,
however, can be decreased if the grey-scale of an image is modified properly using IRAF to
obtain the deep possible fine structure of the galaxy. The error estimates are derived from the
formulae by Peng (1988) and Shang et al. (1992). The scale heights (H) of these spiral galaxies
and their relative errors are listed in Table 2. Table 2 also includes the following parameters:
the number of arms m, the mean numerical Hubble type T (=1, 2, 3, 4, 5 for Sa, Sab, Sb,
Sbc, Sc and Scd, respectively), the radius of the forbidden region r0 (with errors ±0.05′) or
the radius of the starting point of the arms, the winding parameter of the arms Λ(= m cot µ),
obtained by fitting the observed image of the arms by logarithmic curves (Peng 1988; Ma 2001),
the radial velocity of the galaxy v from RC3, its distance D, calculated according to Hubble’s
Law (with a Hubble constant, H0, of 71 km s−1 Mpc−1) the apparent scale height of the galaxy
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h, and its flatness H/D0, (D0 is the isophotal major diameter corrected to “face-on”, and for
Galactic extinction to Ag=0, but not for redshift).

Table 2 Thicknesses of 34 Spiral Galaxies

No. m T r0 Λ± dΛ/Λ v D h± dh/h H ± dH/H H/D0

(′) (km s−1) (Mpc) (′) (kpc)

