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Abstract The scientific satellite SST (Space Solar Telescope) is an important
research project strongly supported by the Chinese Academy of Sciences. Every day,
SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to
the ground because of limited time of satellite passage and limited channel volume.
Therefore, the data must be compressed before transmission. Wavelets analysis is a
new technique developed over the last 10 years, with great potential of application.
We start with a brief introduction to the essential principles of wavelet analysis,
and then describe the main idea of embedded zerotree wavelet coding, used for
compressing the SST images. The results show that this coding is adequate for the
job.
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1 INTRODUCTION

The scientific satellite SST (Space Solar Telescope) is a research project strongly supported
by the Chinese Academy of Sciences (Ai 1996, 1998). This high-resolution telescope will be
sent into the outer atmosphere to collect continuous data from the sun over a broad optical
spectrum, so participating in the great advance in solar physics research and the supply of
important database for outer space weather broadcast and research in the motion of celestial
bodies. SST carries a total of five large scale receivers, or, 15 broad coverage imaging CCDs
and several hundreds of channels of the energy spectrum and frequency spectrum. It acquires
1730 GB of raw data every day, which are processed down to 50 GB. However, only 10 GB of the
data may be transmitted to the ground. This is because of limited satellite passage time and
channel volume. So, the image data must be compressed to less than 1/5 in order that all the
data are transmitted. The compressing scheme used in SST is a real time process, with several
pre-processing buffer units before the compressing units, the compressed results are ultimately
stored in a storage with a huge capacity, to wait for transmission to the ground. Allowing
for a certain channel transmission margin, the requirement set by the SST is that, after the
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image data are compressed to 1/5 of the original size, the signal to noise ratio must not fall
below 28 dB, while the quality of the compressed images should satisfy intuitive astronomical
demands. Thus, in-orbit, high compressing-ratio compression of images figures as an important
component of SST’s real time processing of scientific data.

At present, astronomical science satellites in orbit are of two kinds. Most of them target
at fixed stars at large distances, e.g., Hubble Space Telescope. Because of the weakness of
starlight, image integration time may last a few hours or even a few tens of hours, the storage
and output of data are not large, and the images need not be compressed in orbit. The other
kind of astronomical science satellites aims at observation of the sun and planets, e.g., Solar
B, Trace. The instruments on board are not so various nor so complex as the SST, their CCD
array face is also smaller, and they use many ground stations or intermediary satellites for
data transmission, so, the transmission of data is not such a problem for them as for the SST.
The Hubble Space Telescope also does not need compress the data before transmitting to the
ground.

Wavelet analysis is newly, rapidly developed technique in the last 10 years, with wide scope
for application. It is a way of analyzing the time scales of signals. It has the characteristics
of multi-resolution analysis and the capability of expressing local features of signal in both the
time and frequency domains. It is a local analysis, with windows of fixed sizes and varying
shapes. That is, it has a much higher frequency resolution and lower time resolution in lower
frequency bands, and a much higher time resolution and lower frequency resolution in higher
frequency bands. Wavelet analysis has been called a microscope of signal analyzing. Because of
multi-resolution ability of wavelet analysis, signals and images can be decomposed at different
scales, and compressed in the wavelet domain. Then the original images are recovered through
the inverse transform. Wavelet analysis is superior to conventional DCT (Discrete Cosine
Transform) in the application of images processing and compression, as has been proven in
many practical cases. Wavelet analysis differs from Fourier Transform in that different wavelet
families have different compressing effects when applied to the same image. The same wavelet
family also has a bigger contrast to different image processing. Therefore, the selection of a good
wavelet base is extremely important to the entire compression scheme. On one hand, a good
base can ensure the realization of the desired compression radio; on the other hand, it ensures
that the compressed images will reach both the subjective and objective quality demands of the
SST. In this article, after a brief introduction to the essential principles of wavelet analysis, we
present a brief chart of embedded zerotree wavelet code. The results of the compression of SST
images are discussed in detail based on the wavelets Bior9.7, Sym8, Db6 (Cohen et al. 1992;
Daubechies 1988). Our conclusion is given in the end of the paper.

2 ESSENTIAL THEORY AND METHOD OF WAVELET ANALYSIS

As we know, the wavelet function originated from MRA (Multi-Resolution Analysis), the
main idea of which is that a function f(¢) in L? is expressed as a series of gradually approaching
expressions, any one of which is smoothed f(¢) at a given resolution. MRA, also called MSA
(Multi-Scales Analysis), is the theory founded on the basis of function space concepts, the ideas
of MRA originated from engineering. Its creator S. Mallat set up the theory when researching on
image processing. At that time, people worked on images using generic means, i.e. decomposing
images on different scales, and comparing the results to gain useful information. MRA plays a
key role in orthogonal wavelet transform theory. Here, only established results are given, for
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more details refer to the References (Antonini et al. 1992; Li 2001; Liu 1992; Mallat 1989).

