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Abstract We propose a spatial three-degree-of-freedom (DOF) parallel mechanism
combining two degrees of rotations and one degree of translation to support the
active reflector units of a large spherical radio telescope. The kinematics, workspace
and accuracy of the mechanism are analyzed. One-dimensional and two-dimensional
fitting errors to the working region of active reflector are investigated. Dimensional
parameters of the mechanism and active reflector unit are examined with respect
to the requirement of fitting accuracy. The result of accuracy analysis shows the
effectiveness and feasibility of the proposed mechanism, and gives a design rule to
guarantee the highest working frequency required by large radio telescope.
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1 INTRODUCTION

Since radio telescopes are the main tool for human kind to search for the universe’s secret,
astronomers reached unanimity at the 24th URSI Conference in Kyoto, Japan, in 1993, and
proposed to construct the next generation of large radio telescope (LT) (Nan et al. 2000). From
then on, astronomers of China have begun a project of Five-hundred meter Aperture Spherical
radio Telescope (FAST) as the prototype of the LT (Large Radio Telescope) (Qiu 1998; Peng
et al. 2000; Li 1998).

It is well known that the Arecibo telescope was a breakthrough in the building of large radio
telescopes. Its main mirror, 305 m in diameter, is fixed on a karst base, and an elaborately
designed feed system illuminates a part of the mirror which forms an effective aperture of
about 200 m. The feed system is movable at a height of about 100 m when tracking the object
to be observed. The enormous receiving area of the telescope will enable it to make many
important astronomical discoveries inaccessible to lesser instruments, despite its limited sky
coverage (20◦ zenith scan angle) due to geometrical configuration, and its narrow frequency
bandwidth, originated from spherical aberration. An upgrade project has been carried out for
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the Arecibo telescope, in which a heavy and complex hence expensive Gregorian dual-reflector
feed system is introduced for correcting the spherical aberration and enlarging the bandwidth
(Duan 1999).

(a) (b)

Fig. 1 Active reflector of spherical radio telescope. (a) A Bird’s-eye view of project FAST;
(b) Reflector units with supporting mechanism

For the sake of satisfying the requirements of low cost and broad bandwidth, the project
group of FAST decided to substitute the fixed spherical reflector with active reflector units. As
shown in Fig. 1, the reflector consists of about 2000 elementary reflector units. Figure 1b shows
some of the active reflector units and supporting mechanisms. Each reflector unit is a small
part of a spherical surface of regular hexagon and is driven by a supporting mechanism. The
part of spherical reflector illuminated by the feed is continuously adjusted to fit a paraboloid of
revolution in real-time, synchronous with the motion of the feed while tracking the object to be
observed (Qiu 1998). As it is now free from spherical aberration, a simple, light-weight, hence
cheap feed system may be adopted to achieve broad bandwidth and full polarization. In order
to fit a paraboloid of revolution, it is necessary that every reflector unit should be driven by a
supporting mechanism with two rotational degrees of freedom and one translational degree of
freedom (Luo et al. 2000). The mechanism will bring error because of the control or dimensional
factor. Moreover, the fitting surface of reflector will not match exactly the nominal paraboloid.
In order to guarantee the working frequency of the large spherical radio telescope, the fitting
accuracy of the active reflector should be studied systematically.

In this paper, a new supporting mechanism for the active reflector units is proposed, which
is based on a 3-PSS parallel mechanism with a passive leg. The movable platform of the parallel
mechanism has three degrees of freedom, two in orientation and one in translation, with respect
to the base plate. Based on the analysis of the kinematics and error of the mechanism, the
one dimensional and two dimensional fitting errors to the active reflector working region are
investigated systematically.