PGC00303 2 3.0 0.118 2.86±16.5% 4639 65.34 0.0655±63.4% 1.244±63.4% 0.041

PGC 02949 2 1.5 0.48 9.89±19.1% 3770 53.10 0.0945±38.5% 1.459±38.5% 0.041

PGC 05939 2 3.3 0.444 18.68±75.3% 4861 68.46 0.0472±95.4% 0.939±95.4% 0.026

PGC 06833 2 5.0 0.215 4.26±8.1% 2661 37.48 0.0891±39.7% 0.971±39.7% 0.030

PGC 08961 2 3.0 0.203 2.89±19.9% 7335 103.31 0.1119±48.0% 3.361±48.0% 0.049

PGC 09236 2 5.3 0.289 6.57±20.6% 1266 17.83 0.0830±45.7% 0.430±45.7% 0.021

PGC 10488 2 3.0 2.476 10.65±7.4% 1103 15.54 0.4542±19.1% 2.053±19.1% 0.048

PGC 13584 2 3.0 0.408 8.75±18.7% 3959 55.76 0.0901±39.7% 1.462±39.7% 0.033

PGC 14897 2 4.0 0.588 5.77±4.8% 1472 20.73 0.1893±22.7% 1.142±22.7% 0.023

PGC 15018 2 3.0 0.659 3.05±9.5% 2404 33.86 0.3500±67.8% 3.447±24.1% 0.067

PGC 18709 2 3.0 0.439 14.01±33.4% 4053 57.08 0.0618±53.9% 1.026±53.9% 0.027

PGC 23028 2 3.0 0.395 10.07±46.3% 2649 37.31 0.0764±66.6% 0.829±66.6% 0.031

PGC 24723 2 3.0 0.549 10.51±53.9% 2203 31.03 0.1020±70.5% 0.921±70.5% 0.042

PGC 30323 2 3.5 0.487 4.6±9.6% 3148 44.34 0.1897±28.1% 2.447±42.2% 0.079

PGC 31926 2 3.0 0.649 4.28±17.8% 3315 46.69 0.2679±21.8% 3.639±21.8% 0.070

PGC 33410 2 5.0 0.56 13.97±50.2% 1537 21.65 0.0791±47.8% 0.498±47.8% 0.026

PGC 33860 2 4.0 0.187 5.44±16.2% 2423 34.13 0.0633±50.6% 0.629±50.6% 0.022

PGC 34232 2 3.0 0.471 5.3±20.3% 2345 33.03 0.1631±37.8% 1.567±37.8% 0.058

PGC 36875 2 5.0 0.463 8.05±7.4% 1178 16.59 0.1105±27.6% 0.533±27.6% 0.025

PGC 38240 2 3.5 0.242 9.76±12.2% 6439 90.69 0.0482±42.2% 1.272±42.2% 0.022

PGC 39479 2 5.0 0.22 8.91±58.9% 4065 57.25 0.0478±87.9% 0.796±87.9% 0.020

PGC 47404 2 4.0 0.599 6.68±3.1% 640 9.01 0.1695±21.1% 0.444±21.1% 0.015

PGC 48130 2 4.0 0.45 4.53±11.3% 1437 20.24 0.1775±30.3% 1.045±30.3% 0.029

PGC 48371 2 4.5 0.239 11.39±18.2% 6806 95.86 0.0411±48.4% 1.146±48.4% 0.025

PGC 49881 2 3.0 0.406 5.9±13.1% 3134 44.14 0.1282±33.7% 1.646±33.7% 0.059

PGC 51169 2 5.0 0.219 14.87±20.5% 6924 97.52 0.0291±52.8% 0.825±50.8% 0.011

PGC 54018 2 4.5 0.17 7.03±24.6% 3209 45.20 0.0459±61.7% 0.604±61.7% 0.020

PGC 54097 2 5.0 0.244 8.3±12.4% 2081 29.31 0.0566±42.0% 0.483±42.0% 0.017

PGC 54445 2 3.0 0.403 3.61±11.9% 3461 48.75 0.1897±31.3% 2.690±31.3% 0.048

PGC 64652 2 4.0 0.115 5.82±20.6% 4581 64.52 0.0367±71.4% 0.690±71.4% 0.016

PGC 65086 2 4.0 0.445 3.98±4.2% 1280 18.03 0.1945±24.5% 1.020±24.5% 0.041

PGC 65269 2 3.0 0.262 4.16±20% 4368 61.52 0.1106±44.8% 1.980±44.8% 0.051

PGC 69439 2 4.0 0.244 5.17±11.5% 4404 62.03 0.0863±40.2% 1.557±40.2% 0.042

PGC 72387 2 4.0 0.44 8.18±12.2% 4837 68.13 0.1035±32.7% 2.051±32.7% 0.030

5 DISCUSSION

5.1 The Value of η

Until now, only the scale heights of two spiral galaxies, the Milky Way and M31, are well
established and we have no other means to determine the value of η more precisely. We will
do more work on this point and try to find another individual way to determine the thickness
of spiral galaxies and to check whether our adopted value of η is suitable. We note that the



56 Y. H. Zhao, Q. H. Peng & L. Wang

difference between the thicknesses obtained by the method of this paper and by the method
proposed in Peng (1988) is very small, it is less than 5%. Since the total error in the evaluation
of the thickness from all possible sources of error is apparently larger than 10%, the earlier
method of Peng (1988), although inaccurate from a theoretical point of view, is still basically
valid. In other words, the approximate asymptotic expression given by Eq. (9) for the radius of
the central forbidden region is essentially valid. Alternatively, we may compute the thickness
of spiral galaxy in terms of the number of spiral arms m, the winding parameter Λ and the
radius r0 for the forbidden region through the simple formula

H =
2r0√

Λ2 + m2
, (10)

then we can use the value of H so obtained to calculate the value of the reduction factor from
Eq. (7) at the forbidden radius r0 and test whether the criterion η < 0.5 is satisfied.

5.2 Some Properties of Spiral Galaxies

Ma (2002) has studied some statistical correlations between the properties of disks and
of spiral arms with some physical properties of galaxies. The main conclusions are that the
thickness of spiral disks is correlated with the Hubble sequence and that there exists correlations
between arm pattern and total luminosity, total surface densities and I linewidths (see details in
Ma 2002). In this section we will show some new correlations between the properties of galaxy
disks and of spiral arms with some physical properties of galaxies.

a) Figure 1 plots the thicknesses of the galaxies versus their distance. There is no obvious
correlation between these two parameters. The disks of spiral galaxies are mainly thin disks.
From Table 2 we can see that spiral galaxies of the same Hubble type have about the same
value of flatness (H/D0). The mean value of flatness is 0.046, 0.026 and 0.021 for Sb (T = 2.0),
Sbc (T = 3.0) and Sc (T = 4.0) spirals, respectively: there is a trend of spirals getting flatter
along the Hubble sequence Sb–Sc.

