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Abstract Using an axisymmetrical ideal MHD model in spherical coordinates, we
present a numerical study of magnetic configurations characterized by a levitating
flux rope embedded in a bipolar background field whose normal field at the solar
surface is the same or very close to that of a central dipole. The characteristic
plasma β (the ratio between gas pressure and magnetic pressure) is taken to be so
small (β = 10−4) that the magnetic field is close to being force-free. The system
as a whole is then let evolve quasi-statically with a slow increase of either the
annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic
energy of the system grows accordingly. It is found that there exists an energy
threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic
energy of the system is below the threshold, whereas it loses equilibrium if the
threshold is exceeded. The energy threshold is found to be larger than that of the
corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to
whether the background field is completely closed or partly open, or whether the
magnetic energy is enhanced by an increase of annular or axial flux of the rope.
This gives an example showing that a force-free magnetic field may have an energy
larger than the corresponding open field energy if part of the field lines is allowed to
be detached from the solar surface. The implication of such a conclusion in coronal
mass ejections is briefly discussed and some comments are made on the maximum
energy of force-free magnetic fields.
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1 INTRODUCTION

As a typical magnetic structure in the solar corona, magnetic flux ropes are believed to
be closely related to various solar active phenomena such as coronal mass ejections (CMEs).
Many authors suggested that a catastrophic loss of mechanical equilibrium might lead to an
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eruption of the flux rope and the opening of the ambient magnetic field, and the latter was
usually considered as a necessary condition for CMEs (Hundhausen 1988). Both analytical and
numerical models have been proposed to examine possible catastrophic behaviors of an ideal
magnetohydrodynamic (MHD) system containing magnetic flux ropes (Forbes & Isenberg 1991;
Forbes & Priest 1995; Isenberg et al. 1993; Lin et al. 1998, 2001; Hu & Liu 2000; Hu 2001; Hu
& Jiang 2001; Hu et al. 2001, 2003; Li & Hu 2001; Wang & Hu 2003). A common conclusion
of these studies is that catastrophe exists under certain conditions.

In the analysis of catastrophe of magnetic configurations, one of the most important issues is
the total magnetic energy of the system at the catastrophic point. The reason is straightforward,
since, as a possible mechanism for the initiation of CMEs, the catastrophe is required to fully
open up the background field so as to create a channel for the erupting flux rope, and in addition,
to provide the associated plasma with sufficient energy so as to make it erupt into interplanetary
space against gravity. However, Aly (1984) put forward a conjecture that in an infinite domain
and for a given distribution of normal field at the lower boundary, the maximum energy of
force-free fields with at least one end of each field line anchored to the lower boundary is the
corresponding open field energy. This conjecture was supported by numerical (Yang et al. 1986;
Mikić & Link 1994; Roumeliotis et al. 1994; Amari et al. 1996) and analytical (Lynden-Bell &
Boily 1994; Aly 1994; Wolfson 1995) examples. Meanwhile, Aly (1991) and Sturrock (1991)
separately addressed proofs of the conjecture, but Aly (1991) admitted that the validity of these
proofs relies on some intuitive assumptions. Choe & Cheng (2002) pointed out that the validity
of these assumptions cannot be taken for granted, and presented an example consisting of a
pair of intertwined flux loops whose energy may exceed the corresponding open field energy.

While the Aly conjecture remains to be questionable, another interesting issue is what
happens if a part of the field lines is completely detached from the solar surface. Low & Smith
(1993) found magnetostatic equilibrium solutions with a fully detached magnetic bubble which
have energy in excess of the corresponding open field energy. The bubble was maintained in
equilibrium by gas pressure and gravity. Recently, Hu et al. (2003, referred to as Paper I
hereinafter) used a 2.5-D ideal MHD numerical model to study the equilibrium and catastrophe
associated with a fully detached coronal flux rope. They found that there exists an energy
threshold across which a catastrophe of the system occurs. Although a definite value of the
threshold was not determined, they insisted with some plausible arguments that the threshold
should be slightly larger than the open field energy. Incidentally, in one set of the equilibrium
solutions obtained, β was taken to be 0.001, and thus the magnetic field is close to being force-
free. As pointed out in Paper I, the equilibrium solution was obtained by an abrupt emergence
of a flux rope from below the solar surface so that the system underwent a process that is far
from quasi-static. This was the main reason why a definite threshold could not be estimated
based on the numerical solutions. To determine the threshold exactly, one must let the system
evolve quasi-statically with slowly increasing magnetic energy. This paper will undertake such
a task in order to determine the energy threshold. To this end, we start with an equilibrium
magnetic configuration with a detached flux rope within a bipolar background field that can
be either completely closed or partly open. The characteristic value of β is taken to be 10−4 so
as to approximate force-free fields. Then we let the system evolve quasi-statically with slowly
increasing magnetic energy by an artificial enhancement of either the annular or the axial
magnetic flux of the rope. At a certain point, a catastrophe occurs, and the energy threshold
is thus determined. The basic equations and the initial conditions are given in Section 2. In
Section 3, we describe the procedure of determining the energy threshold. Numerical results
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are discussed in Section 4. We conclude our work in Section 5.

