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Abstract The electrostatic potential of electrons near the surface of static strange
stars at zero temperature is studied within the frame of the MIT bag model. We
find that for QCD parameters within rather wide ranges, if the nuclear crust on the
strange star is at a density leading to neutron drip, then the electrostatic potential
will be insufficient to establish an outwardly directed electric field, which is crucial
for the survival of such a crust. If a minimum gap width of 200 fm is brought
in as a more stringent constraint, then our calculations will completely rule out
the possibility of such crusts. Therefore, our results argue against the existence of
neutron-drip crusts in nature.
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1 INTRODUCTION

There may exist a more stable state of hadrons than 56Fe, called strange quark matter
(SQM), which is a bulk quark phase consisting of roughly equal numbers of u, d, and s quarks
plus a smaller number of electrons to guarantee charge neutrality (Witten 1984). This theo-
retical result is unlikely to be proved or disproved through QCD calculations at least in the
foreseeable future. Final adjudication must come from experiments conducted with accelera-
tors or from astrophysical tests. One of the important consequences of Witten’s hypothesis
is the prediction of strange stars (Haensel, Zdunik & Schaeffer 1986; Alcock, Farhi & Olinto
1986, hereafter AFO), i.e., stars made of SQM. The presence of such stars should never be
rare, in fact some authors even inferred that all neutron stars might have been converted to
strange stars, since the whole Galaxy is likely to be contaminated by stranglets (Glendenning
1990; Madsen & Olesen 1991; Caldwell & Friedman 1991; Medina-Tanco & Horvath 1996). For
decades, unremitting efforts have been made to observationally discriminate strange stars from
neutron stars, and some well-constrained candidates for strange stars have been forthcoming
(Cheng et al. 1998; Li et al. 1999; Xu et al. 2001a, b). However, even now, it is still premature
to reach any firm conclusions.
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A strange star can have a normal matter crust. The density at the base of the crust is a
crucial parameter, which has been discussed by many authors (AFO; Huang & Lu 1997a, b;
Xu & Qiao 1999; Yuan & Zhang 1999; Chen & Zhang 2001; Ma et al. 2002). Recently, Ma et
al. (2002) studied the influence on the crust density of such parameters as the strange quark
mass (ms), the bag constant (B), and the strong coupling constant (αc). However, this study
did not derive clear ranges of the parameters that would lead to a crust as dense as neutron
drip density. Here we study the problem in more detail. The parameter ranges that support
a neutron-drip-density crust will be calculated numerically. This paper is arranged as follows.
Section 2 describes the existence of strange star crust. Section 3 gives the detailed procedure
of our calculations and numerical results in the αc −ms −B space. Finally, we summarize the
results in Section 4.

2 THE EXISTENCE OF CRUST

It was pointed out by AFO that a strange star could be covered by a normal material crust.
The presence of electrons in SQM is vital to the existence of such crusts. Because s quark’s
mass is larger than u and d quarks’, it is slightly deficient in equilibrium SQM. Electrons are
thus called in to make the system electrically charge neutral. As quarks are bounded through
strong interaction, they should have a very sharp surface with thickness of the order of 1 fm.
By contrast, the electrons, bounded by the Coulomb force, can extend several hundred fermis
beyond the quark surface. So, a strong, outwardly directed electric field, ∼ 1017 V cm−1 will
be established in a thin layer several hundred fermis thick above the strange matter surface.
This field can support a crust, composed of normal nuclear matter, suspended out of contact
with the SQM core.

The so-called neutron drip density, ρdrip ∼ 4.3 × 1011g cm−3 sets an absolute upper limit
for the density of the crust, ρcrust. The reason is that, if ρcrust reaches ρdrip, neutrons will
begin to drip out. Being electrically neutral, the neutrons will fall freely into the core, and, by
hypothesis, be deconfined to be SQM. As a consequence, ρcrust will keep going down, until it is
below ρdrip. Conventionally, when the nuclear crust is taken into account, the bottom density
was assumed to be ρdrip. However, is neutron drip the only limit on the crust density? Could
the crust density actually go so far? Huang & Lu (1997a, b) said NO to both questions. By
proposing that mechanical balance should be held between electric and gravitational forces on
the whole crust, and not only on a single nucleus as modelled by former authors (AFO), they
claimed that at a density (∼ ρdrip/5) still far lower than the neutron drip density, the crust
would begin to break down.