2 DESCRIPTION OF SUPPORTING MECHANISM

To adjust the reflector units to fit a paraboloid, a new type of parallel supporting mechanism
is proposed as shown in Fig. 2, which is based on a 3-PSS parallel mechanism with a passive
leg. The parallel supporting mechanism consists of a base plate, a movable platform, and four
connecting legs, three of which have identical kinematic chains, PSS. Each of the three legs is
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composed of one fixed length link (3), and one union driven plate (5). The fixed length link (3)
is connected to the movable platform (1) and the union driven plate (5) by two spherical joints
(2) and (4), respectively. The union driven plate (5) is connected to the base plate (5) by a
prismatic joint (6). The base plate and the movable platform are two regular triangles. The
passive leg (8) connects the center points of the two regular triangles. One end of the passive
leg has a 2-DOF universal joint (6), the other one is fixed to the base plate (5) by a prismatic
joint (7). The passive leg (8) can be extensible with the prismatic joint (7) along its axis line.
Furthermore, when the supporting mechanism is assembled, the axis line of the prismatic joint
(7) should pass the center of the spherical reflector. Since a supporting mechanism should be
driven by three actuator legs, as shown in Fig. 2, the union driven plate (5) connects three fixed
length links in order to reduce the actuator number. As a result, the number of actuators of
the active reflector is equal to that of the reflector units.

Fig. 2 Parallel supporting mechanism.

As described above, one can see that the proposed mechanism is one of n DOFs, which
usually consists of n identical actuated legs with six DOFs and one passive leg with n DOFs
connecting the movable platform and the base plate, i.e., the DOF of the mechanism is depen-
dent on the passive leg’s DOF. For the mechanism considered in this paper, the passive leg has
three DOFs, which means n equals 3. The three DOFs are one of translation along the z axis
and two of rotation about the x and y axes.

3 KINEMATICS ANALYSIS

Mechanism kinematics deals with the study of the mechanism’s motion as constrained by
the geometry of the links. Typically, the study of mechanism kinematics can be divided into
two parts, inverse kinematics and forward (or direct) kinematics (Wang et al. 2003). The
inverse kinematics involves mapping a known pose (position and orientation) of the output
platform of the mechanism to a set of input joint variables that will achieve that pose. The
forward kinematics involves the mapping from a known set of input joint variables to a pose
of the movable platform that results from those given inputs (Wang et al. 2001). Generally,
as the number of closed kinematics loops in the parallel mechanism increases, the difficulty of
solving the forward kinematics relationships increases, while the difficulty of solving the inverse
kinematics relationships decreases (Liu et al. 2001; Wang et al. 2003).
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3.1 Inverse Kinematics

A kinematics model of the mechanism is developed as shown in Fig. 3. The vertices of the
movable platform are denoted as platform joints Ai (i = 1, 2, 3), and the vertices of the base
plate are denoted as bi (i = 1, 2, 3). A fixed global reference system <:o − xyz is located at
the center of the regular triangles b1b2b3 with the axis z normal to the base plate and the axis
y parallel to the side b1b2. The circumcircle radius of triangles b1b2b3 is denoted as R. Another
reference frame, called the top frame <′:o′ − x′y′z′, is located at the center of regular triangles
A1A2A3. The axis z′ is perpendicular to the movable platform and y′ axis parallel to the side
A1A2. The circumcircle radius of triangles A1A2A3 is denoted as r. Vectors of fixed length
links are denoted as Li (i = 1, 2, 3), and the link length for each legs is denoted as l, where
AiBi = l, (i = 1, 2, 3).

Fig. 3 Geometric parameters of the parallel mechanism.

The task of the inverse kinematics solution is to define a mapping from the pose of the
output platform in Cartesian space to the set of actuated inputs that achieve that pose. For
this analysis, the pose of the movable platform is considered known, and the position is given
by the position vector [o′]< and the orientation is given by a matrix R1. Then we have

[o′]< =
(

x y z
)T

, (1)

where x = y = 0,

R1 =

 cβ sβsα sβcα
0 cα −sα
−sβ cβsα cβcα

 , (2)

where c stands for the cosine function, s, the sine function, α and β are the orientational DOFs
of the movable platform with respect to the x and y axes, respectively. The coordinate of point
Ai in the frame <′ can be described by the vector [Ai]

′
< (i = 1, 2, 3), and

[A1]<′ =
[
r/2,−

√
3r/2, 0

]T

, [A2]<′ =
[
r/2,

√
3r/2, 0

]T

, [A3]<′ = [−r, 0, 0]T . (3)
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Vectors [Bi]< (i = 1, 2, 3) will be defined as position vectors of base joints Bi in frame <, and

[B1]< =
[
R/2,−

√
3R/2, z1

]T

, [B2]< =
[
R/2,

√
3R/2, z2

]T

, [B3]< = [−R, 0, z3]
T

. (4)