2 BASIC EQUATIONS AND INITIAL CONDITIONS

2.1 Basic Equations

Following Paper I, we take the spherical coordinate system (r, θ, ϕ) and consider the 2.5-D
problems in the meridional plane. Introducing a magnetic flux function ψ(t, r, θ) related to the
magnetic field by

B = ∇×
(

ψ

r sin θ
ϕ̂

)
+ Bϕ, Bϕ = Bϕϕ̂, (1)

the 2.5-D ideal MHD equations may be cast in the non-dimensional form
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γ is the polytropic index, taken to be 1.05 in this study, and gs is the gravitational acceleration
at the solar surface (GMs/R

2
0) normalized by v2

0/R0. Here G is the gravitational constant, Ms

is the mass of the Sun, R0 is the radius of the Sun, taken as the unit of length, and v0 is the
characteristic Alfvén wave speed, taken as the unit of velocity. As usual, β is the characteristic
ratio of gas pressure to magnetic pressure,

β = 2µρ0RGT0R
4
0/ψ

2
0 , (8)

where µ is the vacuum magnetic permeability, RG is the gas constant, ρ0 and T0 are the density
and temperature at the base, respectively, and ψ0 is the magnetic flux function at the solar
equator, i.e., the total magnetic flux emanating from unit radian of the northern hemisphere.
All symbols with subscript 0 represent the units of the corresponding quantities. Other units
include B0 = ψ0R

−2
0 for field strength, v0 ≡ vA = B0/

√
µρ0 for velocity, t0 ≡ τA = R0/v0 for

time, W0 = B2
0R

3
0/µ for energy, and so on. In the following numerical examples, we take

T0 = 2× 106 K, ρ0 = 1.67× 10−13 kg m−3, β = 10−4, (9)

in addition to R0 = 6.95 × 108 m, so that ψ0 = 5.69 × 1015 Wb, B0 = 1.18 × 10−2 T, v0 =
2.57 × 104 km s−1, the Alfvénic transit time is τA = R0/v0 = 27 s, and W0 = 3.71 × 1028 J
(cf. Paper I). The computational domain is taken to be 1 ≤ r ≤ 30 (in units of the solar radius
R0), 0 ≤ θ ≤ π/2. Here we take a denser mesh of 200×120 in this paper instead of the 130×90
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in Paper I for better numerical accuracy. The grid spacing increases according to a geometrical
series of common ratio 1.021 from 0.01 at the solar surface (r = 1) to 0.60 at the top (r = 30),
while a uniform mesh is adopted in the θ direction. The multistep implicit scheme (Hu 1989)
is used to solve Eqs. (2)–(6).

2.2 Initial Conditions

The initial state is an equilibrium solution obtained by a similar procedure to that in Paper I.
It consists of a flux rope embedded in a bipolar background field that is either completely closed
(Case A) or partly open (Case B). The magnetic configurations are shown in Figs. 1a and 1b for
the two cases. For case A, the background field has exactly the same magnetic flux distribution
at the solar surface as that of a central dipole, namely,

ψ(0, R0, θ) =
sin2 θ

r
, (10)

while the distribution for Case B is very close to Eq. (10): the maximum relative deviation
being less than 0.44%. The annular flux Φp0 per radian and the axial magnetic flux Φϕ0 (in
units of ψ0) are (0.426, 0.119) for Case A and (0.381, 0.090) for Case B, respectively.