Fig. 1 Thickness versus distance plot of spiral galaxies.

b) Figure 2 presents the correlations between r0 (kpc) and H. It shows that the thicker the
galaxy disk is, the larger the forbidden region radius becomes. In other words, the role played
by the thickness of the galaxy is to push the region where the spiral density waves first appear
outward (relative to the galactic center). This reflects the fact that the disturbed gravitational
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potential due to the disturbed matter density is not synchronized at higher z and at the galactic
plane z = 0. The thicker the galaxy disk, the weaker is the disturbed gravitational potential in
the central area, and this leads to a bigger region with no density wave pattern.

Fig. 2 Forbidden radius of spiral galaxy plotted versus the thickness.

c) As shown in Figure 3, spiral galaxies with larger winding parameters Λ have larger radii
r0 of the central forbidden region. A qualitative description of this scenario is that the spiral
arms of a tightly winding spiral structure will appear far out from the galactic center, whereas
a loosely winding spiral structure may extend to the galactic center. This striking tendency is
clearly revealed in the classic Hubble classification of galaxies.

Fig. 3 Forbidden radius of spiral galaxy plotted versus the winding parameter.

d) Figure 4 shows the correlations between the winding parameter Λ and the thickness
H. The thicker the galaxy, the smaller winding parameter is. This correlation could be easily
deduced from our above discussions b) and c).
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Fig. 4 Winding parameter of spiral galaxy plotted versus the thickness.

APPENDIX

When studying the effect of finite thickness of the disk on the dynamical properties of
disk galaxies, it is convenient to adopt the cylindrical coordinates (r, θ, z) with origin at the
galactic center, z the distance above the galactic plane, and θ the azimuthal coordinate. For
disk galaxies with zero-thickness, the self-gravitational potential Φ is governed by Poisson’s
equation

∇2Φ = 4πGσ(r, θ)δ(z), (A1)

where G is the gravitational constant, ∇2 the Laplacian operator, δ(z) Dirac’s delta function
and σ(r, θ) the surface density. For regions outside the galactic plane z 6= 0, Eq. (A1) becomes

∇2Φ(r, θ, z) = 0, (A2)

since there is no distribution of matter outside the disk plane. It is particularly convenient
at this point to introduce the Laplace transform for the vertical coordinate z and the Fourier
transform for the azimuthal angle θ, namely

Φ(r, θ, z) = e−imθ

∫ ∞

0

Uβ(r)e−β|z|dβ. (A3)

Applying these transformations to Eq. (A2) we then have

x
d

dx
(x

dUβ(x)
dx

) + (x2 −m2)Uβ(x) = 0 , (A4)

where x = βr, and the solution to Eq. (A4) is the well known Bessel function of order m

Uβ(x) ≡ U(βr) = −Jm(βr) . (A5)

Using Eq. (A5) in Eq. (A3), we obtain

Φ(r, θ, z) = e−imθ

∫ ∞

0

[−Jm(βr)] e−β|z|dβ . (A6)
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On the other hand, we may integrate Poisson’s equation (Eq. (A1)) with respect to z to obtain
the following expression for the surface density σ(r, θ)

σ(r, θ) =
1

4πG

{[∂Φ
∂z

]
0+
−

[∂Φ
∂z

]
0−

}
. (A7)

Substituting Eq. (A6) in Eq. (A1) and Eq. (A7) we can recast Poisson’s equation for disk galaxies
with zero thickness in the form

∇2

{∫ ∞

0

e−imθ [−Jm(βr)] e−β|z|dβ

}
=

∫ ∞

0

e−imθ2βJm(βr)δ(z)dβ , (A8)