Vectors [Ai]< (i = 1, 2, 3) in frame o− xyz can be, therefore, written as

[Ai]< = R1 [Ai]
′
< + [o′]< . (i = 1, 2, 3) (5)

Then the inverse kinematics of the parallel mechanism can be solved by writing the following
constraint equation

‖[Bi]< − [Ai]<‖ = ‖Li‖ = l . (i = 1, 2, 3) (6)

Hence, for a given mechanism and a prescribed position and orientation of the movable
platform, the required actuator inputs can be directly computed from Eq. (6), that is

z1 =
√

l2 −A2
11 −A2

12 + A13

z2 =
√

l2 −A2
21 −A2

22 + A23

z3 =
√

l2 −A2
31 −A2

32 + A33

, (7)

where
A11 = (R− r(cβ −

√
3sβsα))/2

A12 = −
√

3(R− rcα)/2
A13 = r(sβ +

√
3cβsα)/2 + z

A21 = R− r(cβ +
√

3sβsα)/2
A22 =

√
3(R− rcα)/2

A23 = −r(sβ −
√

3cβsα)/2 + z
A31 = −R + rcβ
A32 = 0
A33 = rsβ + z

,

3.2 Forward Kinematics

The task of the forward kinematics solution is to define a mapping from the known set of
the actuated inputs to the unknown pose of the output platform. For the architecture with
prismatic actuators, the inputs that are considered known are the lengths of the three actuator
legs z1, z2 and z3. The unknown pose of the output platform is described by the position vector
[o′]< and angles α and β. Because it is very difficult to describe the direct kinematics in closed
form for this type of parallel mechanism, the forward kinematics solution should be obtained
by numerical methods as follows:

(1) Decide the non-singular workspace of the mechanism;
(2) Give the initial value of the direct kinematics solution;
(3) Calculate the position coordinates of spherical joints, construct the nonlinear equations

set by the geometrical constraints of the fixed length links;
(4) Solve the nonlinear equations set by the Quasi-Newton method (Press et al. 1995).

From Eq. (6), the nonlinear equation is

fi (z, α, β) = l2 −A2
i1 −A2

i2 − (zi −Ai3)2 = 0, (i = 1, 2, 3) (8)

where the direct kinematics solutions are z, α and β.
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3.3 Velocity Equation

Equation (6) can be differentiated with respect to time to obtain the velocity equation.
This leads to the equation

Jpṗ = Jqq̇ , (9)

where q̇ is the vector of Cartesian velocities defined as

q̇ =
[
ż, α̇, β̇

]T

, (10)

and ṗ is the vector of input velocities defined as

ṗ = [ż1, ż2, ż2]T. (11)

Matrices Jp and Jq are the 3× 3 forward and inverse Jacobian matrices of the mechanism
and can be expressed as

Jp =

 (z1 −A13)/l 0 0
0 (z2 −A23)/l 0
0 0 (z3 −A33)/l

 , (12)

Jq =

 (w1)z (v1 ×w1)x (v1 ×w1)y

(w2)z (v2 ×w2)x (v2 ×w2)y

(w3)z (v3 ×w3)x (v3 ×w3)y

 , (13)

where wi is the unit vector of Li, and vi = R1 [Ai]<′ , (wi)z is the element of vector wi with
respect to z axis coordinate, (vi ×wi)x and (vi ×wi)y are the elements of vector vi ×wi with
respect to x and y axis coordinates, respectively.

4 MECHANISM ACCURACY ANALYSIS

When the large spherical radio telescope is running, the part of the spherical reflector
illuminated by the feed is continuously adjusted to fit a paraboloid of revolution in real-time,
synchronous with the motion of the feed when tracking the object observed. The spherical
surface reflector is divided into some small elementary units. When the mechanisms drive
the reflector units to fit the paraboloid, the fitting surface of reflector will not match exactly
the nominal paraboloid. Moreover, the mechanism produces errors because of some control or
dimensional factor. In this section we first analyze the mechanism accuracy.