AFO proposed a model to describe the gap between the SQM core and the nuclear crust
within the framework of the Thomas-Fermi model. The electric field should be described with
the following Poisson’s equation:

d2V

dz2
=


4α(V 3 − V 3

q )/[3π(h̄c)2], z ≤ 0,

4αV 3/[3π(h̄c)2], 0 < z ≤ zG,

4α(V 3 − V 3
c )/[3π(h̄c)2], zG < z,

(1)

where z is a space coordinate measuring the height above the quark surface, α is the fine-
structure constant, V 3

q /3π2h̄3 is the quark charge density inside the quark matter, V is the
electrostatic potential of electrons, Vc is the electron Fermi momentum deep in the crust, which
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represents the positive charge density of the ions within the crust, and zG is the width of the
gap between the SQM surface and the base of the crust. In fact, Vq and Vc are the boundary
values of the above equation: V → Vq as z → −∞, V → Vc as z → +∞. Meaningful solutions
to the above equations exist only if Vc < Vq. Actually in a core-crust system, Vq turns out to
be the electron electrostatic potential at Rm. Here Rm represents the maximum radius below
which electrical charge neutrality is locally satisfied in the SQM core. Certainly Rm is smaller
than R, the radius of the core.

Since the electron chemical potential (we will prove that it equals V later) at which neutron
drip occurs is ∼26 MeV (Baym, Pethick & Sutherland 1971), to keep a crust at a density of
ρdrip suspended, the electrostatic potential of the electrons near the edge of the SQM core, Vq,
must at least be larger than 26 MeV. In this work, we calculated Vq for static SQM cores at zero
temperature. Because of the uncertainties inherent in the critical QCD-related parameters, the s

quark mass, ms, strong interaction coupling constant, αc, and bag constant, B, our calculations
were actually carried out for a certain region in the space of those three parameters. We found
that for parameters within rather wide ranges, it is not possible to support a crust at a density
leading to neutron drip. Especially, for the conventional choice of the parameters, i.e., ms=200
MeV, αc=0.3, and B1/4=145 MeV, our calculations indicate Vq '20 MeV, well below 26 MeV.

It is interesting to mention that the properties of charm-quark stars (viz. strange-quark
stars with an additional charm-quark population) have been studied by Kettner et al. (1995).
But unfortunately, they found charm-quark stars are unstable against radial oscillations, i.e.,
no such stars can exist in nature. So our work will only pivot around strange-quark stars.

3 ELECTROSTATIC POTENTIAL OF ELECTRONS IN SQM CORES

3.1 Governing Equations

The property of SQM is generally described using the phenomenological MIT bag model
(Chodos et al. 1974), which simplifies the dynamics of confinement by introducing an approxi-
mation that the quarks are separated from the vacuum by a phase boundary and the region in
which quarks live is endowed with a constant universal energy density B. Since the description
of SQM has been introduced elsewhere (Farhi & Jaffe 1984; Kettner et al. 1995), we will go
straight to the governing equations and describe the procedure of our calculations. Our goal is
to determine the electrostatic potential of electrons at Rm, i.e., Vq.

We assume that charge neutrality is locally satisfied. This is popularly held to be true:
Due to the rearrangement of electron charge inside and outside of the surface of an SQM core,
the redundant positive charge of the quarks will be balanced locally by e− only up to radial
distances r ≤ Rm. However, Rm in fact is only minutely smaller (several hundred fermis, see
AFO; Kettner et al. 1995) than R, the core’s radius.

Basing upon the realization that a core-crust system’s temperature is generally much smaller
than the typical chemical potentials of the constituents (u, d, s, e−), we further assume the core
is at zero temperature. And we include first-order αc effects in our calculations.