2.1 Definition of Dyadic Wavelet

Suppose 9(t) is a function in L?, satisfying the condition

+o0
Y (t)dt =0, (1)
and define
vty = 1o (L), )

where, s called the scale parameter, k called the position parameter. For f(t) C L2, using
convolution, s and k are defined below

we f(t) = (f * ¥s)(t). (3)

The scale parameter s depicts the size and rule of signal characteristics, and must be discrete
in real applications. Generally, s is simply changed as dyadic serials {27];c.}, i.e.

was f (£) = (f * i) (£) - (4)

Equation (4) is the discrete dyadic wavelet transform. In the same way, we also have the discrete
forms of ¢, 1 (t), i.e.

6u:(0) = 5;0(52) )

and define Eq.(6) as MRA approach

595 f(t) = ¢ai * f(1) . (6)

Suppose that the least scale is 1 and the greatest scale is 27, then, s; f(¢) and sy f(t) are
MRA approaches on scales 1 and 27, w%f(t) (j € 1,2,...,J) is called wavelet decomposition
based on scales 1,2,...,J.

It can be proved that (Liu 1992)

J
s f @ :lewzjf(t)\\erHSsz(t)Hz- (7)

Equation (7) shows that the high frequency portion of s; f(t) can be recovered by wj f (t)1< <,
o
sgu [ (t),was f (t)1§j§J ) (8)

is called the finite scale wavelet transform of s f(t).

In real applications, generally, most of the signals we obtained are discrete digital signals.
It is proven theoretically that any energy-limited discrete signal can be represented as uni-
form samples through a smoothened function on scale 1, i.e., the MRA approach. Therefore,
any energy-limited discrete signals can be decomposed and reconstructed by discrete wavelet
transform.
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2.2 Mallat Algorithm

From experience gained from images decomposition and reconstruction cascade algorithm,
Mallat put forward the algorithm in the MRA theory now bearing his name. This algorithm
plays a role in wavelet transform as important as does FFT (Fast Fourier Transform) in Fourier

Transform.
It is proved mathematically that
f(t) = A;(t) = Ajpa f (t) + Djga f (1) (9)
and among them, we have
+o00
A fO) = Y Ciptm¥isim, (10)
—+o0
Diif ()= Dijim®jsim, (11)
and
+oo
Oj-{—l,m = Z hk—2ij,ka (12)
k=—o0
—+oo
Djt1,m = Z Gk—2mDj ke - (13)
k=—o00

The above can be written in a compact form as follows:

{ Cj1 = HC;

=1,2,...J). 14
ol Zap, U=l (14)

Expression (14) is the Mallat pyramid scheme. We call C;, D; discrete approximations and
discrete details respectively. After a proper mathematical transformation of Eq. (9), Mallat
reconstruction scheme becomes

Cj :H*Cj+1+G*Dj+1 j=J,J=1,..., (].5)
where H* and G* are the complex conjugates of H and G.

2.3 Two-Dimensional Wavelet For Image Analysis

There exist various extensions of the one-dimensional wavelet transform to two-dimensional
and indeed multi-dimensional wavelet, but separable two-dimensional wavelets are simple and
effective in common use. Same as in the construction of one-dimensional wavelet, the scale
function ¢(x,y) is defined as

o(z,y) = o(x)e(y) , (16)

where ¢(x), ¢(y) are the one-dimensional scale functions. Suppose 1(z) denotes the wavelet
function related to the one-dimensional scale function, then three two-dimensional wavelets are
defined by
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VP (2,y) = P(@)d(y). (17)
Figure 1 shows the two-dimensional wavelet transform of an image. The two-dimensional
MRA decomposition is completed in two steps. First, using ¢(x) and ¢(z) in the z direction,
f(z,y) (an image) is decomposed into two parts, a smooth approximation and a detail. Next, the
two parts are analyzed in the same way using ¢(y) and ¢ (y) in the y direction. As a result, four
channel outputs are produced, one channel is A; f(x,y), the level one smooth approximation
of f(z,y), through ¢(x)p(y) processing, the other three channels are D§H)f(x7y), D:(Lv)f(ac,y)
and DgD) f(z,y), the details of the image. Grade two and level three results are obtained after
decomposing A, f(z,y) progressively. The algorithm of two-dimensional wavelet decomposition
and reconstruction is the same as that for one-dimensional wavelet. Mallat pyramid scheme
is also used in this case. Figure 2 is a sketch map of a three-level two-dimensional wavelet
transform.
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w(x)inx _| HL3 | HH3
details in x LH1
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Fig.1 Image decomposition with separable Fig.2 Sketch map of three-level two-dimensional
two-dimensional wavelets. wavelet transform.