The mechanism accuracy involves the error caused by the actuator input error and the joint
error of the mechanism. The actuator input error is denoted as δp = [δz1, δz2, δz3]

T and the
joint error is denoted as δe =

[
δAT

i δBT
i

]T ∈ R18×1(i = 1, ....3), where δBT
i ∈ R9×1(i =

1, ....3) includes the joint error on the base platform and the input error δp = [δz1, δz2, δz3]
T.

The output error is denoted as δq = [δz, δα, δβ]T.
From Eqs. (5) and (6), the inverse kinematics equation can be written as

R1 [Ai]<′ + [o′]< − [Bi]< = Li = wil . (14)

Differentiating Eq. (14) leads to
δl = Jqδq + Jeδe , (15)
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where

Je =

 wT
1 R1 −wT

1 0 0 0 0
0 0 wT

2 R1 −wT
2 0 0

0 0 0 0 wT
3 R1 −wT

3

 ∈ R3×18 , (16)

and δl = [δl1, δl2, δl3]
T, δli(i = 1, 2, 3) is the manufacturing or measuring error of the ith link.

When Jq is nonsingular in the workspace, Eq. (12) can be rewritten as

δq = J−1
q (δl− Jeδe) . (17)

5 FITTING ACCURACY ANALYSIS OF ACTIVE REFLECTOR

5.1 One Dimensional Fitting Accuracy Analysis

As shown in Fig. 4, the base active reflector of the radio telescope is a spherical surface
with a 500-meter aperture, and the working reflector is a paraboloid with a 300-meter aperture.
When it works, the reflector units are driven by the parallel mechanism from the initial position
to the fitting position to fit the paraboloid. Because the paraboloid is formed by the revolution
of a parabola, we can analyze the deviation between spherical surface and paraboloid in the
reflector frame <′′:o′′ − y′′z′′, which is built as shown in Fig. 4, where the spherical surface and
the paraboloid in the frame <′′ are circular arc and parabola, respectively.

Figure 5 shows one reflector unit which is in the initial position and fitting position, respec-
tively. The initial position is located at the base spherical reflector surface. The deviation from
the circular arc to the parabola is denoted as ∆Kij , and suffix i represents the ith reflector unit
which corresponds to the ith mechanism. The suffix j(j = 1, 2, 3) represents the supporting
point of the movable platform. The explanations of other symbols used in accuracy analysis
are:

Aij The supporting point when the reflector unit is in the initial position

A′
ij The supporting point while the reflector unit is in the fitting position

Cij The intersecting points of line SAij and the parabola

o′i The reference center in the movable platform while the reflector unit is in the initial
position

o′′i The reference center in the movable platform while the reflector unit is in the fitting
position

S The center of spherical reflector

K The radius of spherical reflector

F The focal point of the paraboloid

The absolute actuator input of the ith mechanism is specified as ∆Kij(j = 1, 2, 3), while
the ith active reflector unit is driven to fit the paraboloid. Obviously, the driven reflector
unit will not match exactly the nominal paraboloid. In order to evaluate the fitting error, as
shown in Fig. 5, ∆ei is defined as the deviation of center points of the ith reflector unit to the
corresponding paraboloid and one-dimensional fitting error, and is equal to ‖o′′i Ci3‖.
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Fig. 4 Configuration of the active reflector.

Fig. 5 ith reflector unit. (a) Initial and fitting position; (b) A direction view of initial position.

5.1.1 Parabola Equation and Circle Equation

According to (Qiu 1998), the focal length of the parabola is specified as 0.476K, then the
parabola equation can be written as

z′′ =
1

4× 0.467K
y′′2 . (18)

The base spherical surface in reflector coordinate system <′′ is a circle, and the circle
equation can be written as

z′′ = K −
√

K2 − y′′2. (19)
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5.1.2 Actuator Input Range

The coordinate of the point Aij in the frame <′′ can be described by the vector [Aij ]
′′
<

(j = 1, 2, 3), then
[Aij ]<′′ =

[
y′′ij , z

′′
ij

]T
. (j = 1, 2, 3) (20)

The equation of straight line SAij can be written as

z′′ =
(z′′ij −K)y′′

y′′ij
+ K . (j = 1, 2, 3) . (21)

According to Eqs. (19) and (21), the point of intersection Cij between line SAij and the
circle can be expressed by the vector [Cij ]<′′ , which is

[Cij ]<′′ = [y′′cij , z
′′
cij ]