∇2[Jm(βr)e−imθ−β|z−z′|] = −2βJm(βr)e−imθδ(z − z′) . (A9)

On the basis of the above mathematical treatment and the standard method of Green function,
it is straightforward to derive the appropriate Poisson equation for the three-dimensional disk
galaxies with finite thickness

∇2Ψ(r, θ, z) = 4πGρ(r, θ, z) , (A10)

where the vertical distribution of matter is described by Parenago’s law, ρ(r, θ, z) = α
2 σ(r, θ)e−α|z|

(see Eq. (1) in the text). The disturbed surface density for spiral galaxies with spiral arms m may
be written as σ(m)(r, θ) = σm(r)e−imθ (For axisymmetric disks without spiral arms, m = 0, so
that σ(0)(r, θ) = σ0(r)). To proceed, we apply the Bessel-Fourier transform to σm(r) to obtain

σm(r) =
∫ ∞

0

βJm(βr)Sm(β)dβ , (A11)

Sm(β) =
∫ ∞

0

rJm(βr)σm(r)dr , (A12)

where Sm(β) is the Bessel-Fourier transform of σm(r). Substituting Eqs. (A1) and (A11) into
Eq. (A10), the three-dimensional Poisson equation can be rewritten as

∇2Ψm(r, θ, z) = 2πGαe−imθ

∫ ∞

−∞
e−α|z′|dz′

∫ ∞

0

βJm(rβ)Sm(β)δ(z − z′)dβ . (A13)

Compare Eq. (A13) with Eq. (A9) we then find the formal solution of the gravitational potential
for a galactic disk with scale height H = 2/α,

Ψm(r, θ, z) = −2πGe−imθ

∫ ∞

0

Jm(rβ)Sm(β)F (α, β, z)dβ , (A14)

where

F (α, β, z) =
1

(β
α )2 − 1

[
β

α
e−α|z| − e−β|z|

]
. (A15)

Since the spiral arms are mainly confined to the galactic plane z = 0, we therefore focus our
attention to only the gravitational potential on the galactic plane

Ψm(r, θ, z = 0) = −πGαe−imθ

∫
2

α + β
Sm(β)Jm(βr)dβ . (A16)
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For a logarithmic spiral density disturbance (see Eq. (2) of the text), we have

σm(r) =
A

r
eiΛ ln r , (A17)

Sm(β) = A2iΛ Γ((1 + m + iΛ)/2)
Γ((1 + m− iΛ)/2)

β−(iΛ+1) . (A18)

Using Eq. (A18) in Eq. (A16) we then obtain the corresponding disturbed gravitational poten-
tial,

Ψm(r, θ, z = 0, t) = −2πGAei(ωt−mθ+Λ ln r)<e{g(αr,Λ)} , (A19)

where <e{...} denotes the mathematical operation of taking the real part of the quantity in the
bracket {...},

g(αr,Λ) = eiΛ ln 2 Γ[(1 + m + iΛ)/2]
Γ[(1 + m− iΛ)/2]

∞∫
0

Jm(x)
e−iΛ ln r

x[1 + x/(αr)]
dx , (A20)

Γ(x) and Jm(x) being the usual Gamma and Bessel functions, respectively. For regions where
αr �

√
Λ2 + m2 or r �

√
Λ2 + m2/α = H

√
Λ2 + m2/2, we may derive the asymptotic gravi-

tational potential disturbance from Eqs. (A19) and (A20):

Ψm(r, θ, z = 0, t) ≈ −2πGA(
1√

Λ2 + m2
− 1

αr
)ei(ωt+Λ ln r−mθ) . (A21)

For a razor thin disk (α → ∞), the potential may be reduced to the very simple expression
given by Kalnajs(1971)

Ψm(r, θ, 0, t) = − 2πGA√
m2 + Λ2

ei(ωt+Λ ln r−mθ) . (A22)
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