3 DETERMINATION OF MAGNETIC ENERGY THRESHOLD

Now let us design a quasi-static evolution process for the system caused by a slow change
of either the annular or the axial magnetic flux of the flux rope. Physically, this change may be
produced by a slow magnetic reconnection between the flux rope and a newly emerged magnetic
flux, a twist of the very flux rope, or perhaps some other sources. For the present purpose,
however, the detailed mechanism for this change will not be addressed. Our concern is to
trace the quasi-static evolution process of the whole system and to find the catastrophic point
at which the system loses equilibrium. To this end, we may either increase the annular flux
from Φp0 to Φp while maintaining Φϕ = Φϕ0, or increase the axial flux from Φϕ0 to Φϕ while
maintaining Φp = Φp0. The change proceeds slowly and linearly with time with a growth rate
denoted by α in units of τ−1

A , so it lasts for a time interval that is exactly equal to 1/α. After
the change is finished, the simulation continues until the flux rope either reaches an equilibrium
or erupts, depending on the values of Φp or Φϕ. This way, a critical value is found, denoted by
Φpc or Φϕc, that corresponds to the catastrophic point. Just above the catastrophic point, the
system loses equilibrium and the flux rope leaves the solar surface and erupts, i.e., a catastrophe
takes place. When an equilibrium is reached, we calculate the magnetic energy of the system,
normalized by 4πW0 = 4πB2

0R
3
0/µ, with the use of
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1
2
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1
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θ )r=30 sin θdθ, (11)

where the first term on the right hand side is the magnetic energy in the numerical box (1 ≤ r ≤
30), and the second is that above the box, having been transformed into a surface integral over
the top (cf. Low & Smith 1993). The magnetic energy thus obtained at the catastrophic point,
i.e., the energy threshold Wc, will be used to mark the catastrophic point instead of either Φpc

or Φϕc. Incidentally, with the same flux distribution at the solar surface, the open field energy
is 0.554 for case A (1.662 times of the dipole field energy, see Low & Smith 1993) and 0.553 for
Case B. Meanwhile, with the use of Eq. (11), the magnetic energy of the initial system, showing
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in Fig. 1, is found to be 0.562 for both Case A and Case B, which is already larger than the
open field limit.

Fig. 1 Magnetic configurations of the initial state for a completely closed background field
(Case A) and a partly open background field (Case B).

A sufficiently low growth rate α must be chosen in order to make the evolution process of the
system quasi-static so that the energy threshold Wc can be accurately determined. Tentative
simulations were made for Case A for a transition from (Φp0,Φϕ0) to (1.14Φp0,Φϕ0) that is very
close to the catastrophic point. Two growth rates were tested: α = 5×10−3 and 1.25×10−3; the
corresponding time intervals for accomplishing the transition are 28 and 112 τA, respectively.
Figure 2 shows the heliocentric distance of the flux rope axis (h) as a function of time for the two
cases (thick curves). After the transition is complete, h reaches to within 1% of 1.44R0. The
corresponding profiles for Φp = 1.15 Φp0 are also shown in Fig. 2 (thin curves). The flux rope
erupts in this case, showing that the catastrophic point lies between Φp/Φp0 = 1.14 and 1.15.
The energy threshold obtained turns out to be the same within the numerical accuracy, i.e.,
between 0.595 and 0.596. This indicates that 5×10−3 is a proper value for α in the sense that
it makes the evolution process of the system almost quasi-static without consuming too much
computer time. Therefore, this value of α will be taken in the following numerical simulations.

Fig. 2 Heliocentric distance of the flux rope axis h as a function of
time for case A for different values of α and Φp.
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4 NUMERICAL RESULTS

In comparison with Paper I, a much smaller value of β is taken for both cases A and B,
β = 10−4, so that the magnetic field obtained is very close to being force-free. As a result,
the magnetic energy dominates, and other forms of energy are practically negligible, being less
than one thousandth of the magnetic energy for all the numerical examples.

For Case A when the background is completely closed, we first increase the annular magnetic
flux Φp of the rope while keeping the axial magnetic flux constant (Φϕ = Φϕ0). The catastrophic
point is found to be between 1.14 and 1.15 Φp0. The rope remains attached to the solar surface
in equilibrium at Φp = 1.14Φp0, whereas it erupts at Φp = 1.15Φp0. The magnetic energy of
the system at t = 1/α for the two values of Φp are 0.595 and 0.596, respectively. Next, the
annular flux of the rope is fixed at Φp = Φp0 and the axial flux is increased. The catastrophic
point thus obtained lies between 1.37 and 1.38 Φϕ0. In other words, the flux rope sticks to the
solar surface in equilibrium for Φϕ = 1.37Φϕ0 and erupts for Φϕ = 1.38Φϕ0. The magnetic
energy for the two values of Φϕ is 0.600 and 0.601. Although the catastrophic point is located
at different sets of (Φp,Φϕ) for the two situations, the energy threshold turns out to be about
the same, Wc ≈ 0.60, the deviations being within the numerical errors.