T. (j = 1, 2, 3) (22)

The actuator input value of the ith reflector unit can be written as

∆Kij = ‖K − SCij‖ = K −
√

(y′′cij)2 + (K − z′′cij)2. (j = 1, 2, 3) (23)

5.1.3 One-Dimensional Fitting Error

When the actuator input ∆Kij (j = 1, 2, 3) is specified, the fitting error ∆ei can be
reached. The first step is to calculate the position coordinate [o′′i ]< = [y, z]T< in the frame < by
the forward kinematics solution. The position vector of the center point o′′i in the frame <′′ is
written as

[o′′i]<′′ = [y′′o′′i, z
′′
o′′i]

T = R2 [o′′i]< + [y′′i3, z
′′
i3]

T
, (24)

where R2 is the rotation matrix about the frame <:o− yz to the frame <:o′′ − y′′z′′, i.e.,

R2 =
[

cα′ −sα′

sα′ cα′

]
, (25)

where α′ = sin−1
(

y′′

K

)
. Then the fitting error is expressed as

∆ei = So′′i − SCi3 =
√

(y′′o′i)2 + (z′′o′i −K)2 −
√

(y′′ci3)2 + (z′′ci3 −K)2 . (26)

Since the three-hundred-meter aperture paraboloid is composed of a large number of reflec-
tor units, we should analyse all the errors of all the reflector units. When the error is studied
in the reflector frame <′′:o′′ − y′′z′′ and the side length of the reflector unit is specified, the
one-dimensional root-mean-square (RMS) fitting error of the paraboloid reflector can be defined
as

Re =

√√√√ n∑
i=1

∆e2
i

n
. (27)

5.1.4 One-Dimensional Accuracy Synthesis Analysis

Accuracy synthesis analysis is defined as the combined RMS error of the errors of the
mechanism actuator input and of the fitting. the former has a linear relationship with the value
of ∆Kij , and Eq. (23) can be rewritten as

∆Kij = ‖K − SCij‖+ δzj = K −
√

(y′′cij)2 + (z′′cij −K)2 + δzj , (j = 1, 2, 3) (28)

where δzj (j = 1, 2, 3) is the actuator input error. Then Eqs. (24)–(27) can be used to calculate
the one-dimensional composition RMS error R′e.
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5.1.5 Simulation Example

Since the position of the supporting point Aij should be limited in the range of the reflector
unit, as shown in Fig. 5b, the base plate parameter r of the parallel mechanism is

r = sl −M , (29)

where sl is the side length of the reflector unit and M is the distance from the movable platform
edge to the reflector unit edge. In this work, M = 0.5m and R = r = 2l.

Since the paraboloid reflector is symmetrical, the error can be analyzed for the range of
150 m. Figure 6 shows the one-dimensional fitting error when the side length of reflector unit
is specified.

According to Eqs. (26) and (28), the one-dimensional RMS fitting error and composition
RMS error are drawn as shown in Fig. 7 for [δz1, δz2, δz3]max = [1, 1, 1]mm. In this work,
we assume that the maximal input error of the mechanism is 1 mm. When the side length of
reflector unit is equal to 7.5m, the one-dimensional RMS fitting error is 3.75 mm.

Fig. 6 Fitting error of reflector unit.
Fig. 7 One-dimensional RMS fitting error of

active reflector.

5.2 Two-Dimensional Fitting Accuracy Analysis

As shown in Fig. 5a, the reflector unit fitting error is a closed region. In Section 5.1 we only
considered the one-dimensional error. In this section the area of the closed region will be used
to analyze and evaluate the fitting error, which is called the “two-dimensional fitting error”.
Obviously, the two-dimensional fitting error will provide a more reliable index when analyzing
the fitting accuracy of the large spherical radio telescope. Figure 8 shows the two-dimensional
fitting error of the ith reflector unit, which is the sectional region.