The thermodynamic potentials (per unit volume) as functions of the chemical potentials of
the constituents read (Farhi & Jaffe 1984):

Ωf (µf ) = − µf
4

4π2(h̄c)3
(
1− 2αc

π

)
, f = u, d, (2)
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Ωs(µs) = − 1
4π2(h̄c)3
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2
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4c8 ln2(
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2
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) + 6 ln(

ρR

µs
)(µsms

2c4(µs
2 −ms

2c4)1/2

−ms
4c8 ln(

µs + (µs
2 −ms

2c4)1/2

msc2
))]} , (3)

Ωe(µe) = − µe
4

12π2(h̄c)3
. (4)

The renormalization point for the SQM, ρR, which appears in Eq. (3), is chosen to be 313
MeV in this work, because of the reasons pointed out by AFO. The number densities for every
constituent can be expressed in terms of µi (i = u, d, s, e) from

ni(µi) = −∂Ωi

∂µi
, (5)

and charge neutrality requires

2
3
nu −

1
3
nd −

1
3
ns − ne = 0 . (6)

In fact, Eq. (6) could be rendered into an equation of µi (i = u, d, s, e−) if we substitute
Eqs. (2)–(5) into it. Later in this section, we will demonstrate that all µi at a given energy
density can be determined when combined with the chemical equilibrium conditions and the
energy density equation, and we will point out that Vq is equal to µe.

Chemical equilibrium between the three quark flavors and the electrons is maintained by
weak interactions (i.e., β-stable SQM)

d → u + e + νe, (7)

u + e → d + νe, (8)

s → u + e + νe, (9)

u + e → s + νe , (10)

and
s + u ↔ d + u . (11)

The loss of neutrinos by the star implies that their chemical potential is equal to zero (we ignore
the effect due to the finite mass of neutrinos). Hence, at equilibrium the chemical potentials
should obey:

µd = µs ≡ µ , (12)

µu + µe = µ . (13)

Combined with the condition of charge neutrality (Eq. (6)), these equations leave us with only
one independent chemical potential, which we have denoted by µ (see Eq. (12)). Therefore, we
still need one equation to close the system.

The total energy density ρ is given by

ρ =
∑

(Ωi(µi) + µini(µi)) + B, i = u, d, s, e−. (14)
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Since all µi could be expressed in terms of µ, solving Eq. (14) can determine µ if given the value
of ρ, and hence, µi.

When the Thomas-Fermi model is invoked to describe the electrons associated with the
quarks, we can easily arrive at the conclusion that V = µe, i.e., the electrostatic potential is
equal to the chemical potential for the electrons (see, e.g., AFO; Kettner et al. 1995). The
derivation is as follows. The number density of electrons is given by the local Fermi momentum
Pe,

ne = Pe
3/(3π2h̄3). (15)

On the other hand,

ne = −∂Ωe/∂µe = µe
3/(3π2h̄3c3). (16)

From the above two equations, we obtain µe = Pec. Since the electrons are confined within a
sphere of infinite radius, their total energy −V + Pc should obey, −V + Pc ≤ −V (∞) = 0, i.e.,
−V + Pec = 0, and so,

V = Pec = µe. (17)

As µe at Rm can be calculated following the procedure stated above, Vq is readily found.

3.2 Numerical Results

Since µe decreases with the density (Kettner et al. 1995), which reflects the fact that less
electrons are needed in denser SQM, the electrostatic potential of electrons increases mono-
tonically from the center toward the surface of the strange star. Because when r < Rm the
electrical charge neutrality is locally satisfied, only the electron electrostatic potential at Rm,
corresponding to Vq in Eq. (1), is responsible for supporting the nuclear crust. Owing to the
equation of state P = (ρ − 4B)/3 (Witten 1984)1 , the energy density at the surface of SQM
cores is universally equal to 4B, independent of the star’s mass, or in other words, of the central
density. Hence, although in our calculations we fixed the energy density at 4B, our results will
stand for the complete equilibrium sequences of compact SQM core-crust systems as determined
by Glendenning, Kettner & Weber (1995).

There exist large uncertainties in the three QCD-related parameters: the s quark mass,
ms, the strong interaction coupling constant, αc, and the bag constant, B. Our calculations
are actually carried out over a range in the space of those parameters. Their exact values are
unknown but are probably constrained within: 50 MeV ≤ ms ≤ 340 MeV, 0 ≤ αc ≤ 0.6, and
135 MeV ≤ B1/4 ≤ 165 MeV.