3 THE PROCESS AND PRINCIPLE OF ZEROTREES WAVELET IMAGE
COMPRESSION

3.1 The Process of Image Compression

The process of image compression based on wavelet transform coding is shown in Fig. 3.
The purpose of the wavelet transform is to decorrelate the image, the process is loss-less and
reversible when calculating errors are ignored. A series of wavelet coefficients is formed in the
transform domain after the image decorrelation, which is quantized to integers to a code bit
stream to be transmitted down. The quantization is not lossless nor reversible, and is mainly
responsible for image distortion. Figure 4 shows the process of decoding and recovering image,
it is the reverse of Fig. 3.

(lmage — Transform —J Quantizer [—jw  Coder 4.{ Storage

Fig.3 Sketch of image wavelet transform and coding.
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Decoder |—Jm Un-quantizer —Jm Un-transform Recover

Fig.4 Sketch of image recovery and decoding.

3.2 The Principle of Zerotree Wavelet Compression

Quantization is the key to image compression. The embedded zerotree wavelet compres-
sion scheme with high compression efficiency is used to quantize post-transformation wavelet
coefficients. Some highlights of the method now follow.

The embedded zerotree wavelet compression scheme was proposed by Shapiro in 1993
(Shapiro 1993), the main idea of which is the investigation of self-similarity of the wavelet
transforms of the image at different scales. In the orthogonal tree data structure, every node
(except the exit node) has four offsprings, and a zerotree root implies that all coefficients cor-
responding to the nodes of the tree are insignificant comparing to the specified threshold, and
only the zerotree root rather than whole tree, needs to be coded, and so compressing the image
on the given level. The zerotree wavelet compression scheme is based on the following presump-
tion, namely, if the wavelet coefficients are insignificant on a coarse scale (e.g. HH3 in Fig. 2),
then it is highly likely that the wavelet coefficients in the same space position and direction
(e.g. HH2, HH1 in Fig. 2) are insignificant at finer scales. This Shapiro hypothesis is confirmed
by a great deal of statistical data of wavelet coefficients on images, so the Shapiro method is
widely used in image compression processing and other domains.

In order to have a higher compressing radio, the quantization should result in more of the
wavelet coefficients being zero. Quantization begins from the lowest frequency subband LL3,
the order is LL3- LH3-HL3- HH3- LH2-HL2- HH2- LH1-HL1- HH1. The scan begins by taking
the half-integer of the greatest wavelet coefficient as threshold, and the wavelet coefficients
with absolute value greater than the threshold are taken to be significant, denoting positive
and negative significant values with POS and NEG, and isolated zero point and zerotree root
with 1Z and ZTR respectively. After the first scanning, we have the threshold and repeat the
process until the desired compression ratio or bit budget is reached. The decoding process is
accomplished according to the order of subband coding, the details are given in the references
(Said 1996; Shapiro 1993).

4 WAVELET ZEROTREE COMPRESSION RESULTS OF SST IMAGES

4.1 The Characteristics of Embedded Zerotree Wavelet Image Coding

Embedded coding is similar in spirit to binary finite-precision representations of real num-
bers. All real numbers can be represented by a string of binary digits. As each digit is added to
the right of binary figure string, more precision is added. The binary coded stream can realize
progressive transmission using multi-threshold embedded zerotree wavelet coding, the coding
rate and distortion can be controlled accurately. According to the order of importance of the bit
plane, the most important bit plane is coded first, and the coding can end at any time when the
bit budget or compression ratio is reached. When transmitted, the most important bit plane
is transmitted first, and the least important, last. The decoding can be stopped on occasion
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depending on the decoded image quality. The characteristics described above of embedded
coding are very suitable to the real time transmission of images. When receiving the images,
a rough sketch of image is received first, then, we decide whether or not to continue receiving,
for it is useful to save the channel resource. SST images are transmitted to surface receiver sta-
tions from remote space and the channel resource is valuable, while embedded zerotree wavelet
coding of the images is also useful to SST image processing.

4.2 The Choice of Wavelet Basis

As we know, different wavelet have different performances for the same image compression,
and there is no universally best wavelet basis for all the different kinds of image processing;
even if there is such a wavelet, it will be of no use in practice and it will not have good
characteristics. The performance of wavelet compression of images depends principally on the
inherent statistical information of the image. When our aim is to compress SST, the selection
of a right wavelet basis is extremely important, in order to acquire compressed images that
satisfy the subjective and objective quality demands.