5.2.1 Circle Equation at Fitting Position

When reflector units are driven by the mechanisms, the circle arc equation of the ith reflector
unit will be changed in the frame <′′. As shown in Fig. 8, the centre of circle arcA′

i1A
′
i3A

′
i2 is

changed from S to S′i. The coordinate of S′i in the frame < is written as

[S′i]< = [yS′i, zS′i]
T = R1 [S]′< + [y, z]T , (30)
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where

R1 =
[

cα −sα
sα cα

]
, [S]′< = [0,K] . (31)

The coordinates of S′i in the frame <′′ are written as

[S′i]<′′ = [y′′S′i, z
′′
S′i]

T = R2 [S′i]< + [y′′i3, z
′′
i3]

T
. (32)

The circle arc equation is changed to

z′′ = K −
√

K2 − (y′′ − yS′i)2 + z′′S′i . (33)

Fig. 8 Two-dimensional fitting error region of the ith reflector unit.

5.2.2 Two-Dimensional Fitting Error

The two-dimensional fitting error can be calculated according to the circle arc equation in
the frame <′′. First, as shown in Fig. 8, one point in the parabola is denoted as C (y′′C , z′′C), the
equation of the straight line SC can be written as

z′′ =
(z′′c −K)y′′

y′′c
+ K . (34)

According to Eqs. (33) and (34), the point of intersection A between line SC and the circle
arc A′

i1A
′
i3A

′
i2 can be expressed by A (y′′A, z′′A). The fitting error of the given point is expressed

as
∆e′′y = SA− SC =

√
(y′′C − y′′A)2 + (z′′C − z′′A)2. (35)

The area of the closed region can be written as

Sei =
∫ y′′

Ci2

y′′
Ci1

∣∣∆e′′y
∣∣ dy′′ , (36)

which is the two-dimensional fitting error of the ith reflector unit. Then the average error of
the two-dimensional fitting error is defined as

Qei =
Sei

y′′Ci2 − y′′Ci1

. (37)
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Finally, the two-dimensional root-mean-square (RMS) fitting error of the paraboloid reflector
is defined as

RQe =

√√√√ n∑
i=1

Qe2
i

n
, (38)

where n is the number of reflector units that make up the 300-meter aperture parabola.

5.2.3 Two-Dimensional Accuracy Synthesis Analysis

The two-dimensional accuracy synthesis analysis is defined as the composition RMS error
caused by both the errors of the mechanism actuator input and of the two-dimensional fitting,
and is denoted as R′

Qe. Eqs. (25), (34) and (35) can be used to calculate the two-dimensional
composition RMS fitting error R′

Qe.

5.2.4 Simulation Example

The two-dimensional RMS error and composition RMS fitting error are shown in Fig. 9,
where all the dimensional design parameters are the same as specified in Section 5.1.5. Com-
paring Figs. 9 and 8, we can learn that although both the one-dimensional and two-dimensional
RMS fitting errors increase when the side length of the reflector unit increases, the two-
dimensional RMS error is larger than one-dimensional RMS error.

Fig. 9 Two-dimensional RMS fitting error of active reflector.

According to the fitting error requirement given by Qiu (1998), when the highest working
frequency of the radio telescope is 5 GHz, the reflector RMS fitting error should be less than
3.75mm. Now, we can assign the dimensional parameters and guarantee the implementation of
the working frequency by the one-dimensional or two-dimensional RMS fitting error curves. For
example, according to Fig. 8, if the side length of reflector unit is specified as 7.5 m, the specified
dimension of reflector units can satisfy the requirement of 5 GHz working frequency. However,
as shown in Fig. 9, if the two-dimensional RMS fitting error is used to evaluate the fitting
accuracy, the side length of reflector unit should be less than 7.0 m to satisfy the requirement
of 5 GHz working frequency.
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6 CONCLUSIONS

For large spherical radio telescope application, a new active reflector supporting mechanism
is proposed. The inverse kinematics is described in a closed form and the forward kinematics
is also investigated. According to the analysis of one-dimensional and two-dimensional fitting
errors, the conclusions can be drawn as follows: (1) The proposed mechanism can satisfy the
motion requirements of the active reflector units; (2) The one-dimensional and two-dimensional
fitting errors can be described as closed forms, and the relationship between the fitting errors
and the design parameters of active reflector can be studied easily. (3) At the highest working
frequency of 5GHz of the FAST, the hexagon dimension of the reflector unit should be less than
7 m in order to meet the required RMS accuracy.

The obtained results will be significant for the dimension design, trajectory plan and control
of this type of mechanism.
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