The Vq contour diagrams in the αc − ms plane for B1/4= 135, 145, 155, 165 MeV are
respectively presented in Fig. 1(a)–(d). The solid and dashed curves refer to Vq=26 MeV (the
electron chemical potential at which neutron drip occurs) and Vq=0MeV, respectively. The
gray regions show where the energy per baryon of the SQM, µn (µn ≡ µu + µd + µs), exceeds
the lowest energy per baryon found in nuclei, which is 930 MeV for 56Fe. The black regions are
regions of no physical solutions.

1 Although this EOS is derived in the limit ms → 0, αc → 0, for intermediate values of ms this equation

differs by less than 4% from the full expression (AFO).
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Fig. 1 Contours of fixed Vq in the αc − ms plane for B1/4 = 135, 145, 155, 165 MeV. The

cross near the center of (b) marks the position of conventional choice of QCD parameters, i.e.,

ms=200 MeV, αc=0.3, and B1/4=145 MeV. The solid and dashed curves refer to Vq=26 MeV

(the electron chemical potential at which neutron drip occurs) and Vq=0 MeV, respectively. The

gray regions show where the energy per baryon of the SQM exceeds the lowest energy per baryon

found in nuclei, which is 930 MeV for iron. The black regions are regions of no physical solutions.

Obviously, for QCD parameters within rather wide ranges (including the conventional choice),

SQM cores are incapable of supporting crusts at neutron drip density (see text for details).

These results are independent of the stellar mass, or in other words, of the central density,

because in the MIT bag model the energy density at zero pressure (corresponding to the surface

of SQM cores) is universally equal to 4B.

To support a crust at a density leading to neutron drip, Vq must, at least, be larger than 26
MeV (in order to establish an outwardly directed field, or in other words, to obtain meaningful
solutions to Eq. (1)). So, only for parameters in the regions above the solid curves are such
crusts possible, and, of course, they should avoid the gray and black regions. Conventionally,
the three parameters are chosen to be ms=200 MeV, αc=0.3, and B1/4=145 MeV. The cross
in Fig. 1(b) represents this set. Obviously, it lies outside the permitted region, and actually Vq

equals roughly 20 MeV. We underline that, here, Vq < 26 MeV.
Figure 1 clearly shows that for QCD parameters within rather wide ranges, owing to the in-

sufficient electrostatic potential of electrons, an SQM core is not capable of carrying a suspended
crust at ρdrip.

Another factor we should take into account is the gap width, zG. Note that the lattice
spacing in the crust is ∼200 fm, on the same order of zG, while the model (i.e., Eq. (1))
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assumed a smooth distribution of the ionic charges in the crust. In order to make their analysis
self-consistent, AFO assumed that the width of the gap should be larger than 200 fm. As zG

is entirely determined by Vc and Vq in AFO’s model, we thus can also determine Vq when the
values of zG and Vc are known. For zG= 200 fm and Vc= 26 MeV (viz. a neutron-drip crust),
Vq was found to be ∼125 MeV after solving Eq. (1) with the associated boundary conditions
(i.e., V → Vq as z → −∞, V → Vc as z → +∞, and V, dV/dz both continuous at z = 0 and
at z = zG) as well as the approximation dV/dz = 0 for z ≥ zG (viz. the gravitation forces
are neglected2). Therefore, if a gap width larger than 200 fm is really a necessary qualification
for the stability of a core-crust system, the assumed presence of crusts at neutron drip density
would have been completely ruled out, since no QCD parameters can make Vq so high, at least
within the ranges in which our calculations were done.

Although our calculations were limited to SQM at zero temperature, we can state unam-
biguously that a finite temperature can only make such dense crusts’ situation even worse.
According to Kettner et al. (1995)’s calculations (see fig. 12 in their paper), Vq decreases with
temperature of the SQM. It thus becomes even more unlikely that a neutron-drip crust can
exist above strange stars at higher temperatures.

4 CONCLUSIONS

We have studied the electrostatic potential of electrons near the surface of SQM cores for
a region in the parameter space of ms, αc and B, to see whether crusts at neutron drip density
can exist on strange stars. Our numerical results indicate:

1. For QCD parameters within rather large ranges (Fig. 1), the electrons in an SQM core are
incapable of establishing an outwardly directed electric field to carry a suspended neutron-drip
crust.

2. If it is a sound criterion that the gap width zG should be larger than 200 fm, then the
possibility of neutron-drip crust on strange stars is completely ruled out by our calculations.

Therefore, our results argue against the presence of such crusts in nature.
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