The calculations were repeated for Case B, and the results are listed in the last four rows
of Table 1, including the values of the magnetic flux and corresponding magnetic energy on
the two sides of the catastrophic point. The energy threshold is also around 0.60, as seen from
this table. In fact, we also treated cases of β = 0.001 and β = 0.01. The magnetic field can
still be safely considered as force free for β = 0.001, so the same conclusion holds, namely, the
energy threshold is around 0.60. For β = 0.01, on the other hand, the gravity associated with
the embedded prominence can no longer be neglected. As pointed out in Paper I, it raises the
energy threshold by an amount that is approximately equal to the excess gravitational energy
of the prominence. The threshold changes from 0.60 to 0.61 accordingly for the β = 0.01 case.

Table 1 Magnetic Energy Near the Catastrophic Point

Cases Φp/Φp0 Φϕ/Φϕ0 Wm

A 1.14 1 0.595

A 1.15 1 0.596

A 1 1.37 0.600

A 1 1.38 0.601

B 1.27 1 0.597

B 1.28 1 0.599

B 1 1.71 0.601

B 1 1.72 0.603

In our model, the top of the computational domain is taken to be 30R0, above which the
magnetic energy is less than a few thousandth of the total magnetic energy. In addition, this
amount of energy has been included in the magnetic energy of the system in Eq. (11). Therefore,
the boundary conditions at the top do not much affect the energy threshold predicted above.
To further make sure that this expectation is correct, we extended the computational domain
to 50R0 and 80R0, and the energy threshold turned out to be the same. The deviations were
less than 1%, within the numerical accuracy.
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5 CONCLUDING REMARKS

Through present numerical analysis, we obtain an energy threshold of 0.60 for force-free
magnetic configurations with a levitating flux rope. Below this threshold, the flux rope remains
to be attached to the solar surface and the whole system stays in equilibrium. This provides
an example showing that a force-free field with a part of the field lines detached from the solar
surface may have an energy larger than the open field energy, 0.553–0.554 for the present case.
The excess energy is then around 0.60 − 0.554 = 0.046. For a flux rope stretching one radian
along its axial direction, the total excess energy is estimated to be 0.046×2W0 = 3.4×1034 erg
for β = 10−4 and 3.4×1032 erg for β = 0.01, more than 1032 erg necessary for a CME event
(Forbes 2000; Low 2001).

A realistic coronal flux rope should have both its ends anchored to the solar surface, and
this must affect the maximum energy of the resulting 3-dimensional force-free fields and the
conclusion reached above. We used a plane tangential to the solar surface right at the equator
so that the magnetic flux rope becomes fully anchored to the plane. In terms of the numerical
solutions obtained above, we calculated the magnetic energy in the domain above that plane.
At the same time, based on the same normal component on the plane, we used the Green
function to calculate the corresponding potential field and fully-open field above the plane, and
their energies as well. It was found that the magnetic energy of the flux rope system above the
tangential plane lies in between the potential field energy and the open field energy so the Aly
conjecture is not contradicted. However, this does not mean that the present model of force-free
fields is bound to be constrained by the Aly conjecture. The flux rope may be further twisted
so as to increase the magnetic energy of the system before a catastrophe occurs. Whether the
resultant maximum energy exceeds the open field energy remains open and to be answered by
3-dimensional MHD simulations. As a matter of fact, as pointed out by Choe & Cheng (2002),
force-free fields with complex topology may have an energy in excess of the open field energy
so that the Aly conjecture does not hold even if all field lines are anchored to the solar surface.
The same conclusion probably holds for the present type of force-free fields. One of the key
assumptions in the proofs of the Aly conjecture provided by Aly (1991) and Sturrock (1991)
is that in the set of admissible force-free fields with all field lines unknotted and anchored to
the lower boundary, an energy-maximizing sequence of force-free fields converges to a field B+
which belongs to the set. When a system like that discussed in this paper has a catastrophic
behavior, the maximum energy state might be infinitely approximated but not ever reached,
and thus the field B+ does not belong to the set of admissible force-free fields. Therefore,
we conjecture that a magnetic configuration of force-free fields with a catastrophic behavior
may have a maximum energy larger than the Aly-Sturrock limit, even if all the field lines are
anchored to the solar surface.
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