There are two well-known wavelet filter families used in wavelet-based image coders, i.e.
orthogonal and biorthogonal wavelets. Orthogonal guarantees that images transformed can be
fully recovered through the inverse transformation, and compact support guarantees realizabil-
ity of coding, the smaller support interval (i.e. the less wavelet coefficients), the less compute
time. However, the length of the support interval is closely related to smoothness and regularity
of wavelet, and which inversely affects coding features. The main attraction of biorthogonal
wavelet is the linear phase of FIR (Finite Impulse Response), there is no need to make phase
compensate in pyramid multi-decomposition structure. To sum up, in the selection of wavelet
we need to trade off among orthogonal, symmetric, support interval, smoothness and regular-
ity. In this article, based on the results of SST images compression using Matlab Program,
compact support biorthogonal Bior9.7, orthogonal Db6 and Sym8 wavelet with smoothness 4,
6, 8 respectively, are chosen in a C program for SST images compression, and the compressed
images proved to be satisfactory, satisfying the subjective and objective quality demands of the
SST.

Table 1 Compressed Sunspot Results during a Solar Burst (dB)

CR 5 10 20 30 Notes
Bior9.7 39.23 34.71 26.62 19.70 SNR
45.95 41.42 33.33 26.42 PSNR
Sym8 39.48 31.68 23.54 19.19 SNR
46.19 38.39 30.25 26.61 PSNR
Db6 39.33 31.33 26.46 19.60 SNR
46.05 38.05 33.18 26.31 PSNR

Table 2 Compressed Flare Results during the Quiet Sun (dB)

CR 5 10 20 30 Notes
Bior9.7 36.60 33.99 31.67 26.12 SNR
44.34 41.72 39.41 33.86 PSNR
Sym8 36.72 34.07 28.45 24.79 SNR
44.46 41.80 36.19 32.52 PSNR
Db6 36.70 34.04 28.10 24.09 SNR

44.44 41.77 35.84 31.82 PSNR
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Fig.5  Original and compressed images of Fig.6  Original and compressed images of
sunspot compared. (a) Original sunspot im- flare compared. (a) Original flare image; (b)
age; (b) Bior9.7 compressed image; (c¢) Mag- Bior9.7 compressed image; (c¢) Magnified 36

nified 36 times error image. times error image
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4.3 Results of Compressed SST Images

The SST images include images of sunspots, flares, solar activity and bursts. In this article
the zerotree wavelet compressing scheme is applied to 20 SST images of various kinds (all
the images originate from the Huairou Station, National Astronomical Observatories), with
compression ratios 5, 10, 20, 30, and a four-level decomposition, with the wavelets Bior9.7, Db6
and Sym8 wavelets separately. Partial results are shown in Table 1 and Table 2. The Tables
list the compressed signal to noise ratio (SNR) and peak signal to noise ratio (PSNR), in units
of dB. The results in the Tables show that, whether it is a flare or a sunspot, when the CR
(compression ratio) is below 10, the compressed effects of Bior9.7, Db6, Sym8 are essentially
the same and all satisfy the requirement that the SNR be no lower than 28dB after a CR of 5.
For the sunspot during the quiet sun, the compressed results also satisfy the 28dB requirement,
when the CR is 20. On the other hand, when CR is 20 or 30 times, the SNR and PSNR of
Bior9.7 wavelet are 3dB higher than those of Sym8 and Db6 wavelets, and this feature is even
more obvious for the flare during the quiet sun.

Figures 5 and 6 show the original images (a), and 5 times compressed images (b) and error
images (c) of the sunspot during the solar burst (see Table 1) and the flare during quiet sun
(Table 2 results), using Bior9.7. The error images are magnified 36 times and after reverse
color processing. Comparing the original and compressed images, the SNR, of the compressed
images satisfies the 28dB criterion, and it is difficult to distinguish between the original and
compressed images by the naked eye, thus satisfying the subjective quality demand.

The analysis of the processed results of about 20 SST images makes it clear that the three
wavelets, Bior9.7, Sym8, Db6, give near equal performances with small differences in SNR and
PSNR, when the CR is not large. When CR exceeds 20 Bior9.7 performs better than Sym8
and Db6 wavelet. When the CR is 5, most of the images have SNRs no lower than 30 dB, so
satisfying the pre-set criterion.

5 CONCLUSIONS

The Sun is an important object of astrophysics research. Investigation of solar activity is
very important for preventing accidents in air traffic, radio communication, power supply and
petroleum transportation, so avoiding disasters brought by climate change and earthquake.
However, a huge amount of SST images must be compressed, before being transmitted to the
ground. The investigations in this article indicate that zerotree wavelet compression coding
scheme is feasible for compressing SST images using the wavelets Bior9.7, Sym8 and Db6, and
the compressed images meet the subjective and objective demands of quality of astronomical
images.
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